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Proposed Goals
● 75%: Basic support for C UDFs 
● 100%: Test code, benchmark, basic support for stored procedure (pl/pgSQL)
● 125%: Make stored procedure support reliable (not done)

Current Progress
● Support for C UDFs
● Support for PL/PGSQL 
● Testing Code - SQL scripts and expected outputs
● Benchmark

○ C vs PL/pgSQL UDF functions
○ stored procedure vs  prepared statement with batch update



Overview of executing a UDF
● Registering function

● Calling C UDF

● Calling pl/pgSQL UDF
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Testing
● Issue :  UDF components are not easily separable

○ Components are closely interleaved.
○ C UDF functions are called directly using the function pointer.
○ SPI layer is dependent on the query execution code.
○ PL/PGSQL handler is a C UDF function that uses SPI layer.

● Our approach
○ Write SQL scripts that uses UDFs and compare with the expected output.
○ Make UDFs be called at different places.
○ Use different types of input/output data.



DEMO



UDF Experiment - C vs pl/pgSQL
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UDF Experiment - Stored procedure vs Prepared Stmt



Future Direction
● Remove the dependency of postgres catalog system
● Add the native support for pl/pgSQL (non-sandboxed). 

○ Instead of registering the handler as a C UDF, directly process UDFs to make it faster.


