Project #3 Final:
Statistics Collection

Aaron Harlap, Lin Ma, Dana Van Aken

Metrics

Counter Metric
counter

e

ype

Aggregate

(Abstract_Metric
&source)

Access Metric
read

update

insert

delete

kReset() /

Temporal Metric
total time
invocations

Lifetime Metric
create timestamp
delete timestamp

Backend Stats Context (per thread)

[Backend Stats Context }

/\

Database #1 Stats Database #2 Stats
Table #1 Stats Table #2 Stats Table #3 Stats

Index #1 Stats Index #2 Stats Index #3 Stats

Global Aggregation

Aggregates all local stats maintained
by workers and records “master” stats

l

Save to Save to
aggregate(), aggregate(), history history
Aggregator log() . log() .
o : i 3
0 | D
(@)) | o o
5 ! : L 9
. ' s ! Rz
Worker 1 @ WA1: Recq:rd Jocal stats... % | > —
: =2 ' T
i 5 | Done S
W2: Recor:d logal stats...
Worker 2 @ Done
Time E

(HTEEETEEETEA T i i ittt iii ittt ittt ittt i tiiitidtirirtididriidiiiiriiiliiiily
At interwval: 147

transactions committed:
transactions aborted:

transactions committed:
transactions aborted:

[reads=7, updates=7, inserts=7, deletes=0]

Average throughput: 0.868027 txn/s
Moving avg. throughput: 0.000000 txn/s
Current thoughput: 0.000000 txn/s

Developed an extensible stats collection module

e Identified “primitive” (counters, temporal, lifetime) & “composite” stat
types (access metrics, profiling)

e Hierarchical stat types (global, database, table, index)
e Threads maintain their own local stats

o Background thread to aggregate per-thread stats

o Easy to support per-session stats
e Access methods:

o Stats are currently logged to a file

o Will be added to catalog once PG code is removed
e Configurable options:

o Reset, enable/disable stats

o Control aggregation/logging frequency

Thorough unit-testing
Start stats aggregator
Execute actions
Compare and Contrast!

Testing

