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Backend Stats Context (per thread)
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Global Aggregation

Aggregates all local stats maintained
by workers and records “master” stats
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At interwval: 147

# transactions committed:
# transactions aborted:

# transactions committed:
# transactions aborted:

[ reads=7, updates=7, inserts=7, deletes=0 ]

Average throughput: 0.868027 txn/s
Moving avg. throughput: 0.000000 txn/s
Current thoughput: 0.000000 txn/s




Developed an extensible stats collection module

e Identified “primitive” (counters, temporal, lifetime) & “composite” stat
types (access metrics, profiling)

e Hierarchical stat types (global, database, table, index)
e Threads maintain their own local stats

o Background thread to aggregate per-thread stats

o Easy to support per-session stats
e Access methods:

o Stats are currently logged to a file

o Will be added to catalog once PG code is removed
e Configurable options:

o Reset, enable/disable stats

o Control aggregation/logging frequency



Thorough unit-testing
Start stats aggregator
Execute actions
Compare and Contrast!

Testing



