
Term Project Final Presentation

15-721
D A T A B A S E
S Y S T E M S

Alex Poms // Ravi Teja Mullapudi // Ziqi Wang

[

~ Query Planner ~

http://www.windishagency.com/artists/lightning_bolt
http://www.windishagency.com/artists/lightning_bolt

Goals
● 75% - Integrate with Postgres and execute simple queries

 Implement base table sampling

● 100% - Dynamic programming approach

 Tuple-based cost model

● 125% - Use sampling and static/dynamic replanning to select query plans

✓

✓

Goals
● 75% - Integrate with Postgres and execute simple queries

 Implement base table sampling

● 100% - Cost-guided Dynamic Programming Framework

● 125% - Use sampling and static/dynamic replanning to select query plans

✓

✓

✓

Cost-guided Dynamic Programming Framework
● Cascades-style incremental plan space exploration

○ Space of plans is explored on demand and only as needed
○ Both Logical and Physical transformations are applied at the same time
○ Alternative is a two-phase optimization

■ Generate entire plan space
■ Cost and choose most optimal physical plan

● Optimizer components
○ Plan Representation
○ Memo Table

■ Equivalence classes
○ Rule Interface
○ Pattern Matching

■ Binding traversal
○ Plan Exploration

Plan Representation
● Logical, Physical, and Expression operators
● Composed to create an operator tree

○ OpExpression represents a concrete plan

● Easily extensible with new types
○ Required input & output physical properties
○ Hash function
○ Equality

OpExpression

Credit: Orca Paper

Memo Table
● Recursive plan space exploration has

redundant sub computations
○ Memo Table enables sub problem reuse

throughout optimization

● Insertion of query into Memo creates an
initial set of Groups

○ Equivalence classes for intermediate results

OpExpression

Credit: Orca Paper

Memo Table
● As exploration of plan

space proceeds,
equivalent expressions
are grouped together

Credit: Orca Paper

Rule Interface
● Extensible rule interface

○ Rule implementer only provides
■ Pattern to match against
■ Validation function
■ Transformation function

● Decoupled from optimizer and
exploration process

Abstract Rule Class

Inner Join Commutativity Rule

Pattern Matching

Get

Group 0

Group 1

Group 2

InnerJoin

Get
[Table 1]

Scan
[Table 1]

Sort
[Group 0]

Leaf Leaf

InnerJoin
[Group 1, Group 2]

Get

Group 1

Group 2

Scan
[Table 2]

Scan
[Table 1]

Get
[Table 1]

Get
[Table 2]

Binding

Pattern Matching

Get

Group 0

Group 1

Group 2

InnerJoin

Get
[Table 1]

Scan
[Table 1]

Sort
[Group 0]

Leaf Leaf

InnerJoin
[Group 1, Group 2]

Get

Group 1

Group 2

Scan
[Table 2]

Scan
[Table 1]

Get
[Table 1]

Get
[Table 2]

Binding

Pattern Matching

Get

Group 0

Group 1

Group 2

InnerJoin

Get
[Table 1]

Scan
[Table 1]

Sort
[Group 0]

Leaf Leaf

InnerJoin
[Group 1, Group 2]

Sort
[Group 0]

Get

Group 1

Group 2

Scan
[Table 2]

Scan
[Table 1]

Get
[Table 1]

Get
[Table 2]

Binding

Pattern Matching

Get

Group 0

Group 1

Group 2

InnerJoin

Scan
[Table 2]

Sort
[Group 0]

Leaf Leaf

InnerJoin
[Group 1, Group 2]

InnerJoin
[Group 1, Group 2]

Scan
[Table 1]

Get
[Table 1]

Get
[Table 2]

Binding

Pattern Matching

Get

Group 0

Group 1

Group 2

InnerJoin

Scan
[Table 2]

Sort
[Group 0]

Leaf Leaf

InnerJoin
[Group 1, Group 2]

Scan
[Table 1]

Get
[Table 1]

Get
[Table 2]

InnerJoin

Binding

Pattern Matching

Get

Group 0

Group 1

Group 2

InnerJoin

Scan
[Table 2]

Sort
[Group 0]

Leaf Leaf

InnerJoin
[Group 1, Group 2]

Scan
[Table 1]

Get
[Table 1]

Get
[Table 2]

Scan
[Table 1]

InnerJoin

Binding

Pattern Matching

Get

Group 0

Group 1

Group 2

InnerJoin

Scan
[Table 2]

Sort
[Group 0]

Leaf Leaf

InnerJoin
[Group 1, Group 2]

Scan
[Table 1]

Get
[Table 1]

Get
[Table 2]

InnerJoin

Binding

Leaf
(Group 1)

Pattern Matching

Get

Group 0

Group 1

Group 2

InnerJoin

Scan
[Table 2]

Sort
[Group 0]

Leaf Leaf

InnerJoin
[Group 1, Group 2]

Scan
[Table 1]

Get
[Table 1]

Get
[Table 2]

Scan
[Table 2]

InnerJoin

Binding

Leaf
(Group 1)

Pattern Matching

Get

Group 0

Group 1

Group 2

InnerJoin

Scan
[Table 2]

Sort
[Group 0]

Leaf Leaf

InnerJoin
[Group 1, Group 2]

InnerJoin

Scan
[Table 1]

Get
[Table 1]

Get
[Table 2]

Binding

Leaf
(Group 1)

Leaf
(Group 1)

Plan Exploration
● Series of individual tasks

○ Optimization
○ Exploration
○ Rule Application
○ Costing

● Kicks off by optimizing root group
○ Recursively optimize input groups for each

operator variant

Credit: Orca Paper

Demo

Retrospective
● Implementing the basic infrastructure was a significant undertaking

○ Synthesizing a concrete implementation from several decades of research
○ Designing extensible representations
○ Generic search process that is invariant of specific rules or operators

● Shuttling between Postgres, Peloton, and the optimizer representation
○ Converting from Postgres query
○ Converting back into Peloton plan

Still to be done
● Optimizer core

○ Implement statistics for cost calculation

■ Table sampling
■ Join intermediate sampling

○ Additional memoization
■ Some rules are still being explored and applied redundantly

● Extensions to base functionality - Logical, Physical operators and rules
○ Operators

■ Merge & nested loop join
■ Index scan
■ Insert, update, delete
■ Aggregate
■ Subqueries

○ Rules
■ Predicate pushdown & pullup
■ Subquery fusion
■ Aggregate pushdown
■ etc...

Future Work
● End-to-end planning, analysis, and compilation

○ Most compilers work directly in terms of the code to be executed
○ RDBMs abstract away from low-level operator representation

■ Use a high-level and simple cost model

● Semi-static and dynamic replanning
○ Semi-static

■ Generate a tree of potential static plans at points of high variance
○ Dynamic

■ Perform initial coarse & guided optimization pass
■ Refine after executing predicates and joins

