N

Term Project Final Presentation
~ Query Planner ~

Alex Poms // Ravi Teja Mullapudi // Zigi Wang

http://www.windishagency.com/artists/lightning_bolt
http://www.windishagency.com/artists/lightning_bolt

Goals

e /5% - Integrate with Postares and execute simple queries

Implement base table sampling v

e 100% - Dynamic programming approach

Tuple-based cost model

e 125% - Use sampling and static/dynamic replanning to select query plans

Goals

e /5% - Integrate with Postares and execute simple queries

Implement base table sampling v

e 100% - Cost-guided Dynamic Programming Framework v

e 125% - Use sampling and static/dynamic replanning to select query plans

Cost-guided Dynamic Programming Framework

e (Cascades-style incremental plan space exploration
o Space of plans is explored on demand and only as needed
o Both Logical and Physical transformations are applied at the same time
o Alternative is a two-phase optimization
m Generate entire plan space
m Cost and choose most optimal physical plan

e Optimizer components
o Plan Representation
o Memo Table
m Equivalence classes
o Rule Interface
o Pattern Matching
m Binding traversal
o Plan Exploration

Plan Representation

e Logical, Physical, and Expression operators

e Composed to create an operator tree
o OpExpression represents a concrete plan

Inner Join

(T1.a=T2.b)
e Easily extensible with new types /\
o Required input & output physical properties Get(r1) | |cet(12)
o Hash function OpExpression
o Equality

Credit: Orca Paper

Memo Table

e Recursive plan space exploration has
redundant sub computations

o Memo Table enables sub problem reuse ' GROUPO !
throughout optimization | ' (o mmersomal] | |

e Insertion of query into Memo creates an) e T
initial set of Groups /\ ED [orcetrn) |

o Equivalence classes for intermediate results Get(T1) | | Get(T2) : tGROUPZ ‘ ‘
OpExpression E :I 0: Get(T2) [] |: i

Credit: Orca Paper

Memo Table

. Groups Hash Tables Memo
e As exploration of plan GROUP 0 —

—
Opt. Request Best GExpr /| 2: Inner NUoin [2,1] | 3: Inner NUoin [1,2] | 4: Inner HashJoin [1,2] | 5: Inner Hashloin [2,1] P

#

space proceeds, 2 [singeton, <TLa> |8 L] L L L

. . 2 | Singleton, Any 7

equivalent expressions [i{ay, < s 6: sort{T1.a) [0] W
4 | Any, Any 4 L |l Pasilad

are grouped together \:”3 = I y
| Opt. Request Best GExpr (§ROUP1 5
5 | Any, Any 1 1: Scan(T1)[] |Eﬂﬂﬂlﬂl 3: Replicate[1]
6 | Replicated, Any 3 47 [|
7 | Hashed(T1.a), Any | 1
8 | Any, <T1.a> 2 N /
| Opt. Request Best GExpr /g ROUP 2 N\
9 | Aoy, Ay 1 1: Scan(T2)[] | 2: Replicate[2]
10 | Hashed(T2.b), Any | 3 o H#9 o e , #10| #9
11 | Replicated, Any 2 \ L] J

Credit: Orca Paper

RU Ie Inte rface Abstract Rule Class

e Extensible rule interface
o Rule implementer only provides
m Pattern to match against
m Validation function
m Transformation function

e Decoupled from optimizer and
exploration process Inner Join Commutativity Rule

Group 0

Pattern Matching .
Sort InnerJoin
[Group 0] [Group 1, Group 2]
Innerdoin
J N Group 1
Leaf Leaf Scan Get
[Table 1] [Table 1]
Binding
Group 2

Scan Get

[Table 2] || [Table 2]

Group 0

Pattern Matching .
Sort InnerJoin
[Group 0] [Group 1, Group 2]
InnerJoin
J N Group 1
Leaf Leaf Scan Get
[Table 1] [Table 1]
Binding
Group 2

Scan Get

[Table 2] || [Table 2]

Group 0

Pattern Matching .
Sort InnerJoin
[Group 0] [Group 1, Group 2]
Innerdoin = Sort
/ \ [Group 0] Group 1
Leaf Leaf Scan Get
[Table 1] [Table 1]
Binding
Group 2

Scan Get

[Table 2] || [Table 2]

Group 0

Pattern Matching .
Sort InnerJoin
[Group 0] [Group 1, Group 2]
InnerJoin S Innerdoin
_— [Group 1, Group 2] Group 1
VAN
Leaf Leaf Scan Get
[Table 1] [Table 1]
Binding
Group 2

Scan Get

[Table 2] || [Table 2]

Group 0

Pattern Matching .
Sort Innerdoin
[Group 0] [Group 1, Group 2]
Innerdoin
A N Group 1
Leaf Leaf Scan Get
[Table 1] [Table 1]
Binding
_ Group 2
InnerJoin

Scan Get

[Table 2] || [Table 2]

Group 0

Pattern Matching .
Sort Innerdoin
[Group 0] [Group 1, Group 2]
: [] Scan
Innerdoin e [Table 1] -
/N P
Leaf Leaf Scan Get
[Table 1] [Table 1]
Binding
) Group 2
InnerJoin

Scan Get

[Table 2] || [Table 2]

Group 0

Pattern Matching .
Sort Innerdoin
[Group 0] [Group 1, Group 2]
Innerdoin
A N Group 1
Leaf Leaf Scan Get
[Table 1] [Table 1]
Binding
_ Group 2
InnerJoin
/ Scan Get
[Table 2] || [Table 2]
Leaf

(Group 1)

Group 0

Pattern Matching .
Sort Innerdoin
[Group 0] [Group 1, Group 2]
: [] Scan
Innerdoin e [Table 2] -
/N P
Leaf Leaf Scan Get
[Table 1] [Table 1]
Binding
_ Group 2
InnerJoin
/ Scan Get
[Table 2] || [Table 2]
Leaf

(Group 1)

Group 0

Pattern Matching .
Sort Innerdoin
[Group 0] [Group 1, Group 2]
Innerdoin
A N Group 1
Leaf Leaf Scan Get
[Table 1] [Table 1]
Binding
_ Group 2
InnerJoin
Scan Get
'/ \ [Table 2] || [Table 2]
Leaf Leaf

(Group 1) || (Group 1)

Plan Exploration

e Series of individual tasks
o Optimization
o Exploration
o Rule Application
o Costing

e Kicks off by optimizing root group

o Recursively optimize input groups for each

operator variant

Opt(gy, regp)

| Opt(g,.gexpr, req,) |

optimize group

Imp(g,) i
expressionsin g,

I

| Exp(g,) |

optimize children

Opt(g,, req,)
of g gexpr

optimize group
expressions in g,

implement group
expressions in g,

Imp(g,.gexpr)

Exp(g,.gexpr) . explore group
expressions in g,

. . | Xform(g,.gexpr, t) | Xform(g,.gexpr, t') | ...

exploration rules implementation
explore children of g,.gexpr rules of g,.gexpr
of g,.gexpr

Credit: Orca Paper

Demo

Retrospective

e Implementing the basic infrastructure was a significant undertaking
o Synthesizing a concrete implementation from several decades of research
o Designing extensible representations
o Generic search process that is invariant of specific rules or operators
e Shuttling between Postgres, Peloton, and the optimizer representation
o Converting from Postgres query
o Converting back into Peloton plan

Still to be done

e Optimizer core
O Implement statistics for cost calculation
m Table sampling
m Join intermediate sampling

o Additional memoization
m Some rules are still being explored and applied redundantly

e Extensions to base functionality - Logical, Physical operators and rules

o Operators o Rules
m Merge & nested loop join m Predicate pushdown & pullup
Index scan m Subquery fusion
m Insert, update, delete m Aggregate pushdown
m Aggregate m efc...
m Subqueries

Future Work

e End-to-end planning, analysis, and compilation
o Most compilers work directly in terms of the code to be executed
o RDBMs abstract away from low-level operator representation
m Use a high-level and simple cost model

e Semi-static and dynamic replanning
o Semi-static
m Generate a tree of potential static plans at points of high variance
o Dynamic
m Perform initial coarse & guided optimization pass
m Refine after executing predicates and joins

