
CS-TR-2222.1 APRIL, 1989

(REVISED JUNE, 1990)

CONCURRENT MAINTENANCE OF SKIP LISTS

William Pugh

Institute for Advanced Computer Studies

Department of Computer Science

University of Maryland, College Park

Abstract

This paper describes a new approach to providing efficient concurrent access to a

dynamic search structure. Previous approaches have attempted to solve this

problem using search trees (either balanced or unbalanced). We describe

methods for performing concurrent access and updates using skip lists. Skip lists

are a probabilistic alternative to balanced trees that provide much of the

simplicity of unbalanced trees, together with good worst-case expected

performance. In this paper, we briefly review skip lists, describe simple methods

for concurrent maintenance of sorted linked lists, formally prove the correctness

of those methods, and show how they can be extended to provide simple and

efficient algorithms for concurrent maintenance of skip lists.

CR Categories and Subject Descriptors: D.4.1 [Process Management]: Concurrency; E.1
[Data Structures]: Lists; F.1.2 [Models of Computation]: Probabilistic computation; F.2.2
[Nonnumerical Algorithms and Problems]: Sorting and searching; G.3 [Probability and
Statistics] Probabilistic Algorithms.

Limited Distribution Notice: This report has been submitted for publication and will
probably be copyrighted if accepted for publication. It has been issued as a Technical
Report for early dissemination of its contents. In view of the eventual transfer of
copyright to the publisher, its distribution should be limited to peer communications and
specific requests.

CONCURRENT MAINTENANCE OF SKIP LISTS

1

1. Introduction
Many papers have been written on implementing concurrent search structures using search trees, both

balanced [Ell80a] [Ell80b] and unbalanced [KL80] [ML84] [Man84]. In concurrent search structures, locks

are used to prevent concurrent threads from interfering with each other. A concurrency scheme must

assure the integrity of the data structure, avoid deadlock and have a serializable schedule. Within those

restrictions, we would like the algorithms to be as simple, efficient and concurrent as possible.

Performing concurrent deletion or rebalancing in trees is very complicated; most papers on

concurrent tree maintenance have omitted describing techniques for one or the other of these problems,

mainly due to the complexity of these algorithms.

In this paper we describe simple concurrent algorithms for access and update of skip lists. Skip lists

[Pug89] are a new probabilistic data structure that can be used as a replacement for balanced trees. The

concurrent algorithms for updating skip lists are much simpler than equivalent concurrent algorithms for

updating balanced trees and allow more concurrency. The algorithms use only write locks; no exclusive

locks or read locks are required.

The rest of this paper is organized as follows. In Section 2 we describe a simple concurrent updating

scheme for sorted linked lists. In Section 3 we briefly review skip lists. In Section 4, we show how the

concurrent updating scheme for linked lists can be adapted to skip lists and discuss the efficiency and

allowable concurrency of our scheme. In Section 5, we discuss related work.

2. Concurrent Maintenance of Sorted Linked Lists
We now describe a method for performing concurrent updates of sorted linked lists. The elements of the

list are keys with associated values. Each element is represented by a node. The forward pointer of a node

points to the next node in the list and the nodes are kept in sorted order according their keys. The key of a

node x is given by x→key, the value is given by x→value and the forward pointer is given by x→forward.

The header of a list l is treated as a node and is given by l→header. For purposes of reasoning about our

invariants, the header is assumed to have a key smaller than that of any node. The list is terminated by a

special node NIL that has a key larger than that of any node.

We use the term thread to refer to a task or process operating concurrently with other threads. A

thread obtains a lock on a field only when updating a field that other threads might be attempting to

update. While searching for an element, no locks are needed. Only a single thread may hold a lock on a

field, and by convention a thread only updates a field if it already holds a lock on the field. If a thread

attempts to lock a field that is already locked, that thread is blocked until the lock can be obtained.

We assume that pointer and integer reads are atomic with respect to updates of that same pointer or

integer. That is, reading a pointer always returns a valid pointer, not something midway between an old

pointer value and a new pointer value. Without this assumption, read locks would be needed whenever

any thread attempted to read a field.

2.1. Algorithms
The novel idea in our method is the use of pointer reversal. When deleting a node x, we update the

predecessor of x to point to the successor of x, in the standard way. But we also update x itself so as to

point back to its former predecessor. Other threads that were passing through x at the time of its deletion

can follow this reversed pointed to get back into the current list, at the correct place to continue their

work.

The algorithms are shown in Figures 1 and 2. The algorithms are actually very simple, but are

annotated with a substantial amount of notation and invariants (explained in Section 2.2) to allow us to

formally prove the correctness of the algorithms – ּfor now, the reader can just ignore the annotations.

The statement lock(x, f) acquires a lock on the field f of the record pointed to by x. The Search routine

returns the value associated with the provided key or returns not-found. The result returned is guaranteed

to have been true at some point during the execution of the search. WeakSearch and StrongSearch are utility

routines. WeakSearch does not use any locks and StrongSearch returns a locked result.

CONCURRENT MAINTENANCE OF SKIP LISTS

2

Search(list, searchKey)
(x, y) := WeakSearch(list, searchKey)
if y→key = searchKey then return y→value

else return not-found

WeakSearch(list, searchKey)
x := list→header
y := x→forward
while y→key < searchKey do

x := y
y := x→forward

-- wasTrue(self, x ➠ y) ∧ x→key < searchKey ≤ y→key ,

∴ wasTrue(self, y→key = searchKey ⇔ present(searchKey)) (via Theorem 3)

-- wasTrue(self, y→key = searchKey ⇔ present(searchKey)),

∴ (y→key = searchKey ⇒ wasTrue(self, present(searchKey)))

∧ (y→key ≠ searchKey ⇒ wasTrue(self, ¬ present(searchKey)))

return x, y

StrongSearch(list, searchKey)
(x, y) := WeakSearch(list, searchKey) -- do as much work as possible without using locks

lock(x, forward)
y := x→forward -- the forward pointer of x may have changed since the completion of the weak search

while x→key < searchKey do
unlock(x, forward)
x := y
lock(x, forward)
y := x→forward

-- holdsLock(self, x, forward) ∧ x ➠ y ∧ x→key < searchKey ≤ y→key

-- holdsLock(self, x, forward) ∧ ¬ deleting(self), ∴ ¬ beingDeleted(x) (via P4(x))

-- ¬ beingDeleted(x) ∧ x ➠ y ∧ x→key < y→key , ∴ reachable(x) (via P1(x))

-- x ➠ y ∧ x→key < searchKey ≤ y→key, ∴ y→key = searchKey ⇔ present(searchKey) (via Theorem 3)

return x, y

FIGURE 1 - Concurrent search and lock utilities for sorted linked lists

When we delete a node y, we cannot immediately garbage collect y because other threads may have a

pointer to y. Instead, putOnGarbageQueue(y) puts y onto a garbage queue. A node can be taken off the

garbage queue any time after the completion of all searches/insertions/deletions that were in progress

when the node was put on the queue. For the purposes of showing the correctness of the concurrent

algorithms, we can let this be a no-op. This idea is similar to the garbage collection and maintenance

threads used by other concurrent algorithms [KT80] [ML84] [Man84]. Algorithms for concurrent search

structures that do not need delayed garbage collection force all threads to use read locks whenever they

access a node.

2.2. Correctness
A formal definition of these routines is provided by their post-conditions (note that their post-conditions

cannot be invalidated by a concurrent insertion/deletion). We show that the algorithms are correct and

cannot be interfered with if the data structure invariants are maintained. We also show that no algorithm

invalidates the data structure invariants. The proof of correctness of the algorithms is provided as

annotations in Figures 1–2. Some of the notation we use in our proofs and invariants are shown below.

∃(x || P) There exists a x such that P holds (where x is free in P).

∀(x || R) For all x, R holds.

∀(x || P || R) For all x such that P holds, R holds.

CONCURRENT MAINTENANCE OF SKIP LISTS

3

Insert(list, searchKey, newValue)
(x, y) := StrongSearch(list, searchKey)
if y→key = searchKey then

y→value := newValue -- update occurs now

else
y := newNode()
-- Initially, we do not enforce invariants on y. This is safe, since y is not visible to other threads.

y→key := searchKey
y→value := newValue
-- x→key < y→key ≤ x→forward→key

y→forward := x→forward
x→forward := y -- insertion occurs now.

-- From now on, y is visible to other threads and invariants are enforced

-- reachable(x) ∧ y→key < x→forward→key, ∴ P1(x)

-- reachable(y) ∧ y→key ≤ y→forward→key, ∴ P1(y)

unlock(x, forward)

Delete(list, searchKey)
(x, y) := StrongSearch(list, searchKey)
if x→key = searchKey then

lock(y, forward)
-- x→key < y→key ≤ y→forward→key

-- deleting(self) is true only between the next two statements

x→forward := y→forward -- deletion occurs now

-- reachable(x) ∧ x→key ≤ x→forward→key, ∴ P1(x)

-- beingDeleted(y) ∧ y→key ≤ y→forward→key, ∴ P1(y)

-- reachable(y→forward), ∴ P2(y)

-- reachable(x) ∧ Sorted, ∴ ∀(k || x→key < k < x→forward→key) || ¬ present(k))

-- x→key < y→key ∧ x→forward = y→forward ∧ ∀(k || x→key < k < x→forward→key || ¬ present(k)),

∴∀(k || y→key < k < y→forward→key) || ¬ present(k))

∴P3(y)

-- holdsLock(self, y, forward), ∴∀(t || holdsLock(t, y) ⇒ t = self) (via semantics of locks)

-- ∀(t || holdsLock(t, y, forward) ⇒ t = self) ∧ deleting(self), ∴P4(y)

y→forward := x
-- ¬ reachable(y) ∧ y→key> y→forward→key, ∴ P1(y)

unlock(y, forward)
putOnGarbageQueue(y)

unlock(x, forward)

FIGURE 2 – Concurrent insertion and deletion in a sorted linked list

x ➠ z True iff the forward pointer of x is equal to z.

x ➠ z ⇔ x→forward = z

x ➠+ z True iff we can get from x to z by following one or more forward pointers.

x ➠+ z ⇔ x ➠ z ∨ ∃(y || x ➠ y ∧ y ➠+ z)

reachable(x) True iff the node x is reachable from the header of the list.

reachable(x) ⇔ list→header ➠+ x

present(searchKey) True iff searchKey is present in the list.

present(searchKey) ⇔ ∃(y || y→key = searchKey ∧ reachable(y))

downstream(searchKey, x) True iff searchKey is present at some point downstream from x.

downstream(searchKey, x) ⇔ ∃(y || y→key = searchKey ∧ x ➠+ y)

CONCURRENT MAINTENANCE OF SKIP LISTS

4

self Used in an annotation of the execution of an algorithm, refers to the thread

executing the algorithm.

holdsLock(t, x, f) True iff thread t holds a lock on field f of x.

wasTrue(t, P) True iff P was true at some point since execution of thread t began. Note

that is possible for both wasTrue(t, P) and wasTrue(t, ¬P) to be true at the

same time.

deleting(t) True iff execution of thread t is between the two marked statements of the

deletion algorithm.

yt The local variable y of thread t.

beingDeleted(x) True iff some thread is in the process of deleting x.

beingDeleted(x) ⇔ ∃(t || deleting(t) ∧ yt = x)

deleted(x) True iff x is neither reachable nor in the process of being deleted.

deleted(x) ⇔ ¬ (reachable(x) ∨ beingDeleted(x))

P, ∴ Q P is true, P implies Q, and therefore Q is true.

We enforce six invariants on our data structure:

∀(x || P1(x)), P1(x) ≡ deleted(x) ⇔ x→key > x→forward→key

∀(x || P2(x)), P2(x) ≡ ¬ deleted(x) ⇒ reachable(x→forward)

∀(x || P3(x)), P3(x) ≡ ∀(k || beingDeleted(x) ∧ x→key < k < x→forward→key || ¬ present(k))

∀(x || P4(x)), P4(x) ≡ ∀(t || holdsLock(t, x, forward) ∧ ¬ deleting(t) ⇒ ¬ beingDeleted(x))

∀(x || R(x)), R(x) ≡ ∀(k || k > x→key ∧ present(k) || downstream(k, x))

Sorted: ∀(x, y || reachable(x) ∧ reachable(y) ∧ x→key < y→key || x ➠+ y)

The last two invariants are global invariants, so it is hard to verify directly that we are enforcing

them. Fortunately, we can infer them from the first three invariants.

When we initially allocate a node, its fields are not yet initialized and our invariants obviously do not

apply. The invariants are enforced as soon as the node is inserted into the list, which is the moment the

node becomes visible to threads besides the one performing the insertion.

Three theorems we need for our proofs are given in this section.

THEOREM 1. ∀(x || P1(x)) ⇒ Sorted

Proof: By induction on the number of pointers that need to be traversed between reachable nodes.

THEOREM 2: ∀(x || P1(x) ∧ P2(x) ∧ P3(x)) ⇒ ∀(x || R(x))

Proof: Given below. Why?

1. reachable(x) ∧ Sorted ⇒ R(x) definition

2. reachable(x) ⇒ R(x) 1, Theorem 1

3. beingDeleted(x) ⇒ reachable(x→forward) P2(x)

4. beingDeleted(x) ⇒ R(x→forward) 3, 2

5. beingDeleted(x) ⇒ ∀(k || x→key < k < x→forward→key || ¬ present(k)) P3(x)

6. ∀(k || x→key < k < x→forward→key || ¬ present(k)) ∧ R(x→forward) ⇒ R(x) definition

7. beingDeleted(x) ⇒ R(x) 4, 5, 6

8. deleted(x) ⇒ x→key > x→forward→key P1(x)

9. downstream(k, x→forward) ⇒ downstream(k, x) definition

10. deleted(x) ∧ R(x→forward) ⇒ R(x) 8, 9

11. deleted(x) ⇒ R(x) 2, 7, 10, induction on # of forward pointers to reach undeleted node

12. R(x) 2, 7, 11, case elimination

THEOREM 3: ∀(x || P1(x) ∧ P2(x) ∧R(x)) ∧ Sorted

⇒ ∀(x, k || x→key < k ≤ x→forward→key || present(k) ⇔ k = x→forward→key)

CONCURRENT MAINTENANCE OF SKIP LISTS

5

Proof: Given below. Why?

1. x→key≤ x→forward→key ⇒ reachable(x→forward) P1(x), P2(x)

2. x→key < k = x→forward→key ⇒ present(k) 1, definition

3. reachable(x) ∧ downstream(k, x) ⇒ x→key < k Sorted

4. reachable(x→forward) ∧ k < x→forward→key ⇒ ¬ downstream(k, x→forward) 3

5. k ≠ x→forward→key ∧ ¬ downstream(k, x→forward) ⇒ ¬ downstream(k, x) definition

6. x→key < k ∧ ¬ downstream(k, x) ⇒ ¬ present(k) R(x)

7. x→key < k < x→forward→key ⇒ ¬ present(k) 1, 4, 5, 6

8. x→key < k ≤ x→forward→key ⇒ (present(k) ⇔ k = x→forward→key) 2, 7

P1 is maintained

When a node x is initially inserted into a list, P1(x) is true (as noted in the insertion algorithm). The

insertion and deletion algorithms are annotated to show that they maintain P1 for all nodes they modify.

If a node is not modified by an insertion or deletion operation, both it’s reachable status and the direction

of it’s forward pointer (i.e., to a node with a larger key or a small key) remain unchanged, and therefore

P1 remains true.

P2, P3 and P4 are maintained

The invariants P2, P3 and P4 are vacuously or immediately true for nodes not being deleted. The Deletion

algorithm is annotated to show that these invariants are true for nodes that are being deleted.

2.3. Deadlock Avoidance, Serializability and Termination
The only time multiple locks are obtained is during execution of Delete. The second lock obtained by

Delete is on the forward pointer of a node with a larger key than the key of the node who’s forward

pointer is locked first. This imposes a total order on locking order, so deadlock cannot occur.

Insertions and deletions happen precisely at the moments indicated in the Insert and Delete routines.

A weak search is known to have been true at the moment a yּ:=xּ→forward statement in WeakSearch is

executed for the last time. This gives us a serializable schedule.

It is somewhat tricky to say something interesting about termination. A search might never terminate

if the thread performing the search is slow and insertions continually happen between the node the

search is currently at and the node containing the element the search is looking for. However, this is not a

real problem and the search is making progress. The destination of a search is the smallest key currently

in the list that is greater than or equal to the search key. Because of the invariant R, we know that at any

point a search’s destination is at some fixed (but unknown) distance k downstream. An insertion or

deletion can increase by one the number of pointers a search needs to traverse. Therefore, if no new

insertion/deletion threads are started, the number of pointers the search needs to traverse before

completing is bounded by k (the current distance) plus the number of insertions and deletions currently

in progress.

2.4. Duplicate keys
Note that the invariants and algorithms have been defined so that with a slight adjustment, everything

works for lists containing duplicate keys. The insertion algorithm needs to be modified to always perform

the insertion in order to insert duplicate keys, but other than that, the algorithms are unchanged. With a

little extra work, it is possible to prove that operations on duplicate keys behave in FIFO order.

3. Skip Lists
Skip lists [Pug89] are a probabilistic alternative to balanced trees. Skip lists are balanced by consulting a

random number generator. Although skip lists have bad worst-case performance, no input sequence

consistently produces the worst-case performance (much like quicksort when the pivot element is chosen

randomly). It is very unlikely that a skip list data structure will be significantly unbalanced (e.g., for a

dictionary of more than 250 elements, the chance that a search will take more than 3 times the expected

time is less than one in a million).

Each element is represented by a node in a skip list (Figure 3). Each node has a height or level, which

corresponds to the number of forward pointers the node has. A node’s ith forward pointer points to the

CONCURRENT MAINTENANCE OF SKIP LISTS

6

3

6

7
9

12
17

19 21

25

26

NIL

FIGURE 3 - A Skip List

Search(list, searchKey)
x := list→header
-- loop invariant: x→key < searchKey
for i := list→level downto 1 do

while x→forward[i]→key < searchKey do
x := x→forward[i]

-- x→key < searchKey ≤ x→forward[1]→key
x := x→forward[1]
if x→key = searchKey then return x→value

else return failure

FIGURE 4 - Skip list search algorithm

Insert(list, searchKey, newValue)
local update[1..MaxLevel]
x := list→header
for i := list→level downto 1 do

while x→forward[i]→key < searchKey do
x := x→forward[i]

update[i] := x
x := x→forward[1]
if x→key = searchKey then x→value := newValue
else

newLevel := randomLevel()
if newLevel > list→level then

for i := list→level + 1 to newLevel do
update[i] := list→header

list→level := newLevel
x := makeNode(newLevel, searchKey, value)
for i := 1 to newLevel do

x→forward[i] := update[i]→forward[i]
update[i]→forward[i] := x

Delete(list, searchKey)
local update[1..MaxLevel]
x := list→header
for i := list→level downto 1 do

while x→forward[i]→key < searchKey do
x := x→forward[i]

update[i] := x
x := x→forward[1]
if x→key = searchKey then

for i := 1 to list→level do
if update[i]→forward[i] ≠ x then break
update[i]→forward[i] := x→forward[i]

free(x)
while list→level > 1 and

list→header→forward[list→level] = NIL do
list→level := list→level – 1

FIGURE 5 - Insertion and deletion algorithms

next node of level i or higher. When a new element is inserted into the list, a node with a random level is

inserted to represent the element. Random levels are generated with a simple pattern: 50% are level 1,

25% are level 2, 12.5% are level 3 and so on. It should be fairly clear how to perform efficient searches,

insertions and deletions in this data structure. Insertions or deletions would require only local modifi-

cations. Some arrangements of levels would give poor execution times, but we will see that such

arrangements are rare. The expected cost of a search, insertion or deletion is O(log n). More details and

intuitions about skip lists are described elsewhere [Pug89].

3.1. Skip List Algorithms
This section gives algorithms to search for, insert and delete elements in a dictionary or symbol table. The

Search operation returns the contents of the value associated with the desired key or failure if the key is

not present. The Insert operation associates a specified key with a new value (inserting the key if it had

not already been present). The Delete operation deletes the specified key. It is easy to support additional

operations such as “find the minimum key” or

“find the next key.”

Each element is represented by a node, the

level of which is chosen randomly when the node

is inserted without regard for the number of

elements in the data structure. A level i node has i

forward pointers, indexed 1 through i. We do not

need to store the level of a node in the node.

Levels are capped at some appropriate constant

MaxLevel. The level of a list is the maximum level

currently in the list (or 1 if the list is empty). The

header of a list has forward pointers at levels one

through MaxLevel. The forward pointers of the

header at levels higher than the current maximum

level of the list point to NIL.

CONCURRENT MAINTENANCE OF SKIP LISTS

7

randomLevel()
newLevel := 1
while random() < p do

newLevel := newLevel + 1
return min (newLevel, MaxLevel)

FIGURE 6 - Generating a random level

Initialization

An element NIL is given a key greater than any legal key. All

levels of all skip lists are terminated with NIL. A new list is

initialized so that the level of the list is equal to 1 and all

forward pointers of the list’s header point to NIL.

Search Algorithm

We search for an element by traversing forward pointers that

do not overshoot the node containing the element being

searched for (Figure 4). When no more progress can be made at the current level of forward pointers, the

search moves down to the next level. When we can make no more progress at level 1, we must be

immediately in front of the node that contains the desired element (if it is in the list).

Insertion and Deletion Algorithms

To insert or delete a node, we simply search and splice. Figure 5 gives algorithms for insertion and

deletion. A vector update is maintained so that when the search is complete (and we are ready to perform

the splice), update[i] contains a pointer to the rightmost node of level i or higher that is to the left of the

location of the insertion/deletion. If an insertion generates a node with a level greater than the previous

maximum level of the list, we update the maximum level of the list and initialize the appropriate portions

of the update vector. After each deletion, we check if we have deleted the maximum element of the list

and if so, decrease the maximum level of the list.

Generating a Random Level

Initially, we discussed a probability distribution where half of the nodes that have level i pointers also

have level i+1 pointers. To get away from magic constants, we say that a fraction p of the nodes with level

i pointers also have level i+1 pointers. (for our original discussion, p = 1/2). Levels are generated

randomly by an algorithm equivalent to the one in Figure 6. Levels are generated without reference to the

number of elements in the list.

At what level do we start a search? Defining L(n)

In a skip list of 16 elements generated with p = 1/2, we might happen to have 9 elements of level 1, 3

elements of level 2, 3 elements of level 3, and 1 element of level 14 (this would be very unlikely, but it

could happen). How should we handle this? Where should we start the search? Our analysis suggests

that ideally we would start a search at the level L where we expect 1/p nodes. This happens when L =

log1/p n. Since we will be referring frequently to this formula, we will use L(n) to denote log1/p n. If we use

the standard algorithm and start our search at level 14, we will do much useless work. However, the

probability that the maximum level in a list of n elements is significantly larger than L(n) is very small.

Starting a search at the maximum level in the list does not add more than a small constant to the expected

search time. This is the approach used in the algorithms described here.

Determining MaxLevel

Since we can safely cap levels at L(n), we should choose MaxLevel = L(N) (where N is an upper bound on

the number of elements in a skip list). If p = 1/2, using MaxLevel = 32 is appropriate for data structures

containing up to 232 elements.

Duplicate keys

The algorithms can easily be adapted to allow duplicate keys by simply forcing the insertion algorithm to

always perform the insertion. The algorithms will exhibit stack-like behavior with respect to duplicate

keys.

3.2. Analysis of Skip List Algorithms
The time required to execute the Search, Delete and Insert operations is dominated by the time required to

search for the appropriate element. For the Insert and Delete operations, there is an additional cost

proportional to the level of the element being inserted or deleted.

We assume an adversarial user does not have access to the levels of elements; otherwise, he could

create situations with worst-case running times by going through a list and deleting all elements that

CONCURRENT MAINTENANCE OF SKIP LISTS

8

were not level 1. A user without access to the levels of elements might do this by chance, but the

probability of this is small enough to be ignored.

We have formally analyzed the performance of skip lists [Pug89] and summarize our results here.

The expected number of comparisons required to perform a search is at most L(n)/p + 1/(1–p) + 1 and the

variance of the number of comparisons is approximately L(n)/p2. The probability distribution of the

number of comparisons needed to perform a search is closely approximated by the number of coin flips

needed to see L(n) heads (where the probability of a coin being heads is p). This is a dominate cost

measurement for searches, insertions and deletions, so the expected time for all three operations is O(log

n).

3.3. Efficiency
We compared implementations of skip lists against implementations AVL trees, 2-3 trees and splay trees

[Pug89]. We found that skip lists had roughly the same efficiency as highly optimized, non-recursive

balanced tree implementations (insertions and deletions were slightly faster in skip lists), and that skip

lists were significantly faster (by a factor of 2–3) than straightforward, recursive balanced tree

implementations or optimized splay tree implementations (using uniform query distributions).

Search(list, searchKey)
x := list→header
for i := list→levelHint downto 1 do

y := x→forward[i]
while y→key < searchKey do

x := y
y := x→forward[i]

-- wasTrue(self, y = x→forward[1]) ∧ x→key < searchKey ≤ y→key
if y→key = searchKey then return y→value

else return not-found

getLock(x, searchKey, i)
-- x is at least level i ∧ x→key < searchKey

-- since some time might have elapsed since we tried to advance at this level, see if we can advance further.

y := x→forward[i]
while y→key < searchKey do

x := y
y := x→forward[i]

-- can’t move any further, lock and double check result

lock(x, forward[i])
y := x→forward[i]
while y→key < searchKey do

unlock(x, forward[i])
x := y
lock(x, forward[i])
y := x→forward[i]

-- locked(x→forward[i]) ∧ x→key < searchKey ≤ key(x→forward[i]) ∧ x is reachable at level i

Figure 7 - Concurrent search and locking algorithms for skip lists

4. Concurrent Maintenance of Skip Lists
The idea used to develop concurrent skip list algorithms is to recognize that the distribution of levels

within a skip list effects only the performance of operations, not their correctness. To delete an element,

we simply reduce the level of that element one step at a time, until it is level one, and then we delete it out

of the level 1 linked list, which deletes the element. To change a level 4 element to a level 3 element, we

simply delete the element from the linked list of level 4 forward pointers. If we think of a level 0 element

CONCURRENT MAINTENANCE OF SKIP LISTS

9

as an element that has no pointers and is not in the list, we can think of the process of deletion as

reducing the level of an element down to 0. Insertion works similarly: we first insert the element in the

level 1 linked list, then build up the level of the element as appropriate. Note that for the concurrent

version of skip lists, we explicitly store the level of each element with the element.

Since the maximum level in the list is stored implicitly in the header, we don’t have to store the

maximum level in the list; we could have an operation first determine the maximum level i such that

list→header→forward[i] is non–NIL, and start the search at that level. A slightly more efficient method is to

store a levelHint with the list, which is considered to be a suggestion about what level to start a search at.

It does not strictly correspond to the current maximum level of the list, but the levelHint will rarely be off

by more than one or two. At the end of an update to the list, we check if levelHint is different from the

maximum level of the list. If it is different and no other thread is updating it, we update it.

The algorithms are shown in Figures 7-9. The Search routine returns a result that is guaranteed to

have been true at some point during the search. The getLock routine locks the forward pointer of the

specified level immediately in front of the specified search key. The concurrent insertion and deletion

algorithms for skip lists are somewhat more complicated. In addition to locking forward pointers, we also

need to be able avoid situations such as two threads trying to delete the same element at the same time, or

a thread trying to delete an element that is being inserted. A thread inserting or deleting an element locks

the level of that element to prevent these situations from arising. An element is deleted from a skip list at

the same moment it is deleted from the linked list of level 1 forward pointers (i.e., it is at this moment that

a search will stop reporting the element as being in the list).

If the insert routine finds the element already in the list, it simply updates the value field. Note that

an element cannot be deleted by another thread while we hold a lock on either the level of that element or

on the level 1 forward pointer to that element.

Duplicate keys

The concurrent skip list algorithms also can be adapted to allow duplicate keys. However, in the

straightforward implementation, an anomaly arises. If two elements with equal keys e1 and e2 are inserted

concurrently, it is possible that e1 occurs before e2 in the level 1 forward pointers, and that e2 occurs before

e1 in the level 2 forward pointers. Since e1 and e2 have the same key, this does not cause any major

problems. However, the deletion routine needs to be written so that it searches using a getLock routine

that searches for a particular node, and not for the first occurrence of a particular key.

4.1. Efficiency
The efficiency of concurrent skip lists rests on several factors:

1. The efficiency of (single-thread) skip lists

2. The overhead of the locking protocol (disregarding contention).

3. The overhead associated with making references to global shared memory, compared with the

overhead of accessing local memory.

4. The amount of lock contention.

Rather than present numbers that would be particular to one benchmark, we only attempted to

analyze aspects of our algorithms that should be consistent across implementations. As mentioned in

Section 3.3, the efficiency of single-thread skip lists is similar to the efficiency of highly optimized

balanced trees. The second factor is dependent on the architecture of the computer the algorithm will be

implemented on. If there is no lock contention, an insertion needs an average of 1+1/(1–p) locks, and a

deletion needs 1+2/(1–p) locks. Assuming lock contention does not dramatically increase the number of

locks obtained, the locking protocol overhead should be small. The third factor is strongly dependent on

the computer architecture, so we do not address it here.

Therefore, the primary question we need to address is the amount of lock contention (and whether or

not lock contention has any effect on the number of locks obtained by a transaction). We ran simulations

designed to test the amount of lock contention. In these simulations, we used busy-waiting, test-and-set

semaphores for locking. At each step in the simulation, a random thread was advanced by one step; thus,

CONCURRENT MAINTENANCE OF SKIP LISTS

10

some threads may be stalled for a long time. We felt that this simulated an appropriately hostile situation

for fairness.

There are many possible scenarios for a simulation. One possibility would be to have n threads all

attempt to insert elements into an initially empty data structure. This would lead to horrendous lock

contention, as all n threads attempted to lock simultaneously the only level 1 forward pointer in the initial

data structure and n–1 of the threads were blocked.

In our simulation, we started with a data structure containing m elements. Each of n threads inserts a

random element, deletes an element and then repeats the entire process indefinitely. No two threads ever

attempt to insert or delete the same element simultaneously. At any moment, the skip list would contain

between m and m+n elements (depending of the phase of each thread). We collected statistics only once

the simulation had reached a steady state. We used a parameter of p = 0.5 for generating random levels.

Our results

Because of the design of our simulation, there was no contention for locks on the levels of elements.

Because a task only attempts to obtain a lock on the levelHint of a list if it is was unlocked when it last

checked, there was an insignificant amount of contention of locks on the levelHint of a list. This could be

totally eliminated by writing the algorithm so that if it failed to get a lock initially, it would not wait for a

lock. Therefore, we only report on contention for locks on forward pointers.

 # of

concurrent

writers

of elements:

min–max

% of locks

requests

blocked

average % of

locks held

average # of locks

obtained per

transaction

average # of

steps per

transaction

100 0–100 17% 25% 3.26 63

10 990–1000 0.09% 0.08% 3.00 70

100 900–1000 1% 1.4% 3.01 70

1000 0–1000 15% 20.5% 3.23 76
Table 2 –ּResults of simulations

The results from our simulations are shown in Table 2. The percentage of lock requests blocked gives

the percent of time a lock request for a forward pointer was forced to wait. The fourth column gives the

average number of locks held on forward pointers as a percentage of the total number of forward

pointers. The average number of locks obtained per transaction would be 3 without lock contention (2 for

insertions, 4 for deletions).

These results show that we can achieve almost linear speed-up. For 1000 threads, we obtain a speed-

up of 921. These results are in line with our expectations. The percentage of locks blocked seems

proportional to the percentage of locks held, which is determined by the proportion of time the

algorithms spend holding locks. This is in turn is determined by the proportion of concurrent writers to

the number of elements in the data structure. The average number of locks per transaction is almost

constant. Assuming the ratio of threads to elements remains constant, lock contention actually decreases

as the number of threads increase. This is because the average amount of time a lock is held is constant,

while the total time to perform a transaction increases as the number of elements increases. Therefore, as

the size of the problem increases, the percentage of locks held decreases, which decreases the amount of

lock contention. We also found that a thread had to wait an average of 5 ticks for a lock if it was blocked,

which is approximately the same number of ticks a thread holds a lock for once it has obtained the lock.

This suggests that the queue for a lock very rarely grew larger than one.

5. Related Work
There has been numerous papers on concurrency schemes for trees. Those for balanced trees [Ell80a]

[Ell80b] tend to be very complicated, require exclusive locks and read locks, and allow at most O(log n)

busy writers. Some of the concurrency schemes for unbalanced trees [KL80] [Man84] [ML84] allow O(n)

busy writers and are simpler than concurrent balanced tree schemes. However, certain input patterns can

easily cause poor performance and the concurrency algorithms we have presented here for skip lists

appear simpler and allow as much or more concurrency.

CONCURRENT MAINTENANCE OF SKIP LISTS

11

It does not seem that skip lists are particularly well suited for disk-based data structures, so this work

does not provide any direct competition for concurrent B-trees.

6. Conclusions
The concurrent skip list algorithms described in this paper provide an efficient and practical method of

allowing concurrent access and updates to a search structure in shared memory. Since skip lists are

roughly as fast or faster than balanced trees in a non-concurrent environment and contention does not

significantly slow down concurrent skip lists, I conjecture that the concurrent skip list algorithms

described in this paper are at least as efficient as any possible concurrent balanced tree implementation. It

might be possible to design concurrent balanced tree algorithms that allowed O(n) busy writers with high

efficiency, but the complexity of such algorithms probably would make their implementation prohibitive.

References
[Ell80a] Ellis, C. Concurrent search and insertion in AVL trees, IEEE Trans. on Comput. C-29 (Sept.

1980) 811-817.

[Ell80b] Ellis, C. Concurrent search and insertion in 2-3 trees. Acta Inf. 14 (1980) 63-86.

[KL80] Kung, H.T. and Lehman, Q. Concurrent Manipulation of Binary Search Trees, ACM Trans. on

Database Systems, Vol. 5, No. 3 (Sept. 1980), 354-382.

[Man84] Manber, U. Concurrent Maintenance of Binary Search Trees, IEEE Transactions on Software

Engineering, Vol. SE-10, No. 6 (November 1984), 777-784.

[ML84] Manber, U. and Ladner, P. Concurrent Control In a Dynamic Search Structure, ACM Trans. on

Database Systems, Vol. 9, No. 3 (Sept 1984), 439-455.

[Pug89] Pugh, W. Skip Lists: A Probabilistic Alternative to Balanced Trees. Algorithms and Data

Structures: Workshop WADS ’89, Ottawa, Canada, August 1989, Springer-Verlag Lecture Notes

in Computer Science 382, 437-449. (revised version to appear in Comm. ACM).

CONCURRENT MAINTENANCE OF SKIP LISTS

12

Insert(list, searchKey, newValue)
local update[1..levelCap]
x := list→header
L := list→levelHint
for i := L downto 1 do

y := x→forward[i]
while y→key < searchKey do

x := y
y := x→forward[i]

update[i] := x

x := getLock(x, searchKey, 1)
if x→forward[1]→key = searchKey then

x→forward[1]→value := newValue
unlock(x, forward[1])
return updated

y := makeNode(randomLevel(), searchKey, value)
lock(y, level)
-- if L < y→level, add levels L+1..y→level to update, so that we can insert y into levels 1..y→level.

-- This will allow the header of the list to be updated correctly.

for i := L+1 to y→level do update[i] = header(list)
-- insert y into levels 1..level(y)

for i := 1 to y→level do
-- y is effectively a level i–1 element

if i ≠ 1 then x := getLock(update[i], searchKey, i)
-- searchKey is not present at level i, ∴ x→key < searchKey < x→forward[i]→key

y→forward[i] := x→forward[i]
x→forward[i] := y
unlock(x, forward[i])

unlock(y, level)

-- increase levelHint to correspond to maximum non–NIL level if needed

L := list→levelHint
if L < levelCap and list→header→forward[L+1] ≠ NIL

and not locked(list, levelHint) then
lock(list, levelHint)
while list→levelHint < levelCap

and list→header→forward[list→levelHint+1] ≠ NIL do
list→levelHint := list→levelHint+1

unlock(list, levelHint)

return inserted

Figure 8 – Concurrent insertion algorithm for skip lists

CONCURRENT MAINTENANCE OF SKIP LISTS

13

Delete(list, searchKey)
local update[1..levelCap]
x := list→header
L := list→levelHint
for i := L downto 1 do

y := x→forward[i]
while y→key < searchKey do

x := y
y := x→forward[i]

update[i] := x

y := x
repeat

y := y→forward[i]
if y→key > searchKey then return not-found

lock(y, level)
isGarbage := y→key > y→forward[i]→key
if isGarbage then unlock(y, level)

until y→key = searchKey and not isGarbage
-- y is in the list and we have exclusive insert/delete rights

for i := L+1 to y→level do update[i] := list→header
for i := y→level downto 1 do

-- loop invariant: y is effectively a level i element

x := getLock(update[i], searchKey, i)
-- x→forward[i] = y

lock(y, forward[i])
x→forward[i] := y→forward[i]
y→forward[i] := x
unlock(x, forward[i])
unlock(y, forward[i])

putOnGarbageQueue(y)
unlock(y, level)

-- decrease levelHint to correspond to maximum non–NIL level if needed

L := list→levelHint
if L > 1 and list→header→forward[L] = NIL and not locked(list, levelHint) then

lock(list, levelHint)
while list→levelHint > 1 and list→header→forward[list→levelHint] = NIL do

list→levelHint := list→levelHint – 1
unlock(list, levelHint)

return deleted

Figure 9 – Concurrent deletion algorithm for skip lists

