
Differential Logging: A Commutative and Associative Logging Scheme
for Highly Parallel Main Memory Database

Juchang Lee Kihong Kim Sang K. Cha

Graduate School of Electrical Engineering and Computer Science
Seoul National University

fjuch, next, chask)@kdb.snu.ac.kr

Abstract

With a gigabyte of memory priced at less than $2,000, the
main-memory DBMS (MMDBMS) is emerging as an eco-
nomically viable alternative to the disk-resident DBMS
(DRDBMS) in many problem domains. The MMDBMS can
show significantly higher performance than the DRDBMS
by reducing disk accesses to the sequential form of log writ-
ing and the occasional checkpointing. Upon the system
crash, the recovery process begins by accessing the disk-
resident log and checkpoint data to restore a consistent
state. With the increasing CPU speed, however, such disk
access is still the dominant bottleneck in the MMDBMS. To
overcome this bottleneck, this paper explores altematives of
parallel logging and recoveiy.

The major contribution of this paper is the so-called d$-
ferential logging scheme that permits unrestricted parallel-
ism in logging and recovery. Using the bit-wise X O R op-
eration both to compute the differential log between the be-
fore and after images and to recover the consistent data-
base state, this scheme offers the mom for significant per-
formance improvement in the MMDBMS. First, with log-
ging done on the difference, the log volume is reduced to
almost half compared with the conventional physical log-
ging. Second, the commutativiq and associativity of XOR
enables processing of log records in an arbitrary order:
This means that we can freely distribute log records to mul-
tiple disks to improve the logging pelforniance. During the
recovery time, we can do parallel restart independently f o r
each log disk. This paper shows the superior performance
of the differential logging comparatively with the physical
logging in the shared-memory multiprocessor environment.

1. Introduction

Emerging data-intensive applications such as e-commerce
and mobile value-added information services require grace-
ful processing of highly concentrated user transaction pro-
files. The traditional DRDBMS cannot effectively deal with
such a requirement because of the overhead associated with

processing the disk-resident data indirectly through the
main-memory buffer. With a gigabyte of memory priced at
less than $2,000 these days, the MMDBMS emerges as an
economically viable alternative to the DRDBMS with the
data structures and algorithms optimized for the in-memory
access.

The MMDBMS can show higher performance than the
DRDBMS not only for read transactions but also for update
transactions by orders of magnitude. This is because the
disk access in the MMDBMS is reduced to the sequential
form of log writing and the occasional checkpointing [4].
Upon the system crash, the recovery begins by accessing
the disk-resident log and checkpoint data to restore a con-
sistent state. However, in the MMDBMS, such disk access
is still the dominant bottleneck, especially, for update-
intensive applications. To overcome this bottleneck, this
paper explores the alternatives of parallel MMDB logging
and recovery. The availability of low-cost but high-speed
multiprocessor platforms with many commodity disks justi-
fies this direction of research.

The novel contribution of this paper is the so-called dif-
ferential logging scheme that permits unrestricted parallel-
ism in logging and recovery. Based on the nice properties of
the bit-wise XOR operation, this scheme uses this single
operation both to computes the differential log between the
before image and the after image, and to recover a consis-
tent database state from the checkpoint data and a collection
of log records. Compared with the well-known DRDBMS-
oriented recovery schemes such as ARIES [9], the differen-
tial logging offers the room for significant performance im-
provement in MMDBMS. First, since logging is done on
the difference, the log volume is reduced to almost half
compared with the physical logging, which writes both the
before and after images. Second, since the recovery process
involves a single XOR operation, there is no need to distin-
guish the redo and undo phases as in the typical DRDBMS.
In addition, since the XOR operation is both commutative
and associative, the log records can be processed in an arbi-
trary order, independent of the serialization order. This
means that we can freely distribute log records in parallel to
an arbitrary number of disks to improve the logging per-

1063-6382/01$10.00 0 2001 IEEE
173

~~ ~

\ J
4 +

Figure 1. Logical structure of MMDB

formance. During recovery, we can do parallel restart inde-
pendently for each of log disks. Even intermixing the log
replay and the backup DB replay is allowed to pursue the
maximum degree of parallelism.

To verify the benefit of using the differential logging, we
have implemented the parallel recovery schemes based on
the differential logging and compared them with those
based on the physical logging. Both types of schemes use
the transaction-based log partitioning to distribute log re-
cords to multiple log disks for parallel logging and parallel
restart. In a series of experiments conducted in a CCPU
multiprocessor environment with multiple log disks, the dif-
ferential logging outperforms the best physical logging im-
plementation by about twice in the transaction processing
performance and by about six times in the log processing
time for the recovery.

This paper is organized as follows. Section 2 presents an
overview of MMDB recovery and discusses the problems
associated with parallelizing it. Section 3 presents the defi-
nition and properties of differential logging and the parallel
MMDB logging and recovery algorithms based on it. Sec-
tion 4 presents a framework for parallel logging and recov-
ery based on the transaction-based log partitioning, and ex-
plores the levels of parallelism achievable in the multiproc-
essor environment with multiple disks. Section 5 presents
the result of the experiment conducted to compare the dif-
ferential logging with the physical logging. Section 6
briefly compares the differential logging with the previous
MMDB recovery schemes, and section 7 finally concludes
this paper.

2. Parallelism in MMDBMS

2.1. MMDB Structure

Figure 1 shows the usual MMDB structure. The primary
DB keeps the up-tedate data in memory. The log manager
maintains the in-memory log buffer and the disk-resident
log volume. The checkpoint manager creates backup data-
base copies from time to time to avoid replaying the entire

log during the recovery time. Typically, the two most recent
backup copies are kept. The recovery manager recovers a
consistent in-memory DB from the log and the most recent
backup DB copy in the case of the system failure.

This paper assumes that the primary DB consists of a set
of fixed-length in-memory pages, and each page consists of
a fixed number of slots. The slot length is identical in a sin-
gle page but may differ among pages. This is to say that the
slot is the basic unit of logging as well as storage manage-
ment. In this slotted page scheme, variable-length records
are handled by linking multiple slots [131. We assume the
slotted page scheme just for simplicity, but our discussion
in this paper is also valid for the heap scheme, which alle
cates an arbitrary size of memory [7].

2.2. Logging, Checkpointing, and Restart

To guarantee the durability of the committed transactions,
all of the redo log information (the “after image” in the
physical logging) is flushed to the disk before writing the
commit record. The undo log information (the “before im-
age” in the physical logging) is also created before every
update to prepare for aborting the transaction. On the trans-
action abort, the compensation log record (CLR) is gener-
ated to facilitate the undo of the aborted transaction during
post-crash restart [9].

To allow normal transactions to run simultaneously dur-
ing the checkpoint, we focus on the fuzzy checkpoint policy
[5]. Since an inconsistent backup copy can be made with
this policy, the undo log is required to be flushed to the disk.
However, the WAL (Write Ahead Log) protocol of DRDB,
which requires flushing the undo log information to the disk
before writing a data page on disk, is not necessary for the
MMDB. Instead, the undo log is flushed in bulk just before
finishing the checkpoint. If the system crashes during
checkpointing to a backup copy, the database can be recov-
ered from the other backup copy.

With the physical logging scheme, the above discussion
translates to forcing both the before and after images to be
flushed to the log before the commit, abort, or checkpoint
[9]. In addition, during post-crash restart, the log records for
the same resource have to be applied by the serialization
order. The well-known ARIES-based recovery algorithm
proceeds in the following order:
1. Read the most recent backup copy into the primary DB.
2. Redo by scanning the log forward from the beginning of

the most recent checkpoint.
3. Undo by scanning the log backward for the loser

transactions that were active at the time of crash.

2.3. Parallel Logging and Restart

Since the log write and read is the dominant bottleneck in
MMDBMS, it has been suggested to use multiple log disks

174

123. However, using multiple log disks in parallel has sev-
eral problems to be solved, which will be discussed in this
section. To the best of our knowledge, these problems have
not been studied.

We first list two desirable restart properties for parallel
logging schemes. First, if possible, it is desirable to avoid
the cost of merging logs by the serialization order during
the post-crash restart. When the physical or the logical log-
ging scheme is used, log records for the same resource have
to be replayed by the serialization order [9][3]. Otherwise,
the consistent state of the database cannot be recovered.
Second, i t is desirable to distribute the processing of log re-
cords in parallel to multiple CPUs. This is because the log

' transfer rate may exceed the processing rate of a single
CPU when multiple log disks are used.

These two properties, desirable to reduce the restart time,
can be achieved by partitioning log records by the resource.
For example, consider partitioning the database into several
segments and storing the log records for each segment to a
different disk [3]. Then, each log can be replayed in parallel.
However, this resource-based partitioning scheme has the
following three problems.
1. When updates are skewed to certain segments, the disks

for other segments are not fully utilized.
2. Suppose that the system crashes in the middle of com-

mitting a transaction that updated multiple segments.
Since the log records are written to multiple disks simul-
taneously, the records for a certain segment might not be
written although the commit record has been already
written to a disk. In this case, it is impossible to recover
the consistent database. To avoid this problem, the
commit record can be written to all the disks. However,
this complicates the task of determining whether a trans-
action committed or not during restart.

3. Suppose that there are many transactions that update
multiple segments. Since log records are flushed to the
disk before committing a transaction, such a transaction
incurs multiple disk I/Os, one for each segment. This
leads to a significant decrease of transaction throughput,
compared with the case where each transaction incurs
only one disk I/O.
Our proposal in this paper is to use the differential log-

ging scheme. Since the redo and undo operations of the dif-
ferential logging scheme are commutative and associative,
those two desirable restart properties are automatically
achieved. Therefore, we can freely distribute log records to
multiple disks such that the above problems with the re-
source-based partitioning scheme do not occur. One such a
distribution scheme is the transaction-based partitioning,
which will be described in section 4.

In addition to the logging, checkpointing can be also per-
formed in parallel using multiple disks [5]. This paper as-
sumes that the backup database is partitioned into several
disks.

3. The Differential Logging

3.1. Definitions and Properties

Definition 1 (Differential Log) Assume that a transaction
changes the value p of a slot to q. Then, the corresponding
differential log A@, q) is defined a s p @ q, where @ denotes
the bit-wise XOR operation.

Definition 2 (Redo and Undo)
Using the differential logging, the redo and undo operations
are defined as p @ A@, q) and q 0 A@, q), respectively,
where p is the before image and q is the after image.

For example, consider that p is 0010 and q is 1100. Then,
the corresponding differential log is 1110 (= 0010@1100).
The redo 001O@lllO(i.e. @A) recovers q correctly, and the
undo 1100@1110 (i.e. q 0 A) recovers p correctly. To ease
the discussion of the differential logging, we first list the
properties of bit-wise XOR operator.

1.Existence of identity: p @ 0 = p
2.Existence of inverse: p @ p = 0
3.Comutative: p @ q = q @ p
4.Associative: (p @ q) @ r = p @ (q @ r)

Theorem 1 (Recoverability) Assume that the value of a
slot has changed from bo to b, by m updates and each u p
date U; (i = 1 , . .., m) has generated the differential log A(b;.],
bJ. Then, the final value b,can be recovered from the ini-
tial value bo and the differential log, and the initial value
can be recovered from the final value and the differential

Proof:
i) Recovery of b, from bo :

log.

bo 0 A (~ o 3 6,) 0 A(bl , b ~) 0 *.. 0 A (b m - 1 , b m)
= bo 0 (b,@b/) 0 (b/@b2) 0 ... @ (b,./@b,)
= (bo0bo) 0 (bleb,) 0 ... Obm = 0 @... @ 0 @ b, = b,

ii) Recovery of bo from b,,, :
b, 0 (b,./@b,) 0 ... 0 (bo061)

= b, @ (bmObm./) @ ... @ (bl0bo) = ... = bo

Theorem 2 (Order-Independence of Redo and Undo)
Given the initial value bo of a slot and differential logs A;, i
= 1, ..., m, where some of Ai may be undo logs, , the final
value b, can be recovered applying the differential logs in
an arbitrary order.
Proof:
Assume that differential logs are applied in the order of Ak(,),
Ak(z), ..., Ak,,) , where k(i) E { 1, 2, ..., m) and k(i) != k(j) iff
i ! = j for all i andj. Then, the final value of the slot is

bo @ AMI) 0 0 ... @ &(m)

175

Size of Differential Log

Compared with the physical logging scheme, the differ-
ential logging has the following nice properties that offer
room for significant improvement of the logging and the re-
start performance in the MMDBMS.

The log records can be processed in an arbitrary order.
This means that we can freely distribute log records to
multiple disks to improve the logging and the restart per-
formance. The restart techniques to get unrestricted par-
allelism will be given in section 4.
Redo and undo operations can be mixed in an arbitrary
order. This means that two separate passes of redo and
undo during restart is not necessary. We develop a one-
pass restart algorithm in section 3.4.
Compared with the physical logging, the log volume is
reduced to almost half since the redo log and the undo
log are same. Thus, both the time to write the log during
the normal operation and the time to read the log during
the restart decrease.

LSN PrevLSN TID

3.2. Logging

Figure 2 shows the structure of a differential log record.
The LSN (log sequence number) represents the order of log
record creation. In our implementation, we use the physical
location of a log record on disk as its LSN. The PrevLSN is
used to chain the log records of a transaction for fast back-
ward traversal. The TID represents the transaction identifier
that created the log record. There are six record types: begin,
abort, commit, DL, begin-checkpoint, end-checkpoint. The
first three are used to record the beginning and the end of a
transaction. Only log records of the DL type have the re-
maining five fields, whose meaning is self-evident except
BackupID, which indicates the more recent one of the two
backup DBs. We will explain its usage in section 3.3 and
section 3.4.

When updating a slot, the transaction generates a log re-
cord of the DL type by applying the bit-wise XOR opera-
tion to the before and the after images. Then, the record is
appended to the log buffer, which is flushed to the log disk
when the buffer overflows or the transaction commits.

PagelD Differential Log

3.3. Checkpointing

The differential logging can be used with any of the fuzzy

chronization problems.
During checkpointing, a dirty page should not be copied
into a backup DB while a transaction is updating a slot in
the page. Otherwise, a mixture of the before and the after
images may be copied, and then the page cannot be
recovered from a crash.
Since the XOR operation used for redo and undo is not
idempotent, we have to know whether the update re-
corded in a certain log record has been reflected to a
backup. If so, the record should not be replayed when
rolling the corresponding transaction forward.
To handle the first problem, we use the simplest locking

primitive, the so-called mutex, so that the checkpointer and
update transactions may have to acquire the mutex for a
page before copying or updating. And, to deal with the sec-
ond problem, we use a flag named BackupID. Each page
has a BackupID field in its header, and this field is copied
into each differential log record. This field of a page is tog-
gled after flushing the page to the appropriate backup DB
during checkpointing.

The corresponding update and fuzzy checkpointing algo-
rithms are presented in Algorithms 1 and 2. Algorithm 1 is
used by a transaction when updating a slot. After check-
pointing, Algorithm 2 records the LSN of end-checkpoint
record in the log anchor, which keeps the active status of
log, so that the end-checkpoint record can be located
quickly for restart.

Algorithm 1. Update
1. Generate the corresponding differential log

record.
2. If the global checkpoint flag is set, ac-

quire the mutex for the page.
3. Copy the BackupID flag stored in the page's

header into the BackupID field of the log
record.

4. Update the page.
5. Release the mutex if it was acquired previ-

6. Append the log record to the log buffer.
ous ly .

Algorithm 2. FuzzyCheckpoint
1. Begin with the following.

A . Set the global checkpoint flag.
B. Create a begin-checkpoint record and ap-

176

pend it to the log buffer.

recently checkpointed as the current
backup DB.

C. Choose the backup DB that was the least

2 . Scanning the database page by page, do the
following for each page.

A. Acquire the mutex for the page.
B. Toggle the BackupID flag in the page's

header.
C. If the dirty bit in the page header that

corresponds to the current backup DB is
set, copy the page asynchronously into
the current backup DB.

D. Release the mutex
3 . Finish by doing the following.

A. Reset the global checkpoint flag.
B. Wait until all the asynchronous I/Os com-

plete.
C. Create an end-checkpoint record contain-

ing active transaction IDS, and append
it to the log buffer.

D. Flush the log buffer.

3.4. Restart

When the differential logging is used, the forward scan of
log is not mandatory since the redo operation is commuta-
tive and associative. If we scan the log backward, we en-
counter a commit or an abort record of a transaction before
other records of the transaction. Thus, we can skip the re-
cords of aborted transactions and loser transactions. On the
other hand, when scanning forward, all the log records are
usually replayed presuming the commit because the abort
ratio is usually low. This strategy needs the separate undo
pass to roll back loser transactions. The undo pass scans the
log backward from the end of the log, and it may incur UOs
if some of the log data of loser transactions have been
flushed out of memory. Although the differential logging
can also be used with the two-pass restart strategy, we pre-
sent only the backward one-pass restart algorithm due to the
space limitation.

When scanning backward, two special cases need to be
handled. One is the transaction that was active at the time of
crash, and the other is the transaction that aborted after
checkpointing. Since there is no commit or abort record for
the first type of transactions, we should skip the log records
that appear without a corresponding commit or abort record.
Since the pages updated by the second type of transactions
might have been copied into a backup DB in an inconsistent
state, we need to roll back the reflected updates by those
transactions. To identify these two types of transactions,
two tables CTT(committed transaction table) and A l T
(aborted transaction table) are maintained. The detailed al-
gorithm is given in Algorithm 3.

Algorithm 3. One-Pass Restart
1. Read the current backup DB ID from the log

anchor.

2 . Read the current backup DB, and reconstruct
the primary DB as of the checkpointing.

3 . Initialize CTT as empty.
4 . Scanning the log backward from the end of

log until the end-checkpoint record is en-
countered, do the following depending on
the record type.

A. Begin record: remove the corresponding

B. Commit record: create a corresponding en-

C. Abort record: ignore
D. DL record: if TID is in CTT, redo. Other-

entry from CTT

try in CTT

wise, ignore it
5. Initialize ATT with TIDs in the

end-checkpoint record. Then, let ATT be

6. Continue scanning the log backward to the
begin-checkpoint record doing the follow-
ing depending on the log record type.

A. Begin record: remove the corresponding

B. Commit record: create a corresponding en-

C. Abort record: create a corresponding en-

D. DL record

ATT - CTT

entry in either of CTT o r ATT

try in CTT

try in ATT

i. If TID is in CTT and the BackupIDs in
the log record and the correspond-
ing page header are same, redo.

upIDs in the log record and the
corresponding page header are d i f -
f erent , undo.

cord.

ii. If TID is not in CTT and the Back-

iii. Otherwise, ignore the current log re-

7. Undo for all the transactions remained in
ATT scanning the log backward.

Since the one-pass restart algorithm just ignores the log
records of aborted transactions, not only compensation log
records don't have to be made when a transaction aborts but
also log records don't have to be flushed before aborting.
To facilitate the backward scan by the one-pass restart algo-
rithm, we store the log header after the log body. An alter-
native is to append the size of log body at the end of each
record.

4. Parallel Logging and Restart

4.1. Parallel Logging

For parallel logging, this paper proposes to partition log re-
cords based on the transaction ID. Figure 3 shows the log-
ging system architecture with multiple instantiations of the
log manager. When a transaction begins, the transaction
manager inserts a record in the transaction table. Its
LogMgrlD field is filled with the identifier of the idlest log

177

Transaction Table

Active Transactions

Figure 3. Transaction-partitioned parallel logging

manager, which has the smallest number of log pages to
flush. Then, subsequent log records of the transaction are
directed to that log manager. The LastLSN is initialized
with 0. Each log manager has its own log buffer and log
disk.

4.2. Parallel Restart

Figure 4 shows the parallel restart architecture. The restart
process is performed by two kinds of agents, BL (backup
DB loader) and LL (log loader), which are instantiated and
coordinated by the recovery manager. The recovery
manager instantiates as many BLs and LLs as the number
of backup DB partitions and log partitions, respectively.
The BL does two jobs, BR (backup DB read) and BP
(backup DB play), and the LL does LR and LP. The BR and
the LR are VO jobs while the BP and the LP are CPU jobs.

Basically, these four jobs are performed sequentially,
BR + BP + LR + LP, but they also can be performed in
parallel. This section presents four levels of parallel restart
schemes.

Parallel Restart Level 1 In this base level of parallelism,
multiple BLs run simultaneously, and multiple LLs run si-
multaneously, but LLs can start only after all the BLs fin-
ished their jobs.

Since each BL updates a different part of the primary DB,
no synchronization is needed among BLs. However, LLs
need to be synchronized so that they should not apply log
records for the same resource simultaneously. Such syn-
chronization can be done inexpensively by acquiring the
mutex for a page as described in section 3.3. Furthermore,
since log records are partitioned by the transaction, the
transactions tables used in Algorithms 3 don’t have to be
shared among LLs.

Parallel Restart Level 2 A simple additional parallelism is
to use the pipeline. When the asynchronous YO is supported,
each of BLs and LLs can do their YO and the CPU jobs si-
multaneously using a pipeline.

Parallel Restart Level 3 When the backup database and
log records are stored in different disks, it is possible to do

BL: Backup DB Loader
B R Backup DB Read
BP: Backup DB Play
LL: Log Loader
LR: Log Read
L P Log Play

U--.& b... fg

Backup DB Backup DB
Partition 1 Partition m Partition I Partition n

Figure 4. Parallel restart

the BR and the LR simultaneously if the YO bandwidth of
the system allows. However, since the read log records
cannot be applied until BLs finish the BR and BP, log re-
cords are just piled up in memory. Thus, this level of paral-
lelism is useful when there is enough memory to keep a
large number of log records.

Parallel Restart Level 4 The final level of parallelism is to
do the BP and the LP simultaneously, i.e., applying log re-
cords while copying a backup DB into the primary DB. Al-
though it seems impossible, the differential logging allows
it with the following two modifications.

The BL applies the bit-wise XOR operator to two pages:
one in the primary database and the other read from the
backup database. Therefore, both the BP and the LP are
done using the XOR operator. Of course, the BL has to ac-
quire the mutex before updating a page.

Before the recovery manager instantiates BLs and LLs, it
clears the primary database such that all pages have Os.

Theorem 3. The restart scheme using the Level 4 parallel-
ism recovers the primary database correctly from the crash.

Proof: Due to the space limitation, we omit the rigorous
proof, and give a sketch of it. Since a page in the primary
database is initially filled with Os, applying the XOR to the
page and the corresponding page read from the backup DB
is equivalent to copying from the backup DB to the primary
DB. Since the XOR operator is commutative, BP and LP

Table 1. Four levels of parallelism in restart
({ }: multiple instantiation, I: pipelined parallel execution,

“II”: parallel execution)

178

can be done in an arbitrary order. 0

Logging Exploited parallel- Number of passes
scheme ism during restart in restart

Two

log replaying One

PL2P
DL2P Log reading and - DLIP Differential -

Table I compares these four levels of parallelism. We as-
sume that the higher level of parallelism includes all the
lower levels of parallelism. For example, all the four levels
of parallelism are used in the level 4.

Number of Checkpointing
log disks scheme

1 - 8 Fuzzy

5. Experimental Evaluation

5.1. Experimental Setup

To show the practical impact of the differential logging, we
implemented the proposed recovery schemes in our main-
memory DBMS kernel called P*TIME [I]. Like its prede-
cessor XMAS [12][13], this system is implemented in C++
to facilitate the object-oriented extension, and supports mul-
tithreaded processing for scalable performance on
multiprocessor platforms.

Table 2 summarizes three implemented parallel recovery
schemes. PL2P combines the physical logging and the two-
pass restart algorithm. DL2P combines the differential log-
ging and the two-pass restart algorithm. DLlP combines the
differential logging and the one-pass restart algorithm. All
of these schemes support pipelining between LR and LP
during log processing in restart. When restarting with more
than two log disks, PL2P reads log records from log disks
in parallel, merge them by the serialization order, and re-
plays them in that order. Therefore, PL2P does the I/O job
in parallel but it does the CPU job sequentially. In contrast,
DL schemes (DL2P and DLlP) also do the CPU job in par-
allel. In the experiment, log records are partitioned into one
to eight disks using the transaction-based log-partitioning
scheme, and the fuzzy checkpointing is used.

The test database is derived from the SMS domain [I l l ,
which is one of update-intensive wireless information ser-
vices. The size of the primary database is roughly 250 MB,
which includes 1 million records. For the controlled ex-
periment, we made a simplified SMS message table with
three fields: message id, destination address, and message.
The message id is a 4-byte integer. The destination address
is a 12-byte character array, which consists of a MIN (mo-
bile identification number), the type of MIN, and so on. The
message is a 240-byte character array. Thus, the total record
or slot size is 256 bytes.

We mixed two types of update transactions: one inserts 2
messages into the table and the other removes 2 messages

60

50

2'40

8
i= 20

vi - 30

10

0
OK 200K 400K 600K

#transactions since the checkpoint

Figure 5. Log processing time with the log volume and
log disks

from the table. These transaction types mock the message
receiver and the flusher processes of the SMS system, re-
spectively. The former receives message through the SS#7
network and inserts them, and the latter moves sent mes-
sages to the archive in order to keep the MMDB from
exploding.

The experiment is conducted on a Compaq ML 570
server with four 700 MHz Xeon CPUs, 6GB RAM, and
dozen disks. It has a single U 0 channel, which can support
up to 160MB/sec. The disks are of the same model. Their
average seek time is 6.3 ms, average latency time is 4.17ms,
and maximum sustained transfer rate is 29 MB/sec.

5.2. Log Processing Time

As we analyzed in the section 4.2, the restart time is broken
down to the backup DB loading time and the log processing
time. The first is dominated by the disk access and is inde-
pendent of the logging scheme. Therefore, in identifying the
impact of the differential logging, we first focus on the
measurement of the latter varying the volume of log, the
number of log disks, and the abort ratio. In the measure-
ment, we expect that:

DL schemes reduce the total log volume by almost half
compared with PL2P, and thus will accelerate the log
processing even if a single log disk is used.
The speedup ratio of DL schemes over PL2P remains
constant despite the changes in the number of update
transactions since the last checkpoint.
The benefit of increasing the number of log disks is
higher in DL schemes than in PL2P in the multiprocessor
environment.

Table 2. Tested recovery schemes

179

0 ’ I
0 2 4 6 8

log disks
(a) PLZP

30 I I

--a-- LR
- -a - - LP

8 20

5 A.

0
0 2 4 6 8

log disks
(b) DLlP

Figure 6. Breakdown of log processing time

DLIP will outperform DL2P as the abort ratio increases.

Figure 5 shows the log processing time measured by
varying the number of update transactions since the last
checkpoint. Note that this number determines the total log
volume to process during restart. When it is 600K, the log
volume is 721MB for PL2P, 377MB for DL2P and 370MB
for DLlP. The abort ratio was fixed at 2%. The numbers in
the parentheses represent the number of log disks. DLlP(4)
is about six times faster than PL2P(4) and about seven
times faster than PL2P(I), regardless of the total log vol-
ume.

Figure 6 shows the log processing time of PL2P and
DLIP (with 600K update transactions since the last check-
point) by varying the number of log disks. For DLlP, it de-
creases almost linearly with the number of disks until it
reaches a saturation point. On the other hand, for PL2P, the
log processing time first decreases linearly and then in-
creases slowly after a certain point. To show where the per-
formance difference comes, two components of the log
processing time are shown with broken lines: the U 0 time
to read log records from disk (LR time) and the CPU time
to replay the log (LP time). For both PL2P and DLIP, the
U 0 time decreases almost linearly with the number of disks.
DLIP takes 47% less VO time than PL2P because of the
difference in the total log volume. Note that PL2P is domi-
nated by the LP time when more than two log disks are
used, while DLIP is dominated by the LR time regardless
of the number of disks. This is because the LP step of PL2P
requires merging of logs from different disks by the
serialization order.

h
0

J 4
.- E

K
G3 .-
v)

M 2

M 1
3

0
0% 5% 10% 15% 20%

Abort ratio

Figure 7. Comparison of DL2P and DLlP with the
abort ratio

To compare DLIP with DL2P, we measured the log
processing time varying the abort ratio from 0% to 20%.
Figure 7 shows the result when four log disks are used and
600K transactions had been performed since the last check-
point. This result shows that DLlP outperforms DL2P by
about 1.15 times when the abort ratio is 20%. This im-
provement is mainly attributed to the difference in the log
volume. Since DLlP does not make compensation log re-
cords when a transaction aborts, the log volume of DLlP
remains constant regardless of the abort ratio. DLIP is also
faster than DL2P in terms of the CPU time because DLlP
does not replay the log records of aborted transactions
while DL2P does the log records of both the committed and
the aborted transactions.

5.3. Total Recovery Time

To see the impact of fully parallel restart based on the dif-
ferential logging, we measured the restart time for the fol-
lowing recovery schemes:

PL2P-Seq: PL2P observing the parallelism level 2 rule of
section 4. Namely, the backup DB loading and the log
processing are done in sequence while the pipelining is
allowed in each of these two steps.
DLIP-Seq: the DLIP version of PL2P-Seq.
DLIP-Para: DLlP observing the parallelism level 4 rule
of section 4. The backup DB processing is intermixed
with the log processing.
Figure 8 shows the measured restart time when the

backup DB size is 250MB and the processed log volume is
370MB for DLIP and 721MB for PL2P. Figure 8(a) shows
the result with two log disks and two backup DB.disks and
Figure 8(b) with four log disks and four backup DB disks.
Here are the observations drawn from this figure.

As in the log processing time, the backup DB loading
time also decreases by half as the number of disks dou-
bles.
DLlP-Seq outperforms PL2P-Seq significantly, by about
two times in Figure 8(a) and by about three times in

180

XI I . 1

E ; ;

s 10

5

0

d

I

30

25
h
0 s 20

4 10
d

.$ 15
E

5

0

I DBllLog Fl
PL2P-Seq DLlP-Seq DLlP-Para

(a) Two log disks and two backup disks

PL2P-Seq DLlP-Seq DLlP-Para
(b) Four log disks and four backup disks

Figure 8. Breakdown of total restart time (the symbol
II denotes the parallel processing)

Figure 8(b). The difference comes mainly from the log
processing time while the backup DB loading time re-
mains the same.
The parallelism further decreases the total restart time.
DLIP-Para outperforms DLIP-Seq by about two times
in both of Figure 8(a) and Figure 8(b).

5.4. Transaction Throughput

In this series of experiment, we measured the logging per-
formance varying the number of log disks and the size of a
slot.

Figure 9(a) shows the throughput in TPS (transactions
per second) with the number of disks. In this measurement,
the abort ratio is 2%. This result shows that the logging per-
formance of DLlP and PL2P increases in proportion to the
number of disks. DLlP(8) outperforms PL2P(I) by 9.6
times. Even if the same number of log disks are used, DLlP
processes over 1.8 times as many transactions as PL2P dur-
ing the same time interval.

Figure 9(b) shows the throughput measured varying the
slot size. As the slot size increases, the overhead ratio of log
header decreases and the ratio of DL1P.log volume to PL2P
log volume approaches 0.5. As result, the performance gain
of DLIP(4) over PL2P(4) approaches two. Note that the
performance gain of DLIP(4) over PL2P(l)is about six.

400K 1 I
I ,

0 2 4 6 8

400K

300K

rA 2 200K

lOOK

OK

#log disks
(a) With the number of log disks

0 512 1024 1536 2048
Slot size (bytes)

(b) With the size of a slot

Figure 9. Logging performance with the number of
log disks and the size of data objects

6. Related Work

The idea of using the XOR-based logging has been ad-
dressed in the DRDBMS context under the name of transi-
tion logging [6]. However, if the normal update and recov-
ery operations are applied directly to the disk database with
only the XOR difference on the log disk and if the system
crashes in the middle of such operations, it is impossible to
recover the consistent database state. The shadow page
scheme has been considered for each disk update to solve
this problem, but it has been abandoned because of its high
run-time overhead. Fortunately, the MMDBMS does not
have this problem because it applies the update and recov-
ery operations to the main memory copy of the backup da-
tabase on the disk.

In order to reduce the log write and recovery time, the
redo-only logging has been studied in the MMDB context
[2][5][8]. By keeping the log of uncommitted, active trans-
actions in memory, it is possible to write only the redo part
of the log on disk when a transaction commits. Thus, the
disk-resident log volume is reduced to almost half as in the
differential logging. However, the differential logging has
at least the following three advantages over the redo-only
logging. First, it permits the unrestricted parallelism in re-
covery as mentioned before. Second, it can be used with the

181

fuzzy checkpointing while the redo-only logging can be
used only with the consistent checkpointing schemes [8].
Third, it does not need the memory space to keep the log of
active transactions, whose volume can grow substantially
when long transactions are involved. Although we com-
pared the differential logging with the redo-only logging,
they are basically orthogonal and can be used together.
However, the only benefit from such combination is not to
write the log data of aborted transactions while the fuzzy
checkpointing becomes impossible.

The transaction-partitioned parallel logging and recovery
has been studied in the shared disk architecture [lo]. This
scheme, named ARIESISD, is similar to the PL2P physical
logging scheme introduced in section 5. The difference is
that AFUES/SD logs at the page level while the PL2P logs at
the slot level.

7. Conclusion

This paper studied the problem of parallel MMDB logging
and recovery to increase the transaction processing per-
formance and to reduce the recovery time exploiting the
low-cost multiprocessor platforms and commodity disks in
the market.

The novel contribution of this paper is to introduce the
secalled differential logging for parallel MMDB logging
and recovery. Using the bit-wise XOR operation both to
compute the log and to recover the consistent state from the
log, the differential logging permits unrestricted parallelism
in MMDB logging and recovery. In addition, because the
log is the XOR difference between the before and after im-
ages, the log volume is reduced to almost half compared
with the physical logging. We assumed the transaction-
based partitioning of log for distribution to multiple log
disks and presented two versions of the parallel recovery
scheme based on the differential logging. The two-pass ver-
sion scans the log twice for redo and undo as in the well-
known ARIES algorithm, and the one-pass version scans
the log only once taking advantage of the nice properties of
the differential logging.

An experimental study of comparing the differential log-
ging and the physical logging shows that the former outper-
forms the latter significantly both in the update transaction
throughput and in the recovery time. It is also shown that
since the differential logging permits interleaving of the log
replaying with the backup DB replaying during the restart,
the backup DB loading and the log processing can proceed
in parallel to reduce the total recovery time. Such a level of
parallelism is unthinkable in the MMDBMS based on the
traditional logging schemes or in the context of DRDBMS.

In this paper, we have conducted our experiment in the
4-CPU shared-memory multiprocessor environment. In the
future, we plan to study the benefit of the differential log-
ging in different types of parallel computing environment.

We also plan to verify the benefit of the differential logging
by applying it to the real environment such as e-commerce
and mobile value-added information services.

Acknowledgement

This research has been in part supported by the research
contract with the SK Telecom of Korea on the feasibility
study of the main-memory database for mobile value-added
information services and the Brain Korea 21 program spon-
sored by the Korean ministry of education.

References

S. K. Cha, et. al., “P*TIME: A Highly Parallel Main Mem-
ory DBMS Based on Differential Logging,” submitted to
ACM SIGMOD 2001 Conference for demo.
D. J . DeWitt, et. al., “Implementation Techniques for Main
Memory Database Systems,” Proceedings of ACM SIG-
MOD Conference, pages 1-8, 1984.
I. Gray and A. Reuter, Transaction Processing: Concepts
and Techniques, 2nd ed., Morgan Kaufmann, 1993.
H. Garcia-Molina and K. Salem, “Main Memory Database
Systems: An Overview,” IEEE Transactions on Knowledge
and Data Engineering, 4(6), pages 509-516, 1992.
R. B. Hagmann, “A Crash Recovery Scheme for a Memory-
Resident Database Systems,” IEEE Transactions on Com-
puters, C-35(9), pages 839-843, 1986.
T. Haerder and A. Reuter, “Principles of Transactions-
Oriented Database Recovery,” ACM Compuring Surveys,
15(4), pages 287-31 7, 1983.
H. V. Jagadish, D. Lieuwen, R. Rastogi, and A. Silberschatz,
“Dah: A High Performance Main Memory Storage Man-
ager,” Proceedings of VLDB Conference, pages 48-59, 1994.
H. V. Jagadish, A. Silberschatz and S . Sudarshan, “Recov-
erying from Main-Memory Lapses,” Proceedings of VLDB
Conference, pages 39 1-404, 1993.
C. Mohan, D. Haderle, B. G Lindsay, H. Pirahesh, and P.
Schwarz, “ARIES: A Transaction Recovery Method Sup-
porting Fine-Granularity Locking and Partial Rollbacks Us-
ing Write-Ahead Logging,” ACM Transactions on Database
Systems, 17(1), pages 94-162, 1992.
C. Mohan and 1. Narang, “Data Base Recovery in Shared
Disks and Client-Server Architectures,” Proceedings of In-
ternational Conference on Distributed Computing Systems,
pages 310-317, 1992.
Mobile Lifestreams, “An Introduction to the Short Message
Services,” White paper, http://www.mobiIesms.com/wp/
wp2.htm
J. H. Park, Y. Sik Kwon, K. Kim, S. Lee, B. D. Park, and S.
K. Cha, “Xmas: An Extensible Main-Memory Storage Sys-
tem for High-Performance Applications,” Proceedings of
ACM SIGMOD Conference, pages 578-580, 1998.
J. H. Park, K. Kim, S. K. Cha, M. S. Song, S. Lee, and J.
Lee, “A High-performance Spatial Storage System Based on
Main-Memory Database Architecture,” Proceedings of
DEXA Conference, pages 1066-1075, 1999.

182

http://www.mobiIesms.com/wp

