
Peloton UDF Final Presentation
SeungHyun Lee, Yang Zhang, Zheyuan Bu

Proposed Goals
● 75%: Basic support for C UDFs
● 100%: Test code, benchmark, basic support for stored procedure (pl/pgSQL)
● 125%: Make stored procedure support reliable (not done)

Current Progress
● Support for C UDFs
● Support for PL/PGSQL
● Testing Code - SQL scripts and expected outputs
● Benchmark

○ C vs PL/pgSQL UDF functions
○ stored procedure vs prepared statement with batch update

Overview of executing a UDF
● Registering function

● Calling C UDF

● Calling pl/pgSQL UDF

Function
registration request

Function
Validation

Evaluate the
expression

Go to the function
manager

Directly call
the function

Create a UDF
expression node

Parse the
pl/pgSQL code

Insert an entry
into the catalog

Execute the code
via SPI

Directly call
function handler

Testing
● Issue : UDF components are not easily separable

○ Components are closely interleaved.
○ C UDF functions are called directly using the function pointer.
○ SPI layer is dependent on the query execution code.
○ PL/PGSQL handler is a C UDF function that uses SPI layer.

● Our approach
○ Write SQL scripts that uses UDFs and compare with the expected output.
○ Make UDFs be called at different places.
○ Use different types of input/output data.

DEMO

UDF Experiment - C vs pl/pgSQL

String
operations

concat_text

replace_vowels

Float
calculations

calc_tax

Integer
calculations

integer_manipulate

SQL
Queries

item_sales_sum

Loops &
control flow

countdown

fib
(ms)

UDF Experiment - Stored procedure vs Prepared Stmt

Future Direction
● Remove the dependency of postgres catalog system
● Add the native support for pl/pgSQL (non-sandboxed).

○ Instead of registering the handler as a C UDF, directly process UDFs to make it faster.

