
934 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 6, DECEMBER 1994 

Sort vs. Hash Revisited 
Goetz Graefe. Ann Linville, and Leonard D. Shapiro 

Abstract- Efficient algorithms for processing large volumes 
of data are very important both for relational and new object- 
oriented database systems. Many query-processing operations 
can be implemented using sort- or hash-based algorithms, e.g., in- 
tersection, join, and duplicate elimination. In the early relational 
database systems, only sort-based algorithms were employed. In 
the last decade, hash-based algorithms have gained acceptance 
and popularity, and are often considered generally superior 
to sort-based algorithms such as merge-join. In this article, 
we compare the concepts behind sort- and hash-based query- 
processing algorithms and conclude that 1) many dualities exist 
between the two types of algorithms, 2) their costs differ mostly 
by percentages rather than factors, 3) several special cases exist 
that favor one or the other choice, and 4) there is a strong reason 
why both hash- and sort-based algorithms should be available 
in a query-processing system. Our conclusions are supported by 
experiments performed using the Volcano query execution engine. 

Index Terms-Database query processing, value-matching, per- 
formance, sorting, merge-join, hashing, hash join, hybrid hash 
join, comparison, duality 

I. INTRODUCTION 

ITH the emergence of relational query languages and 
algebra, database systems required algorithms to oper- 

ate on large sets, e.g., for join, intersection, union, aggregation, 
and duplicate elimination. For today’s emerging database 
systems and their projected applications, algorithms for ma- 
nipulating large data volumes remain very important because 
they are the key to providing acceptable performance not only 
for traditional value matching such as relational joins but also 
for manipulation of large set-valued attributes, maintenaince 
of some access paths such as access support relations [27], 
and data reduction in statistics and decision support. 

In early relational research and implementation efforts, e.g., 
Ingres [16], [32], [ a ] ,  System R [23, [6], PRTV [46], and 
ABE [30], only sort-based methods were employed, and sort 
costs were one (or even the) major component of query- 
processing costs. Consequently, ordering of stored relations 
and intermediate query-processing results were an important 
consideration in query optimization and led to the concept of 
interesting orderings in System R [42]. 

Although set processing was based on sorting, even early 
systems employed hash-based algorithms and data structures 

Manuscript received July 1991; revised December 1991. This work was 
supported in part by the National Science Foundation under Grants IRI- 
8996270, IRI-8912618, and IRI-9006348, and in part by the Oregon Advanced 
Computing Institute (OACIS), ADP, Intel Supercomputer Systems Division, 
and Sequent Computer Systems. 

G. Graefe is with Microsoft Corp., Redmond, WA USA. 
L. D. Shapiro is with the Department of Computer Science, Portland State 

A. Linville is with the Department of Computer Science, University of 

IEEE Log Number 9213324. 

University, Portland, OR 97207475 1 USA. 

Colorado at Boulder, CO 8 0 3 0 9 4 3 0  USA. 

in the form of hash indices [ a ] .  Only in the last decade 
have hash-based query-processing algorithms gained interest, 
acceptance, and popularity, in particular for relational database 
machines such as Grace [18], [28] and Gamma [lo], [12], but 
also for sequential query execution engines [8], [43]. Rea- 
sons why hash-based algorithms were not considered earlier 
include that large main memories are required for optimal 
performance, and that techniques for avoiding or resolving 
hash table overflow were needed, i.e., algorithms to handle 
the case where none of the sets to be processed fits in main 
memory. 

Hash-based algorithms are now widely viewed as signif- 
icantly faster than their sort-based equivalents, and major 
database system vendors are incorporating hash join and ag- 
gregation into their products, e.g., Tandem [47]. Furthermore, 
hash-based algorithms are frequently associated with parallel 
query processing and linear speedup, even though hash-based 
partitioning of data to several processors can also be combined 
with sort-based algorithms, as the Teradata machine proves 
[45]. In fact, the choices of partitioning and local processing 
methods are independent or orthogonal from one another. 

In this article, we compare sort- and hash-based algorithms, 
and argue, contrary to current “wisdom,” as follows. 

1) Many dualities exist between the two types of algo- 
rithms. 

2) Their costs differ mostly by percentages rather than 
factors. 

3) Many special cases exist that favor one or the other 
choice. 

4) There is a strong reason why both hash- and sort-based 
algorithms should be available in a query-processing 
system. 

The remainder of this article is organized as follows. We 
discuss sort- and hash-based algorithms as used in real systems 
or proposed in the literature in Section 11. In Section 111, 
we consider dualities and differences between sort- and hash- 
based query-processing algorithms. An experimental compar- 
ative study of sort- and hash-based algorithms follows in 
Section IV, using relational join as a representative for binary 
set matching algorithms. Section V contains a summary and 
our conclusions. 

11. RELATED WORK 

After the investigations of Blasgen and Eswaran [6], [7], 
merge-join was universally regarded as the most efficient join 
method for large input files. After sorting both join inputs on 
the join attribute, tuples with matching join attribute values can 
be found efficiently and without much memory, independently 
of the file sizes. 

1041-4347/94$04.00 0 1994 IEEE 

~~ __ 



GRAEFE et al.: SORT VS. HASH REVISITED 935 

Fig. 1. Naive merging. 

Fig. 2. Optimized merging. 

Significant effort has been spent on devising and improving 
sort algorithms for database systems; recent work includes 
[ 11, [39]. The main memory algorithms employed in all these 
studies are either quicksort or replacement selection. The 
variations and new ideas mainly concern optimizing the I- 
O cost of writing and merging temporary files or runs by 
considering larger units of 1-0 than pages at the expense 
of smaller merge fan-in, i.e., the number of runs merged 
simultaneously. Larger units of 1-0 allow for faster 1-0 
because the number of seek operations and rotational latencies 
is reduced. However, since one input buffer is required for each 
input run during merging, the fan-in is decreased with larger 
units of 1-0. Considering that the number of merge levels, i.e., 
the number of times each record is merged from one run into 
another, is the logarithm of the number of initial runs using the 
fan-in as base, the number of merge levels may increase with 
reduced fan-in. The most interesting recent insight was that it 
may be beneficial to use larger units of 1-0  even if the fan- 
in is decreased and the number of merge levels is increased 
[211, P91. 

Another important optimization for sorting concems the 
merge strategy. Let us explain it with an example shown in 
Fig. 1. Consider a sort with a maximal fan-in of 10 and an 
input file that requires 12 initial runs. Instead of merging only 
runs of the same level, it is better to delay merging until the 
end of the input has been reached, and then merge first three of 
the 12 runs, and finally to merge the output with the remaining 
nine runs, as shown in Fig. 2. The 1 - 0  cost (measured by the 
number of memory loads that must be written to disk for all 
of the runs created) for the first strategy is 12 + 10 + 2 = 24, 
wheeas for the second strategy it is 12 + 3 = 15, meaning 
that the first strategy requires 60% more 1-0 than the second 
one. The general rule is to merge just the right number of runs 
after the end of the input file has been reached, and to always 
merge the smallest runs available for merging. More detailed 
examples are given in [21]. 

Recently, parallel sorting has found increased interest, e.g., 
in 131, 151, 1153, [21], 1231, 1251, 1331, 1341, 1401. Most in- 
vestigations concem either clever designs for parallel merging 

or for partitioning data evenly across a set of machines to 
achieve good load balancing. In this article, we do not concem 
ourselves much with parallelism, because we believe that 
the issues of data manipulation and parallelism can be made 
orthogonal [19], [22], and that our conclusions are directly 
applicable to algorithms used in parallel environments. 

For duplicate elimination and aggregate functions, e.g., a 
sum of salaries by department, Epstein’s work has led to 
the use of sorting for aggregation, too [16]. Aggregation 
and grouping are frequently assumed to require sorting. It is 
interesting to note that sorting for aggregation permits a clever 
optimization [4]. Instead of sorting the input file completely 
and then combining (adjacent) duplicates, aggregation can 
be done early, namely, whenever two records with matching 
grouping attributes are found while writing a run file. Consider 
an aggregation with 100 000 input records being aggregated 
into 1000 groups using a sort with a maximal fan-in of 
10. If aggregation is done separately from sorting; i.e., after 
sorting is complete, the largest run file may contain 10000 
records. If aggregation is done early, the largest run file 
will contain at most 1000 records. If the reduction factor 
(output over input size) is larger than the maximal fan-in, 
significant improvements can be realized. In the extreme case, 
if replacement selection is used for creating initial runs and 
the output (not the input) fits into memory, the entire sort may 
be accomplished without any run files on disk. 

Starting in about 1983, query-processing algorithms based 
on hashing experienced a sudden surge of interest [8], [lo], 
[28], predominantly for relational join. Because they were 
used in a number of relational database machines, hash-based 
join algorithms were frequently identified with parallel query 
execution [ 1 11, [ 121, [ 181, even though they make equal sense 
in sequential environments. In its simplest form, called classic 
hashjoin in [43], a join algorithm consists of two phases. First, 
an in-memory hash table is built using one input (typically 
the smaller input) hashed on the join attribute. Second, tuples 
from the second input are hashed on their join attribute, and 
the hash table is probed for matches. 

The various forms of hash join differ mainly in their 
strategies for dealing with hash table overflow, i.e., the case 
that the smaller input (and therefore the hash table) is larger 
than main memory. All overflow strategies use overflow files, 
either one per input or many partition files for each input 
[ I l l .  Overflow avoidance as used in the Grace database 
machine [ 181 builds the overflow files before any overflow 
can occur. Bucket tuning and dynamic destaging can be used 
to optimize the performance of overflow avoidance [29], [35]. 
Overflow resolution creates overflow files after it has occurred. 
A clever combination of in-memory hash table and overflow 
resolution called hybrid hash join [lo], [43] optimizes the I- 
O for overflow files by retaining as much as possible of the 
first input relation in memory; i.e., one of the partition files 
is kept in memory and probed immediately as the other input 
is partitioned. If the partition or overflow files are still larger 
than memory, they can be partitioned further using a recursive 
algorithm until classic or hybrid hash join can be applied. 

Fig. 3 shows how two inputs, say, R and S ,  are partitioned 
recursively in hash join algorithms. In practice, the files on 



936 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 6, DECEMBER 1994 

TABLE I 
DUALITY OF SORT- AND HASH-BASED QUERY-PROCESSING ALGORITHMS 

Aspect sorting Hashing 
In-memory algorithm Quicksort Classic Hash 
Divide-and-conquer para- Physical division, logical Logical division, physical 

combination combination digm 
Large inputs Single-level merge Partitioning into overflow files 
U0 Pattern Seuuential write. random read Random write, sequential read 

Fai-in 
W Optimization Read-ahead, forecasting 
Very large inputs Multi-level merge 

Number of merge levels 
Non-optimal final fan-in 

Optimizations Merge optimizations 
Better use of memory Reverse runs & LRU 

Replacement selection 
? 

Aggregation Aggregation in replacement 
selection 

Interesting orderings Merge-Join without sorting 

Fan-out 
Write-behind 
Recursive overtlow resolution 
Recursion depth 
Non-optimal hash table size 
Bucket tuning 
Hybrid hash 
? 
Single input in memory 
Aggregation in hash table 

N-way joins, hash-merging 

1 
Fig. 3. Recursive hash join. 

each level will not be of exactly equal size, depending on the 
data values and the hash function. If, in the deepest partitioning 
level, some of the R-outputs fit into the available memory, 
bucket tuning will choose which ones to keep in memory for 
immediate join processing while partitioning the S input. On 
the other hand, hybrid hash join will retain some of the R-files 
in memory without regard to their final size. 

Hashing can also be used for aggregation and duplicate 
elimination by finding duplicates while building the hash 
table. Overflow occurs only if the output does not fit into 
main memory, independently of the size of the input. Once 
overflow does occur, however, input records have to be written 
to overflow files, including records with duplicate keys that 
eventually will have to be combined. 

111. DUALITY OF SORTING AND HASHING 
In this section, we outline the similarities and duality of sort- 

and hash-based algorithms, but also point out where the two 
types of algorithms differ. We try to discuss the approaches 
in general terms, ignoring whether the algorithms are used 
for relational join, union, intersection, aggregation, duplicate 
elimination, or other operations. When appropriate, however, 
we indicate specific operations. 

Table I gives an overview of the features that correspond to 
one another. Both approaches permit in-memory versions for 
small data sets and disk-based versions for larger data sets. 

- 
Fig. 4. Duality of partitioning and merging. 

If a data set fits into memory, quicksort can be employed 
for sorting, and classic (in-memory) hash can be used as a 
hashing technique. Both quicksort and classic hash are also 
used in memory to operate on subsets after “cutting” an entire 
large data set into pieces. The cutting process is part of the 
divide-and-conquer paradigm employed for both sorting and 
hashing. This is an important similarity of sorting and hashing 
and has been observed before, e.g., by Bratbergsengen [8] and 
Salzberg [38]. There exists, however, an important difference. 
In the sort-based algorithms, a large data set is divided into 
subsets using a physical rule, namely, into chunks as large 
as memory. These chunks are later combined using a logical 
step, merging. In the hash-based algorithms, the large data set 
is cut into subsets using a logical rule, by hash values. The 
resulting partitions are later combined using a physical step, 
simply concatenating the subsets or result subsets. In other 
words, a single-level merge in a sort algorithm is a dual to 
partitioning in hash algorithms. Fig. 4 illustrates this duality 
and the opposite directions. 

This duality can also be observed in the behavior of a disk 
arm performing the 1-0 operations for merging or partitioning. 
While writing initial runs after sorting them with quicksort, the 
1-0 is sequential. During merging, read operations access the 
many files being merged, and require random 1-0 capabilities. 
During partitioning, the 1-0 operations are random, but when 
reading a partition later, they are sequential. 

For both approaches, sorting and hashing, the amount of 
available memory limits not only the amount of data in a 
basic unit processed using quicksort or classic hash but also 
the number of basic units that can be accessed simultaneously. 



GRAEFE et al.: SORT VS. HASH REVISITED 937 

For sorting, it is well known that merging is limited to the 
quotient of memory size and buffer space required for each 
run, called the merge fun-in. Similarly, partitioning is limited 
to the same fraction, called the fun-out, because the limitation 
is encountered while writing partition files. 

In order to keep the merge process active at all times, 
many merge implementations use read-ahead controlled by 
forecasting [31], trading reduced 1-0  delays for a reduced 
fan-in. The dual to read-ahead during merging is write-behind 
during partitioning, i.e., keeping a free output buffer that can 
be allocated to an output file while the previous page for that 
file is being written to a disk. 

Considering the limitation on fan-in and fan-out, additional 
techniques must be used for very large data sets. Merging 
can be performed in multiple levels, each combining multiple 
runs into larger ones. Similarly, partitioning can be repeated 
recursively, i.e., partition files are repartitioned, the result 
repartitioned, and so forth, until the partition files fit into main 
memory. During merging, the runs grow in each level by a 
factor equal to the fan-in. For each recursion step, the partition 
files decrease in size by a factor equal to the fan-out. Thus, 
the number of levels during merging is equal to the recursion 
depth during partitioning. There are two exceptions to be made 
regarding hash value distribution and relative sizes of inputs 
in binary operations such as join. We ignore those for now 
and come back to them later. 

If merging is done in the most nalve way, i.e., merging all 
runs of a level as soon as their number reaches the fan-in, the 
last merge on each level might not be optima; i.e., it might 
not use the maximal possible fan-in. During hashing, if the 
highest possible fan-out is used in each partitioning step, the 
partition file in the deepest recursion level might be smaller 
than memory, and less than the entire memory is used when 
processing files on that level. Thus, in both approaches, the 
memory resources are not used optimally in the most na’ive 
version of the algorithms. 

In order to make best use of the final merge (which, 
by definition, includes all output items), this merge should 
proceed with the maximal possible fan-in. This can be ensured 
by merging fewer runs than the maximal fan-in after the end 
of the input file has been reached (as illustrated in the previous 
section). There is no direct dual in hash-based algorithms for 
this optimization. With respect to memory utilization, the fact 
that a partition file, and therefore a hash table, might actually 
be smaller than memory is the closest to a dual. Using memory 
more effectively and using less than the maximal fan-out in 
hashing has been addressed in research on bucket tuning [29]. 

The development of hybrid hash algorithms [IO], [43] was 
a logical consequence of the advent of large main memories 
that had led to the consideration of hash-based join algorithms 
in the first place. If the data set is only slightly larger than the 
available memory, e.g., 10% larger or twice as large, much 
of the input can remain in memory and is never written to a 
disk-resident partition file. To obtain the same effect for sort- 
based algorithms, if the database system’s buffer manager is 
sufficiently smart or receives and accepts appropriate hints, 
it is possible to retain some or all of the pages of the last 
run written in memory, and thus to achieve the same effect 

of saving 1-0 operations. This can be done particularly easily 
if the initial runs are written in reverse (descending) order 
and scanned backward for merging. However, if one does not 
believe in buffer hints or prefers to absolutely ensure desired 
1-0 savings, using a final memory-resident run explicitly in 
the sort algorithm and merging it with the disk-resident runs 
can guqantee this effect. 

A well-known technique to improve sort performance is to 
generate runs twice as large as main memory using a priority 
heap for replacement selection [31]. If the runs’ sizes are 
doubled, their number is cut in half. Therefore, merging can be 
reduced to some amount, namely, by 10gF(2) = l / log,(F) 
merge levels where F is the fan-in of the merge, i.e., the 
number of run files that can be combined in a single step. 
Note that if the fan-in F is large, the effect of replacement 
selection and larger runs on the merge depth and the total 
merge effort is negligible. However, if two sort operations 
feed into a merge-join and both final merges are interleaved 
with the join, each merge can employ only half the memory, 
and cutting the number of runs in half (on each merge level, 
including the last one) allows performing the two final merges 
in parallel. 

The effect of cutting the number of runs in half offsets a 
disadvantage of sorting in comparison to hashing when used to 
join (intersect, union) two data sets. In hash-based algorithms, 
only one of the two inputs resides in or consumes memory 
beyond a single input buffer, not both, as in two final merges 
concurrent with a merge-join. 

Heap-based run generation has a second advantage over 
quicksort; this advantage has a direct dual in hashing. If a hash 
table is used to compute an aggregate function using grouping, 
e.g., sum of salaries by department, hash table overflow occurs 
only if the operation’s output does not fit in memory. Consider, 
for example, the sum of salaries by department for 100000 
employees in 1000 departments. If the lo00 result records fit 
in memory, classic hashing (without overflow) is sufficient. On 
the other hand, if sorting based on quicksort is used to compute 
this aggregate function, the input must fit into memory to 
avoid temporary files.’ If replacement selection is used for 
run generation, however, the same behavior as that achieved 
with classic hash is easy to achieve. 

The final entry in Table I concerns interesting orderings 
used in the System R query optimizer [42], and presumably 
other query optimizers as well. A strong argument in favor of 
sorting and merge-join is the fact that merge-join delivers its 
output in sorted order; thus, multiple merge-joins on the same 
attribute can be performed without sort operators between 
merge-join operators. For joining three relations, as shown in 
Fig. 5, pipelining data from one merge-join to the next without 
sorting translates into a 3 : 4 advantage in the number of sorts 
compared to two joins on different join keys. For joining N 
relations on the same key, only N sorts are required, instead 
of 2N2 for joins on different attributes. 

Hash-based algorithms tend to produce their outputs in 
a very unpredictable order. To take advantage of multiple 

’ A scheme using quicksort and avoiding temporary 1-0 in this case could 
be devised, but would be cumbersome. We do not know of any report or 
system with such a scheme. 



938 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 6, DECEMBER 1994 

MergeJoin b=b 
Merge-Join a=a 
/ \  

/ \  I 
I I 

/ \  
O1 I I 
Son on b Son on b 

Merge-Join a=a Input I3 
Merge-Join a=a Son on a 

Son on Input I3 Sort on a / \  
I I Input I1 Input I2 

S m o n a  S m o n a  

Input I1 Input I2 

Fig. 5 .  The effect of interesting orderings. 

joins on the same attribute, the equality has to be considered 
in the logical step of hashing, i.e., during partitioning on 
the input side. In other words, such join queries could be 
executed effectively by a hash join algorithm that has N 
inputs, partitions them all concurrently, and then performs N -  
way joins on each N-tuple of partition files (not pairs as in 
binary hash join with one build and one probe file for each 
partition). However, since such an algorithm is cumbersome 
to implement, in particular if some of the “join” operations 
can actually be semijoin, outer join, set intersection, union, 
or difference, it might well be that this distinction, joins on 
the same or on different attributes, determines the right choice 
between sort- and hash-based algorithms for complex queries. 

Another use of interesting orderings is the interaction of 
(sorted, B-tree) index scans and merge-join. Although it has 
not been reported explicitly in the literature, it is perfectly 
possible to implement a join algorithm that uses two hash in- 
dices like merge-join uses two B-trees, provided that the same 
hash function was used to create the indices. For example, it 
is easy to imagine “merging” the leaves (data pages) of two 
extendable hash indices [ 171, even if the key cardinalities and 
distributions are very different. 

In summary, there exist many dualities between sorting 
using multilevel merging and recursive hash table overflow 
management. Since there are so many similarities, it is inter- 
esting to compare their costs in detail. This is done in the next 
section. 

Iv .  EXPERIMENTAL COMPARISON OF SORTING 
AND HASHING 

In this section, we report on a number of experiments to 
demonstrate that the duality of sorting and hashing leads to 
similar performance in many cases, to illustrate transfer of 
optimization ideas from one type of algorithm to the other, and 
to identify the main decision criteria for the choice between 
sort-based and hash-based query-processing algorithms. We 
have chosen relational join as a representative of binary set 
matching algorithms because it is a very frequently used 
database operation, and because many fundamental operations 
useful in all database systems, e.g., intersection, union, and 
difference, can all be realized with sort- and hash-based join 
algorithms. We first describe the experimental environment 
and then report on a series of experiments. 

A .  Experimental Environment 

The test bed for our experiments was the Volcano extensible 
and parallel query-processing engine [22]. The purpose of the 

Volcano project is to provide efficient, extensible tools for 
query and request processing in novel application domains, 
particularly in object-oriented and scientific database systems, 
and for experimental database performance research. Volcano 
includes its own file system, which is similar to WiSS [9]. 
Much of Volcano’s file system is rather conventional. It 
provides data files, B+ -tree indices, and bidirectional scans 
with optional predicates. The unit of 1-0 and buffering, called 
a cluster in Volcano, is set for each file individually when 
it is created. Files with different cluster sizes can reside on 
the same device and can be buffered in the same buffer pool. 
Volcano uses its own buffer manager and bypasses operating 
system buffering by using raw devices. 

Queries are expressed as complex algebraic expressions; the 
operators of this algebra are query-processing algorithms. All 
algebra operators are implemented as iterators; i.e., they sup- 
port a simple open-next-close protocol similar to conventional 
file scans. Associated with each operator is a state record. The 
arguments for the algorithms, e.g., hash table size or a hash 
function, are part of the state record. 

Since almost all queries require more than one operator, 
state records can be linked by means of input pointers. All 
state information for an iterator is kept in its state record; 
thus, an algorithm may be used multiple times in a query 
by including more than one state record in the query. The 
input pointers are also kept in the state records. They are 
pointers to a quadruple of pointers to the entry points of the 
three procedures implementing the operator (open, next, and 
close) and a state record. An operator does not need to know 
what kind of operator produces its input, and whether its input 
comes from a complex query tree or from a simple file scan. 
We call this concept anonymous inputs or streams. Streams are 
a simple but powerful abstraction that allows combining any 
number of operators to evaluate a complex query. Together 
with the iterator control paradigm, streams represent the most 
efficient execution model in terms of time and space for single 
process query evaluation. 

Calling open for the topmost operator results in instanti- 
ations for the associated state record, e.g., allocation of a 
hash table, and in open calls for all inputs. In this way, all 
iterators in a query are initiated recursively. In order to process 
the query, next for the top-most operator is called repeatedly 
until it fails with an end-of-stream indicator. Finally, the 
close call recursively “shuts down” all iterators in the query. 
This model of query execution matches very closely the 
model used in relational products, e.g., DB2, Ingres, Informix, 
and Oracle, but also the iterator concept in the E database 
language [37] and the algebraic query evaluation system of 
the Starburst extensible-relational database system [24]. Table 
I1 gives algorithm outlines for some operators’ open, next, 
and close procedures. 

Fig. 6 shows a simple query plan that might illustrate the 
interaction of operators and their procedures. Calling open on 
the print operator results in an open call on the hash join 
operator. To load the hash table, hash join opens the left file 
scan, requests all records from the file scan by calling its next 
function, and closes it. After calling open on the right file 
scan, the hash join operator is ready to produce data. Its open 



GRAEFE et al.: SORT VS. HASH REVISITED 939 

TABLE I1 
EXAMPLES OF ITERATOR FUNCTIONS 

Iterator Open Next Close 
Print open input call next on input; for- close input 

SCan open file read next item close file 
Select open input call next on input until close input 

Hash join allocate hash directory; call next on probe in- close probe input; 
(without open left "build input; put until a match is deallocate hash direc- 
overflow build hash table calling next found tory 
resolution) 

mat the item on screen 

an item qualifies 

on build input; close build 
input; open right "probe" in- 
put 

Merge-Join open both inputs get next item from in- close both inputs 
put with smaller key 
until a match is found 

item; read new item 
from the c o m t  run 

sort open input; build all initial determine next output destroy remaining run 
run files calling next on in- 
put and quicksort or re- 
placement selection; close file 
input; merge run files until 
only one merge step is left; 
open the remaining run files 

files 

.. . 

Rint 

I 
/ \  

Hash Join 

File Scan File Scan 

Fig. 6. A simple query plan. 

procedure terminates, and print's open procedure retums to 
the driver module. 

Now the entire query evaluation plan is ready to produce 
data. Calling next on the print operator results in a nexr call 
of the hash join operator. To produce an output item, the hash 
join operator calls nexr on the right input until a match is found 
that can be retumed to the print operator. After formatting the 
record on the screen, the print operator's nexr function retums. 
The query execution driver calls the topmost operator's next 
function repeatedly until it receives an error status. When, in 
a subsequent nexr call, the right file scan retums an end-of- 
stream status, the hash join and then the print operators retum 
this status. Query execution completes with a close call to the 
print operator, which results in close calls for the hash join 
and the right file scan operators. 

Volcano's one-to-one match operator implements all func- 
tions in which a record is included in the output, depending on 
the match with another record, namely, join, semijoin, outer 
join, antijoin, union, intersection, difference, antidifference, 
aggregation, and duplicate elimination [26]. Volcano includes 
both a sort- and a hash-based implementation of the one-to- 
one match operator. The sort-based version combines a sort 
operator that includes aggregation and duplicate elimination 
[21] with a generalized merge-join operator. The hash-based 
version is a recursive implementation of hybrid hash join 
hash augmented with aggregation during the build phase and 
parameterized to allow both overflow avoidance similar to 

Grace hash join [ 181 and overflow resolution as the original 
hybrid hash join [lo], [43]. We are currently studying how to 
incorporate bucket tuning and management of skew into the 
recursive overflow resolution algorithm. 

For creating initial runs in Volcano's sort operator, we 
decided to use quicksort, not replacement selection, even 
though replacement selection can create runs larger than 
memory. The basic idea of replacement selection is that after a 
record has been written to a run file, it is immediately replaced 
in memory by another record from the input. Because the 
new input record can frequently be included in the current 
output run, runs tend to be about twice as large as memory. 
In a page-based environment, however, the advantage of 
larger initial runs is not without cost. Either the heap size is 
reduced by about one-half to account for record placement 
and selective retention in input pages (which would offset 
the expected increase in run length), or a record holding area 
and another copying step are introduced. We considered this 
prohibitively expensive,* unless the previous query operator 
must perform a copy step anyway that can be moved into 
the sort operator, and we abandoned the idea of using heaps 
for creating initial runs. Furthermore, replacement selection 
with copying into a holding area does not work easily for 
variable-length records. 

Volcano is operational on a variety of UNIX machines, 
including several parallel systems [ 191, [20]. The experiments 
were run on a Sun SparcStation running SunOS with two CDC 
Wren VI disk drives. One disk was used for normal UNIX 
file systems for system files, source code, executables, and so 
forth, and the other was accessed directly by Volcano as a raw 
device. 

*Note that many recent computer systems have been designed and op- 
timized for a high MIPS number, sometimes without similar performance 
advances in mundane tasks such as copying [36]. In a shared-memory parallel 
machine in which bus bandwidth may be scarce, avoiding copying is even 
more important. 



940 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 6, DECEMBER 1994 

5000 

2000 

Time 500 
Elapsed 

[seconds1 2oo 

100 
50 

2 3 5 7.510 1520 30 50 75100 

Size of Each Input [MB], ‘h MB Memory 

Fig. 7. Join performance for equal input sizes. 

B.  Joins with Equal Input Sizes 

In order to demonstrate the relative performance of sorting 
and merge vs. hybrid hash join, we repeatedly joined two 
relations similar to the Wisconsin benchmark [ 141. The two 
relations had the same cardinality, and each tuple was 208 
bytes long. The join attribute was a 4-byte integer; each value 
between 1 and the relation cardinality appeared exactly once. 
Each tuple (in either relation) had exactly one match in the 
other relation, and the join result cardinality was equal to each 
input cardinality. The join result tuples were immediately dis- 
carded after the join, because we were interested in the relative 
join performance, not in the performance of writing results 
to disk. The memory allocated for quicksort, for merging, for 
partitioning, and the hash table was l / 2  megabyte. The cluster 
size (unit of 1-0) was 4 kilobytes. 

Fig. 7 shows the performance for merge and hybrid hash 
join for input sizes between about 2 megabytes (10 000 tuples) 
and about 100 megabytes (500000 tuples). Sort and merge- 
join performance is indicated with circles (O), hybrid hash 
with squares (U). Note that both axes are logarithmic. The 
performance is not exactly linear with the input sizes, because 
both algorithms, merge and hybrid hash join, require multi- 
ple levels of merging or overflow resolution for the larger 
inputs. 

The difference between merge-join and hybrid hash join is 
small, certainly far from an order of magnitude. The difference 
in the performance of sort- and hash-based joins stems from 
the fact that sorting requires both inputs in memory, whereas 
hashing “filters” the second input through the hash table, which 
contains only items from the first input. As expected from 
the discussion in the section on duality, this disadvantage 
of sorting could be offset by using replacement selection 
for creating initial sorted runs. To verify this claim for the 
concrete example, we calculate the relative 1-0 required for 
sorting using quicksort, sorting using replacement selection, 
and hybrid hash to join two 50-megabyte inputs. We calculate 
write costs for only one input because the 1-0 is equal for both 
inputs, and all files written will be read exacrly once. Using 
quicksort, 50 megabytes of data divided by 1/2 megabyte 
of memory results in 100 runs. Because each sort can use 
a final merge fan-in 64(1/2 megabytes/4 megabytes/2), 100 
runs must be reduced to 64 by using a fan-in of 127 ( l / 2  
megabytes/4 kilobytes - 1 requiring 37 (100 - 64 + 1) original 
runs to be merged into one larger run. 

Thus, the total 1-0 for sorting with quicksort is proportional 
to 137 memory loads for each input. For replacement selection, 
there would have been about 51 runs, each about twice as 
large as memory, for which one final merge would suffice. 
Thus, the total 1-0 for sorting with replacement selection is 
proportional to 100 memory loads for each input. For hybrid 
hash, the entire inputs have to be partitioned into overflow files 
of about 0.39 megabytes (50 megabytes/l27). Each file will 
fit into memory when joining partition files. Thus, the total 
1-0 will be proportional to the input sizes, or 100 memory 
loads for each input, exactly the same as for sorting using 
replacement selection. 

We would like to discuss why we have obtained different 
results than Schneider and DeWitt [41] and Shapiro [43]. First, 
Schneider and DeWitt joined two relations with different sizes 
(about 2 megabytes and 20 megabytes). Later we come back to 
join inputs of different size. A second reason is that we used a 
more sophisticated sort operator than was implemented in the 
Gamma database machine at the time. Gamma’s sort operator 
was the same as WiSS’s [9]; i.e., it sorts from a disk-resident 
file into a disk-resident file. Therefore, an intermediate result 
must be written to disk before it can be sorted, rather than 
being sorted into initial runs before the first write step, and 
the entire sorted file is written back to disk rather than being 
pipelined into the next operation, e.g., a merge-join. Thus, the 
WiSS sort algorithm can easily require three trips to disk when 
actually one could have sufficed. Furthermore, neither heap- 
based run creation nor merge optimizations are implemented 
in WiSS. Thus, the comparison in [41] is biased against sort- 
based algorithms. Shapiro [43] analyzed only the case in which 
hybrid hash’s advantage is most pronounced, i.e., when less 
than one full recursion level is required, based on the argument 
that most memories are fairly large and multilevel recursion 
or merging are not common. This argument does not always 
hold, however, as discussed in the next section. 

C. Performance Optimizations 

In this section, we focus on using duality to transfer tuning 
ideas from sorting to hashing, and vice versa. Originally, the 
performance of sorting and merge-join in Volcano had been 
clearly inferior to that of hybrid hash join, in particular for 
input sizes relatively close to memory size. The big advantage 
of hybrid hash over na’ive overflow avoidance (write all 
partitions to disk, do not retain some data in memory) is that as 
much data as possible can be kept in memory; i.e., it is never 
written to temporary files. This led us to search for a dual in 
the realm of sorting. To achieve the same effect, we changed 
Volcano’s sort operator so that it retains data in memory from 
the last quicksort until the first merge. In order to achieve 
that, it writes runs in reverse, i.e., in descending order for an 
ascending sort, and for the clusters written after the end of the 
input has been found, it gives a hint to the buffer manager to 
ensure that those clusters are replaced in a LRU discipline. As 
many clusters as possible will remain in the 1-0 buffer until 
the first merge, which is ascending and uses a backward scan 
on the run files. Therefore, these clusters are never written to 
disk, and a similar effect to hybrid hash join could be achieved. 



GRAEFJZ et al.: SORT VS. HASH REVISITED 94 1 

loo0 OMergeJoin / 
500 0 Hybrid Hash Join 

Elapsed 
Time 

[seconds] 

700 =i 

1 2 3 4 5 6 7 8 9 10111213141516 

Cluster Size [x  4 KB], 20 MB Inputs 

Fig. 8. Join performance by cluster size. 

This optimization has been analyzed in some studies, e.g., 
[43], but was not considered a dual of hybrid hash. Without 
the focus on duality, we probably would have overlooked it. 
This optimization makes the most difference for inputs only 
slightly larger than main memory, precisely the same case 
when hybrid hash join shows the largest difference to nalve 
overflow avoidance. 

In a recent study of sequential and parallel sorting, we 
found that the unit of 1-0 can have a significant impact on 
sort performance [21] beyond the effect of read-ahead and 
double buffering [39]. In Volcano, the cluster size is defined 
for each file individually. Small clusters allow high fan-ins and 
therefore few merge levels. Large clusters restrict the fan-in 
and may force more merge levels, but they allow more efficient 
1-0, because more data is moved with each 1-0, and each 
merge level can be completed with fewer seeks. For sorting, 
we found that the optimal performance is typically obtained 
with moderate merge fan-ins and relatively large clusters. If 
merging and partitioning are indeed duals, the same effect of 
cluster size on hybrid hash performance can be expected. 

Fig. 8 shows the performance of joins of two 20-megabyte 
inputs for various cluster sizes. As can be seen, hash perfor- 
mance is as sensitive to cluster size as sorting. A similar effect 
was considered in the Gamma database machine [ 131, but only 
for cluster sizes that did not change the recursion depth in 
hash table overflow resolution. Both algorithms perform best 
with large cluster sizes and moderate fan-in or fan-out, even 
if multiple merge or recursion levels are required. Around the 
optimal cluster size, the effect of small changes in the cluster 
size is fairly small, making a roughly optimal choice sufficient. 
In an earlier study, we found that the optimal cluster size 
for sorting (when one ignores the effects of rounding in the 
precise cost function) depends only on the memory size, not on 
the input sizes [21]. The same is true for hashing. Exploiting 
a proven sort optimization for hash-based algorithms is the 
second optimization we transferred, based on our duality 
considerations. In the following experiments, we used clusters 
of 32 kilobytes and fan-ins and fan-outs of 15. 

D. Joins with Different Input Sizes 

As suggested by Bratbergsengen [8], we decided to include 
joins of relations with different sizes in the comparison of 
sorting and hashing. We adjusted the data generation function 
so that each tuple in the smaller relation has exactly one 

2 3 5 7.510 1520 30 50 75100 

Sue of Large Input [MB]. Small Input 2 MB, M MB Memory 

Fig. 9. Join performance for different input sizes. 

match in the larger relation. For sorting input of a merge- 
join, each input determines the number of merge levels. The 
large input is merged over more levels than the small input. 
The only possible optimization we found is the division of 
memory between the two final merges (of the two inputs), 
which are overlapped with the actual merge-join. To determine 
the optimal memory division between two final merges, we 
approximated the sum of two sort costs with a continuous 
function and found that the memory allocated to each final 
merge should be proportional to the size of the inputs. In the 
following experiments, we divided memory proportionally to 
the input sizes. For equal input sizes, the two final merge fan- 
ins were equal; for extremely different sizes, the smaller input 
is merged into one run, so that the final merge is actually just 
a file scan. 

For hashing, the build input determines the recursion depth, 
because partitioning can be terminated as soon as the build 
partition fits into memory. The recursion depth does not 
depend at all on the size of the probe input. This is the 
reason why the smaller of two relations should be chosen to 
be the build input into a binary hash operation. Reversing the 
roles of build and probe inputs dynamically, e.g., after a first 
partitioning step, is possible, but is not considered further in 
this article. 

Fig. 9 shows the performance of merge- and hybrid hash 
join for input of equal to very different size. The smaller 
(build) input size is fixed at 2 megabytes, and the larger (probe) 
input size varies between 2 megabytes and 100 megabytes. As 
can be seen, the performance advantage of hybrid hash join 
increases with the size difference between the input relations. 
The reason is that for hybrid hash join, 1/4 of the build 
relation fits into memory and 3/4 of both relations is written 
to overflow files independently of the probe input size. For 
merge-join, sorting the larger input dominates the total cost and 
makes merge-join the inferior join method for unsorted inputs 
of very different size. Similarly, algorithms for semijoin, outer 
join, intersection, union, and difference derived from merge- 
and hybrid hash join will perform very differently for inputs 
of different sizes. On the other hand, if the query optimizer 
cannot reliably predict which input is smaller, merge-join may 
be the superior choice. 

E .  Joins with Skewed Data and Hash Value Distributions 

Finally, we experimented with some skewed join value 
distributions. Instead of using a uniform random number 



942 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 6, DECEMBER 1994 

0.05 O . 4  

0.01 
0.005 

0.002 

0 25 50 75 100 
Random Number Domain, 1-100 

Fig. 10. Probability distributions for selected values of 2. 

generator to create test data, we used a generalized random 
function borrowed from Knuth [31]. Using a continuous 
parameter, z probabilities are assigned to the numbers 1 to 
N as Pi = l / i " / c  for i = 1,. . . , N ,  where c = cj=l l/j" 
is a normalization factor used to ensure that the sum of all 
probabilities is 1. For z = 0, this random function creates 
uniform data; for z = 1, the function can be used to create 
random data according to Zipf's law [48]. The reason why 
Zipfian distributions are relevant for our purpose is that they 
were defined to model real data and their frequencies. 

Fig. 10 shows the probability of values N = l , . . . ,  100 
with z = i / 5  for i = 0 , .  . . ,5. Since the domain of N is 
discrete, it is not entirely right to draw the probability functions 
with continuous lines; however, we have taken the liberty 
to indicate which data points belong to the same values of 
z. Note that the y-axis is logarithmic. z = 0 is shown by 
the horizontal line, a uniform distribution. With increasing z, 
the distribution becomes increasingly skewed. For z = 1, the 
probability values at N = 100 is two orders of magnitude 
smaller than for N = 1 following Zipf's law. Probabilities 
with more skew can be obtained with higher values of z. 

We used the same skewed data distribution in both inputs. 
Compared to uniform distributions of join keys in both inputs, 
this increases the number of matches between the inputs, 
resulting in significantly more data copying to create new 
records and in more backing-up in the inner input of merge- 
join. 

Fig. 11 shows the effect of skew on the performance of 
merge- and hybrid hash join, including the relative perfor- 
mance of merge- and hybrid hash join under skew. It is evident 
that merge-join is less affected by the skew. For uniform 
data, hybrid hash join outperforms merge-join, as shown in 
the previous figures. For highly skewed data, sorting and 
merge-join outperforms hybrid hash join. The reason is that 
the partitioning is not even; for z = 1, a large fraction of the 
build and probe inputs (3/4 of their data items) is written to 
one pair of overflow files. Therefore, instead of performing 
the join with a single level of overflow resolution, multiple 
levels are needed. 

The reason for this difference between sort- and hash-based 
algorithms is that sort-based algorithms divide the input file 
into physical units; i.e., run files are built according to memory 
size, and an input record is written to a particular run file 
solely because of it position in the input, without regard 
for its sort key. Thus, dividing a sort input into run files 

N 

. . . . . .  
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Data Skew [z]. 2 MB Inputs, H MB Memory 

Fig. 1 1 .  Join performance for skewed data. 

is equally efficient for uniform and skewed data. Hashing, 
however, divides the inputs logically, by hash value. Thus, it 
is susceptible to skewed hash value distributions. Obviously, 
skewed hash value distributions are undesirable and are against 
the idea of hashing, i.e., randomizing, the data. To counteract 
and possibly even exploit hash value skew, we are working 
on using hash value skew to assign hash values to the in- 
memory hash table and to partition files, applying overflow 
avoidance, hybrid hash, or nested loops join for partition files 
as appropriate. 

V. CONCLUSION 
In this paper, we have outlined many dualities between 

sort- and hash-based query processing algorithms, e.g., for 
intersection, join, and duplicate elimination. Under many cir- 
cumstances, the cost. differs by percentages rather than by 
factors, presuming that the algorithms have been implemented 
and tuned with similar care. We expected this result from the 
large number of dualities and verified it with the Volcano 
query-processing system. 

Two special cases exist that favor one or the other, however. 
First, if the inputs of a binary operator are of very different size 
(and the query optimizer can reliably predict this difference), 
hash-based algorithms will outperform sort-based algorithms, 
because only the smaller of the two inputs determines how 
many recursion levels are required or what fraction of the 
input files must be written to temporary disk files during 
partitioning whereas each file determines its own disk 1-0 in 
sorting. In other words, sorting the larger of two join inputs 
is more expensive than writing a small fraction of that file 
to hash overflow files. Second, if the hash value distribution 
is not uniform, hash partitioning performs very poorly and 
creates significantly higher costs than sort-based methods do. 
If the quality of the hash function cannot be predicted or 
improved (tuned) dynamically, sort-based query processing al- 
gorithms are superior, because they are less vulnerable to data 
distributions. Since both cases, join of differently sized files 
and skewed hash value distributions, are realistic situations 
in database query processing, we recommend that both sort- 
and hash-based algorithms be included in a query-processing 
engine and be chosen by the query optimizer according to 
the two cases above. If both cases arise simultaneously, i.e., 
if a join of differently sized inputs with unpredictable hash 
value distribution, the query optimizer must estimate which 



GRAEFE, er al.: SORT vs. HASH REVISITED 943 

one poses the greater danger to system performance and 
predictability, and must choose accordingly. 

The important conclusion from this research is that neither 
the input size nor the memory size determines the choice 
between sort- and hash-based query-processing algorithms. 
Instead, the choice should be govemed by the relative sizes 
of the two inputs into binary operators, by the danger of 
nonuniform hash value distributions, and by the opportunities 
to exploit interesting orderings. Furthermore, because nei- 
ther algorithm type outperforms the other in all situations, 
and because realistic situations exist that favor one or the 
other, both should be available in a query execution engine 
for a choice to be made in each case by the query opti- 
mizer. 

ACKNOWLEDGMENT 

The initial interest in comparing sort- and hash-based algo- 
rithms in greater detail resulted from a spirited discussion with 
B. Lindsay and H. Pirahesh during the VLDB Conference in 
1988. D. DeWitt, D. Schneider, and the anonymous reviewers 
made insightful comments on earlier drafts. 

REFERENCES 

A. Aggarval and J. S. Vitter, “The input/output complexity of sorting 
and related problems,” Commun. ACM vol. 31, p. 11 16, Oct. 1988. 
M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P. Eswaran, J. N. 
Gray, P. P. Griffiths, W. F. King, R. A, Lone, P. R. McJones, J. W. Mehl, 
G. R. Putzolu, I. L. Traiger, B. W. Wade, and’V. Watson, “System R A 
relational approach to database management,” ACM Trans. Database 
Syst. vol. 1, no. 2, p. 97, June 1976 (reprinted in M. Stonebraker, 
Readings in Database Systems. San Mateo, C A  Morgan Kaufmann, 
1988 
M. Beck, D. Bitton, and W.K. Wilkinson, “Sorting large files on a 
backend multiprocessor,” IEEE Trans. Comput., vol. 37, p. 769, 1988. 
D. Bitton and D. J. DeWitt, “Duplicate record elimination in large data 
files,” ACM Trans. Database Syst., vol. 8, no. 2, p. 255-, June 
1983. 
D. Bitton Friedland, “Design, analysis, and implementation of parallel 
extemal sorting algorithms,” Comput. Sci. Tech. Rep. 464, University 
of Wisconsin-Madison, Jan. 1982. 
M. Blasgen and K. Eswaran, “On the evaluation of queries in a relational 
database system,” IBM Res. Rep. RJ-1745, San Jose, CA, USA, Apr. 
8, 1976. 
-, “Storage and access in relational databases,” IBM Syst. J., vol. 
16, no. 4, 1977. 
K. Bratbergsengen, “Hashing methods and relational algebra opera- 
tions,” Proc. Int. Conf. Very Large Data Bases, 1984, p. 323. 
H.T. Chou, D.J. DeWitt, R.H. Katz, and A.C. Klug, “Design and 
implementation of the Wisconsin storage system,” Software: Practice 
and Experience, vol. 15, no. 10, p. 943, Oct. 1985. 
D.J. DeWitt, R. Katz, F. Olken, L. Shapiro, M. Stonebraker, and D. 
Wood, “Implementation techniques for main memory database systems,” 
Proc. ACM SIGMOD Conf., 1984, p. 1. 
D. J. DeWitt and R. H. Gerber, “Multiprocessor hash-based join algo- 
rithms,” Proc. Int. Conf. Very Large Data Bases, 1985, p. 151. 
D. J. DeWitt, R.H. Gerber, G. Graefe, M.L. Heytens, K.B. Kumar, 
and M. Muralikrishna, “GAMMA: A high performance dataflow data- 
base machine,” Proc. Int. Conf. Very Large Data Bases, 1986, p. 228 
(reprinted in M. Stonebraker, Readings in Database Systems. San 
Mateo, CA: Morgan Kaufmann, 1988). 
D. J. DeWitt, S. Ghandeharizadeh, and D. Schneider “A performance 
analysis of the GAMMA database machine,” Proc. ACM SIGMOD 
Conf., 1988, p. 350. 
D. J. DeWitt, “The Wisconsin benchmark: Past, present, and future,” in J. 
Gray, Ed., Darabuse and Transactions Processing Systems Performance 
Handbook. San Mateo, CA: Morgan Kaufmann, 1991. 

D.J. Dewitt, J. Naughton, and D. Schneider, “Parallel sorting on a 
shared-nothing architecture using probabilistic splitting,” Proc. Int. Conf. 
Parallel Distrib. Inform. Syst., Miami Beach, EX, USA, Dec. 1991. 
R. Epstein, “Techniques for processing of aggregates in relational 
database systems,” UCB/Electron. Res. Lab. Memo. M79/8, Univ. of 
Califomia, Feb. 1979. 
R. Fagin, J. Nievergelt, N. Pippenger, and H.R. Strong, “Extendible 
hashing: A fast access method for dynamic files,” ACM Trans. Darubase 
Syst., vol. 4, no. 3, p. 315-, Sept. 1979. 
S. Fushimi, M. Kitsuregawa, and H. Tanaka, “An overview of the system 
software of a parallel relational database machine GRACE,” Proc. Int. 
Conf. Very Lurge Datu Bases, Kyoto, Japan, Aug. 1986. 
G. Graefe, “Encapsulation of parallelism in the Volcano query process- 
ing system,” Proc. ACM SIGMOD Conf., 1990, p. 102-. 
G. Graefe and D. L. Davison, “Encapsulation of parallelism architecture- 
independence in extensible database query processing,” lEEE TRans. 
Software Eng., vol. 19, no. 8, pp. 747, Aug. 1993. 
G. Graefe, “Parallel extemal sorting in Volcano,” Tech. Rep. 459, Univ. 
of Colorado, Boulder, USA, Dept. Comput. Sci., 1991. 
-, “Volcano: An extensible and parallel dataflow query processing 
system,”IEEE Trans. Knowledge. Data Eng., vol. 6, no. 1, pp. 120-135, 
Feb. 1994. 
G. Graefe and S. S. Thakkar, “Tuning a parallel database algorithm on 
a shared-memory multiprocessor,” SofhYare4ractice and Experience, 
vol. 22, no. 7, p.495, July 1992. 
L. M. Haas, W.F. Cody, J.C. Freytag, G. Lapis, B.G. Lindsay, G.M. 
Lohman, K. Ono, and H. Pirahesh, “An extensible processor for an 
extended relational query language,” Comput. Sci. Res. Rep., San Jose, 
CA, USA, Apr. 1988. 
B. R. Iyer and D. M. Dias, “System issues in parallel sorting for database 
systems,” Proc. IEEE Conf. Data Eng. 1990, p. 246. 
T. Keller and G. Graefe, “The one-to-one match operator of the Volcano 
query processing system,” Oregon Graduate Center, Comput. Sci. Tech. 
Rep., Beaverton, OR, USA, June 1989. 
A. Kemper and G. Moerkotte, “Access support in object bases,” Proc. 
ACM SIGMOD Conf., 1990, p. 364. 
M. Kitsuregawa, H. Tanaka, and T. Motooka, “Application of hash to 
data base machine and its architecture,” New Generation Computing, 
vol. 1, 1983. 
A. M. Kitsuregawa, M. Nakayama, and M. Takagi, “The effect of bucket 
size tuning in the dynamic hybrid GRACE hash join method,” Proc. In?. 
Conf. Very Large Data Bases, 1989, p. 257. 
A. Klug, “Access paths in the ‘ABE’ statistical query facility,” Proc. 
ACM SIGMOD Conf., 1982, p. 161. 
D. Knuth, The Art of Computer Programming: Sorting and Searching , 
vol. 111. Reading, MA: Addison-Wesley, 1973 
R. P. Kooi, “The optimization of queries in relational databases,” Ph.D. 
dissertation, Case Westem Reserve Univ., OH, USA, Sept. 1980. 
R. A. Lone and H. C. Young, “A low communication sort algorithm for 
a parallel database machine,” Proc. In[. Conf. Very Large Data Bases, 
1989, p. 125. 
J. Menon, “A study of sort algorithms for multiprocessor database 
machines,” Proc. Int. Conf. Very Large Data Bases, 1986, p. 197. 
M. Nakayama, M. Kitsuregawa, and M. Takagi, “Hash-partitioned join 
method using dynamic destaging strategy,” Proc. Int. Conf. Very Large 
Data Bases, 1988, p. 468. 
J. Ousterhout, “Why aren’t operating systems getting faster as fast as 
hardware?’ WRL Tech. Rep. TN-11, Palo Alto, CA, USA, Oct. 1989. 
J. E. Richardson and M. J. Carey, “Programming constructs for database 
system implementation in EXODUS,” Proc. ACM SIGMOD Conf., 1987, 
p. 208. 
B. Salzberg, File Structures: An Analytic Approach. Englewood Cliffs, 
NJ: Prentice-Hall, 1988. 
-, “Merging sorted runs using large main memory,” Acta Infor- 
marica, vol. 27, p. 195, 1990. 
B. Salzberg, A. Tsukerman, J. Gray, M. Stewart, S. Uren, and B. 
Vaughan “Fastsort: A distributed single-input single-output extemal 
sort,” Proc. ACM SIGMOD Con$.. 1990, p. 94. 
D. Schneider and D. DeWitt, “A performance evaluation of four parallel 
join algorithms in a shared-nothing multiprocessor environment,” Proc. 
ACM SIGMOD Conf., 1989, p. 110. 
P.G. Selinger, M. M. Astrahan, D. D. Chamberlin, R.A. Lorie, and 
T. G. Price, “Access path selection in a relational database management 
system,” Proc. ACM SICMOD Conf., 1979, p. 23 (reprinted in M. 
Stonebraker, Readings in Database Systems. San Mateo, CA: Morgan- 
Kaufman, 1988). 
L.D. Shapiro, “Join processing in database systems with large main 
memories,” ACM Trans. Database Syst., vol. 11, no. 3, p. 239, Sept. 
1986. 



944 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 6, DECEMBER 1994 

[44] M. Stonebraker, E. Wong, P. Kreps, and G. D. Held, “The Design and 
Implementation of INGRES,” ACM Trans Database Syst , vol. 1, no. 3, 
p. 189, Sept. 1976 (reprinted in M. Stonebraker, Readings in Darabase 
Systems. San Mateo, CA: Morgan-Kaufman, 1988). 

[45] Teradata Corp., DBC/1012, Dura Base Computer, Concepts, and Facl/- 
ities, Los Angeles, CA, USA, 1983. 

[46] S. Todd, “PRTV: An efficient implementation for large relational data 
bases,” Proc Int Conf Very Large Data Bases, 1975, p. 554. 

[47] H Zeller and J. Gray, “an adaptive hash join algonthm for multiuser 
environments,” Proc Int Conf. Very Large Data Bases, Bnsbane, Aus- 
tralia, 1990. 

[48] G. K. Zipf, Human Behavior and the Principle of Least Effort An Intro- 
duction to Human Ecology 

A. Linville received the B.S. degree in geology from 
Flonda Atlantic University, Boca Raton, FJ+ USA. 

She worked in the oil industry for several years 
before retuming to school. She is currently a gradu- 
ate student in computer science at the University of 
Colorado at Boulder. She has worked for the past 
year on the Volcano extensible query-processing 
system. 

Reading, MA: Addison-Wesley, 1949. 

G. Graefe was an undergraduate student in business administration and 
computer science in Germany before he received the M.S. and Ph.D. degrees 
in computer science from the University of Wisconsin-Madison, in 1984 
and 1987, respectively. 

In 1987, he joined the faculty of the Oregon Graduate Institute, where he 
initiated both the Volcano project on extensible query processing and, with 
David Maier, the REVELATION project on OODB performance. From 1989 to 
1994, he was an Assistant Professor of Computer Science at the University 
of Colorado at Boulder. He is currently working on extensions to Volcano, 
including a new optimizer generator, request processing in object-oriented 
and scientific database systems, optimization and execution of very complex 
queries, and physical database design. His thesis work at the University of 
Wisconsin was the EXODUS Optimizer Generator. 

L.D. Shapiro received the B.A. degree in mathe- 
matics from Reed College, Portland, OR, USA, in 
1965, and the Ph.D. degree in mathematics from 
Yale University, New Haven, CT, USA, in 1969. 

Currently, he is a Professor and Chair of Com- 
puter Science at Portland State University, Port- 
land, OR, USA. Previously, he was a member 
of the faculty at North Dakota State University, 
Fargo, ND, USA, and the University of Minnesota, 
Minneapolis. He has served as an investigator on 
several research projects funded by, among others, 

the National Science Foundation, the U.S. Department of Health, Education, 
and Welfare, the U.S. Air Force Office of Scientific Research, and the U.S. 
Department of Agriculture. In addition, he has done extensive consulting work 
for local and national businesses and industries. His current research interests 
are in database management systems performance issues. 

Dr. Shapiro is a member of ACM and the IEEE Computer Society. 


