
Efficient Transaction Processing for Hyrise in
Mixed Workload Environments

David Schwalb1, Martin Faust1, Johannes Wust1,
Martin Grund2, Hasso Plattner1

1Hasso Plattner Institute, Potsdam, Germany
2eXascale Infolab, University of Fribourg, Fribourg, Switzerland

Abstract. Hyrise is an in-memory storage engine designed for mixed
enterprise workloads that originally started as a research prototype for
hybrid table layouts and with basic transaction processing capabilities.
This paper presents our incremental improvements and learnings to bet-
ter support transactional consistency in mixed workloads.
In particular, the paper addresses a multi-version concurrency control
mechanism with lock-free commit steps, tree-based multi-column indices,
in-memory optimized logging and recovery mechanisms. Additionally, a
mixed workload scheduling mechanism is presented, addressing partition-
able transactional workloads in combination with analytical queries.

1 Introduction

Currently, we are observing three different trends in the database community.
First, traditional general purpose database systems are evolving and incorpo-
rate new technologies [19,12,2]. Second, the separation between transactional
processing (OLTP) and analytical processing (OLAP) systems continues. Spe-
cialized systems leverage the partition-ability of some transactional workloads
and completely serialize the execution on partitions to eliminate the overhead
of concurrency control [7,23,17]. However, support for cross-partition queries or
analytical queries is poor [24]. Third and in contrast to second, we see a unifica-
tion of both system types, taking on the challenge of executing a mixed workload
of transactional and analytical queries in one system [21,20,18,5,16,15,9]. This
unification is based on the characteristics of enterprise databases and builds on
the set-based processing of typical business applications and the low number
of updates allowing an insert-only approach. The unification provides real time
insights on the transactional data and eliminates redundancies.

The in-memory storage engine Hyrise targets a unified transactional and an-
alytical system and is designed to support vertical partitioning of tables to allow
for the optimal storage layout for mixed enterprise workloads [5]. It builds on
a main-delta-concept leveraging light-weight compression techniques like dictio-
nary encoding and bit-packing. It supports an efficient merge process [10] as well
as a balanced execution of mixed enterprise workloads [27].

Contribution. In this paper, we provide an overview of implementation
aspects of Hyrise and describe optimizations to better support transactional
workloads. In particular, we describe (a) a multi-version concurrency control

mechanism with a lock-free commit step in Section 3, (b) a tree-based multi-
column index structure in Section 4, (c) a persistency mechanism optimized for
in-memory databases and parallel recovery in Section 5 and (d) an optimized
scheduling mechanism for the scheduling of mixed workloads while still leverag-
ing the partition-ability of transactional workloads in Section 6.

2 Architecture

Hyrise is an in-memory storage engine1 specifically targeted to mixed workload
scenarios [5] and the balanced execution of both analytical and transactional
workloads at the same time [27]. In this section, we describe the basic architecture
of the system.

Although Hyrise supports flexible hybrid storage layouts, we assume a colum-
nar storage of tables. The table data consists of attribute vectors and dictionaries
for each column in the table as well as three additional columns used for concur-
rency control. Hyrise uses multi-version concurrency control to manage transac-
tions, providing snapshot isolation as a default isolation level and allowing for
higher isolation levels on request, as described in more detail in Section 3. Addi-
tionally, the transaction manager handles a transaction context for each running
transaction.

Based on analyses of workloads of productive enterprise applications, Hyrise
is optimized for read-only queries in order to optimally support the dominant
query types based on the set processing nature of business applications [10]. Data
modifications follow the insert-only approach and updates are always modeled as
new inserts and deletes. Deletes only invalidate rows. We keep the insertion order
of tuples and only the most recently inserted version is valid. The insert-only
approach in combination with multi-versioning allows Hryise to process writers
without stalling readers. Additionally, keeping the history of tables provides
the ability of time-travel queries [8] or to keep the full history due to legal
requirements [18]. Furthermore, tables are always stored physically as collections
of attributes and meta-data and each attribute consists of two partitions: main
and delta partition.

The main partition is typically dictionary compressed using an ordered dic-
tionary, replacing values in the tuples with encoded values from the dictionary. In
order to minimize the overhead of maintaining the sort order, incoming updates
are accumulated in the write-optimized delta partition as described in [22,10].
In contrast to the main partition, data in the write-optimized delta partition is
stored using an unsorted dictionary. In addition, a tree-based index with all the
unique uncompressed values of the delta partition is maintained per column. The
index on top of the dictionary allows for fast value searches on the dictionary
and also speeds up value insertions into the column, as inserting a value into a
dictionary encoded column requires to search the dictionary [20]. The attribute
vectors of both partitions, storing the dictionary encoded values, are further
compressed using bit-packing mechanisms [25,3].

1 Source code available at https://github.com/hyrise/hyrise

https://github.com/hyrise/hyrise

(a) Start (b) Active

(c) Aborted

(d) Validating

(e) Prepare Commit (f) Committing

(g) Pending Commit

(h) Committed

Fig. 1. Internal Hyrise transaction states. Once a transaction entered phase (f) no more
logical transaction aborts are possible. Validation phase (d) is optional depending on
additional validation steps for serializability.

To ensure a constantly small size of the delta partition, Hyrise executes a pe-
riodic merge process. A merge process combines all data from the main partition
as well as the delta partition to create a new main partition that then serves as
the primary data store [10].

3 Concurrency Control

The choice between an optimistic or pessimistic concurrency control approach
highly depends on the expected workload [1,11]. Hyrise uses a multi-version
concurrency control (MVCC) mechanism to provide snapshot isolation. This
optimistic approach fits well with the targeted mixed workload enterprise envi-
ronment, as the number of expected conflicts is low and long running analytical
queries can run on a consistent snapshot of the database [18]. This section de-
scribes our concurrency control implementation that is based on known MVCC
mechanisms and focuses on the parallel commit of transactions.

In Hyrise, the transaction manager is responsible for tracking a monotonically
increasing next transaction id ntid and the last visible commit id lcid, as well as
maintaining a commit context list ccl. Each transaction keeps local information
in a transaction context containing a local last visible commit id lcidT , its own
transaction id tidT and two lists referencing inserted and deleted rows plus a
reference to a commit context in case the transaction is in the commit phase.
Each table maintains three additional vectors: a transaction id vector vtid used
to lock rows for deletion and two commit id vectors vbeg and vend indicating
the validity of rows.

Transactions can be in 8 different phases: (a) transaction start, (b) active pro-
cessing, (c) transaction aborted, (d) validating, (e) preparing commit, (f) trans-
action committing, (g) pending commit and (h) transaction committed. Figure 1
shows the actual states and how transactions can change between them.

3.1 Start Transaction Phase

When a new transaction is started, it enters the start phase and is assigned a
unique transaction id tidT by the transaction manager. Additionally, the trans-
action copies the global last visible transaction id lcid to the local transaction

Own?
vtid = tidT

Activated?
vbeg ≤ lcidT

Invalidated?
vend ≤ lcidT

Row
visible?

Past Delete yes yes yes no
Past Delete no yes yes no
Impossible* yes no yes no
Dirty Own Delete yes yes no no
Impossible* no no yes no
Own Insert yes no no yes
Past Insert/Future delete no yes no yes
Dirty Insert/Future Insert no no no no

Table 1. Evaluation rules determining the visibility of rows for a transaction T . Not
yet committed inserts and deletes are listed as ’dirty’. *Impossible combination as rows
are always activated before they are invalidated.

context as lcidT . After the transaction context is successfully prepared, the trans-
action enters the active state. During processing and validation, write-write con-
flicts might occur leaving the transaction in the aborted state. Once a transaction
enters the commit phase, the transaction is guaranteed to commit successfully
and to reach the committed state.

3.2 Active Processing Phase

During active processing, a transaction T might read or write rows and needs to
guarantee the required isolation level. Whenever a set of rows is retrieved from a
table through either a table scan operation or an index lookup, the set of rows is
validated based on the respective vbeg, vend and vtid values of a row in combi-
nation with lcidT and tidT . Table 3.2 outlines the different combinations and if
T sees them as visible. Some combinations are impossible based on the design of
the commit mechanism but listed for completeness. Not yet committed inserts
and deletes are listed as dirty. In case transactions need a higher isolation level,
serializability can be requested to enforce read stability and phantom avoidance
through additional checks before the commit step [11].

Inserts are straight forward, appending a new row to the delta partition of
a table with vtid = tidT . As vbeg and vend are initialized to 8, the new row is
only visible to T and no other transaction can read the in-flight row before T
successfully commits. Deletes only invalidate rows by setting vend. However, as
a transaction does not have a commit id in the active phase, it only deletes the
row locally in the transaction context and marking the row by setting vtid to
tidT with an atomic compare-and-swap operation. This blocks any subsequent
transaction from deleting the same row, resulting in the detection of write- write
conflicts. Updates are realized as an insert of the new version with an invalidation
of the old version.

Algorithm 3.1: finishCommit(c)

c.pending ← True
while c and c.pending

do

if atomic_cas(lcid, c.cid− 1, c.cid)

{
send_response(c)
c← c.next

else
{
return (0)

3.3 Lock-free Commit Phase

Multiple transactions can enter the commit phase in parallel and synchroniza-
tion is handled by the following lock-free mechanism. Although transactions can
process their commit step in parallel, cascading commits realized by using com-
mit dependencies guarantee the correct ordering of the final step of incrementing
lcid.

Once a transaction T is ready to commit, it enters the prepare commit phase
and is assigned a commit context c. Through an atomic insertion of c into the
global commit context list ccl, a unique commit id cidT is implicitly assigned
to the committing transaction by incrementing the id of the predecessor. Each
commit context contains the transaction’s commit id cidT , connection informa-
tion to send a response to the client and a next pointer to the next commit
context in the list. The insertion into ccl is performed by executing a compare
and swap operation on the next pointer of the last commit context lcx to c.
Although this mechanism is not wait-free, it provides a lock-free way of creating
a linked list of commit contexts with sequentially increasing commit ids. T is
guaranteed to proceed to the actual commit phase after successfully inserting c
and can not enter the abort state anymore. During the commit phase, T tra-
verses all its changes by iterating through the list of inserted and deleted rows
and writing the commit id. Inserted rows are committed by setting vbeg to cidT
and all deleted rows are committed by setting vend to cidT .

Finally, T determines if it can directly enter the committed state or if it
needs to enter the pending commit state. As multiple transactions can enter the
commit phase concurrently, it is possible that transactions T1 and T2 commit
concurrently and cidT2 > cidT1. If T2 enters the committed state first, it would
set the global lcid to cidT2. However, due to the implemented visibility mecha-
nism through one single last visible commit id, this would allow newly starting
transaction to see the in-flight changes of T1, which is still not fully committed. A
pessimistic approach might serialize the commit phases of transactions and avoid
this problem. However, if a large number of rows is touched leading to longer
commit phases, this quickly turns into a bottleneck. Therefore, Hyrise supports
parallel commits that allow transactions to commit in any order except for the
last step of incrementing the global lcid. Instead, commit dependencies take care
of incrementing lcid at the correct point in time and only then the respective
transactions are returned as committed to the client. This allows parallel and

Warehouse Product Name Price TID Begin End

Berlin
Potsdam

Product A
Product B

17 Euro
6 Euro

- (17)
-

1
2

Inf (89)
Inf

Berlin Product A 30 Euro 17 Inf (89) Inf

Main:

Delta:

Transaction Data:
lastVisibleCid = 88 (89)
nextCid = 89 (90)
nextTid = 18

TX17:
 Inserted Rows: 2
 Deleted Rows: 0

0
1

2

1

2
3

6

4

5

UPDATE Stock
 SET price=30
 WHERE name='ProductA'

Fig. 2. Example outlining the implemented multi-version concurrency algorithm.

lock-free commit phases and although the final commit step might be deferred,
worker threads are already freed and can process other queries.

Algorithm 3.1 outlines the process of the final commit step that allows work-
ers to finish processing of a transaction by adding a commit dependency although
the final last step of incrementing lcid might not yet be possible. First, a com-
mitting transaction T1 with commit context c sets its commit context status
to pending and indicates that it is trying to increment the lcid. Then, T1 tries
to atomically increment the lcid. In case the increment failed, T1 depends on
another currently committing transaction T2 with cidT2 < cidT1 to commit T1.
The processing worker thread is then freed and can process new queries. The
atomic incrementation of lcid ensures that only one thread succeeds even if mul-
tiple threads are concurrently incrementing lcid. When T2 finally commits, it
checks if pending transactions exist by following the list of commit contexts. As
long as there are pending commits, T2 proceeds and increments the lcid.

The fact that the lcid is only updated after all commit ids for vbeg and vend
have been written, ensures that all changes during the commit phase appear to
other transactions as future operations, leaving the affected records untouched
from the viewpoint of other transactions. Until the global lcid is set to cidT of a
committing transaction and makes all changes visible for subsequent transactions
in one atomic step.

3.4 Aborts

Transactions can only abort before they enter the commit phase. Therefore,
aborting transactions do not yet have an assigned commit id and have only
inserted new rows which are still invisible or have marked a row locally for
deletion. This means that an aborting transaction only has to clear potentially
locked rows by removing their id from vtid using the lists of inserted and deleted
rows from the transaction context.

3.5 Example

Figure 2 shows an example of an update query with tidT = 17 setting the price
of a product A from 17 to 30. The image shows a logical view of a table separated

into main and delta partitions. (1) Row 0 is locked by setting vtid = 17, (2) the
new version of the row is inserted into the delta and added to the local list of
inserted rows, (3) the commit phase starts, assigning T the commit id cidT = 89,
(4) vbeg of the newly inserted row is set to 89 though it is still invisible to other
running transactions as the lcid is still 88, (5) the old row gets invalidated by
setting vend = 89 and added to the local list of deleted rows, (6) the lcid gets
incremented making all changes visible to other transactions.

4 Index Structures

Hyrise allows the definition of indices to efficiently support transactional queries
which select only a few tuples. Index data structures are maintained separately
for the main and delta partition of columns to account for their different char-
acteristics. The following describes a read-only Group-Key Index for the main
partition of a single column [4], a tree-based index structure for the delta parti-
tion and index structures on multiple columns.

4.1 Single Column Indices

A single-column index on the main partition leverages the read-only nature of
the main partition to reduce the storage footprint by creating an immutable
structure for the mapping of values to positions during the merge process. The
main index consists of two bit-packed vectors that map dictionary entries to
position lists.

It consists of an offset vector O and a position vector P . O is parallel to the
dictionary D of a column and contains the start of the list of values in P for each
value in D, in other words the offset which is used to jump into P . P is parallel
to the attribute vector AV and contains all row positions sorted by their value.
Thereby all rows for a distinct value can be retrieved with only two direct reads
at the respective position in the two vectors O and P .

In contrast to the main index, the delta index needs to efficiently handle
newly inserted values and is implemented as a multi-map of actual values and
positions using a tree-based data structure. Entries are kept in ascending order
so that the list of positions for a single value is always sorted. Figure 3(b) shows
a schematic overview of the used index structures.

4.2 Multi Column Indices

Hyrise supports the indexing of multiple columns through the usage of Composite
Group-Keys on the main partition and tuple-indexing on the delta partition.
The challenge for our column-oriented in-memory store is to efficiently obtain a
unique identifier from the composite key, as the parts of the key are encoded and
not co-located. In Hyrise, Composite Group-Key Indices store the concatenation
of a key’s value- ids in a key-identifier list K, as shown in Figure 3(a).

This leads to an additional dictionary lookup for each part of the key before
the index lookup, since all values of the predicate have to be transformed into

Main Partition

Po
sit

io
n

Li
st

K
ey

-Id
en

tifi
er

M
ul

ti
Co

lu
m

n
In

de
x

Index Data
K P

DAV DAV

...

Delta Partition
DAV DAV

...

(a) Multiple Columns

Indexed Main Column

Index
O P

Data
DAV

Indexed Delta Column

IndexData
DAV

(b) Single Column

Fig. 3. Overview of index data structures on single columns and multiple columns for
main and delta partitions. Main: Value lookup in dictionary D, jumping from offset
vector O into positions vector P , referencing values in attribute vector AV . Delta:
Tree-based index on values referencing attribute vector.

value-ids prior to a binary search on K. The offset of the found key-identifier
can be used to directly obtain the row-id from the position list P . In the delta
partition, where the storage footprint is not as important as in the main par-
tition, we concatenate the actual values in the index. We use transformations
similar to Leis et al. [13] to obtain binary-comparable keys.

Internally, Hyrise uses different strongly-typed data types. To allow the flex-
ible definition and querying of multi-column indices at runtime, the system pro-
vides key-builder objects that accept any internal data type. Multiple calls to
a key builder object can be executed with different data types, which allows to
conveniently and efficiently support composite keys with mixed data types.

Indices are unaware of the visibility of records. Hence, the delta index is
used in an append-only manner and retrieved records need to be validated using
the defined visibility mechanism. In case of primary key lookups, the index is
traversed backwards to find the first valid version of a key. While this increases
the lookup overhead moderately, it allows to maintain the visibility information
at one single location and to have transaction-agnostic index structures.

5 Persistency: Logging, Recovery and Checkpointing

Although in-memory databases keep their primary copy of the data in main
memory, they still require logging mechanisms to achieve durability. The per-
sistency mechanisms applied in Hyrise differ from traditional disk-based mecha-
nisms due to the lack of a paging mechanism and the used multi-version concur-
rency control. In this section, we describe the implemented logging, checkpointing
and recovery mechanisms.

T17

UPDATE Stock
 SET price=30
 WHERE name='ProductA'

Value Insert [V]
Data:
 tx = 17
 table = Stock
 row = 2
 valueIds = (0,0,2)

DictionaryEntry [D]
Data:
 table = Stock
 column = Price (3)
 valueId = 2
 valueSize = 8
 value = 30

[41] data [D] [49] data [V]

Last Flush Head TailStart

[25] data [I]

Delete [I]
Data:
 tx = 17
 table = Stock
 row = 0

[9]data[C]

Padding used for
block alignment for
parallel recovery.

Filled with bytes set
to ‘0xFF’

Commit [C]
Data:
 tx = 17

Size of Block

Type of Block

Log-Buffer:

Fig. 4. Delta Log Format. Last flush marks entries already flushed to disk. Padding
is used to align log-file for parallel recovery, log entries are fixed sized based on their
type, only dictionary entries have a variable length.

The main partition of a table is always stored as a binary dump on disk
after a merge process. Therefore, only changes to the delta are written to a log
file, which uses group commits to hide the latency of disks or SSDs. Checkpoints
create a consistent snapshot of the database by also dumping the delta partitions
as binary dumps. In a recovery case, existing dumps for main and delta are
restored from a checkpoint and an eventually existing delta log is replayed to
restore the latest consistent state of tables. Binary dumps are a snapshot of a
table persisted onto disk in the form of binary files directly storing the respective
data structures. Separate files for the table meta-data containing the number and
name of columns, attribute vectors, dictionaries and indexes are created. Using
this information, the system is able to recreate the complete table by loading
the respective files.

5.1 Delta Log

In contrast to ARIES style logging techniques [14], logging in Hyrise leverages
the applied dictionary compression [26] and only writes redo information to the
log. This to reduce the overall log size by writing dictionary-compressed values
and parallel recovery as log entries can be replayed in any order.

The actual log entries that are written to the log-file are of the following 8
types: (1) dictionary entries indicate a newly inserted value with its value id,
(2) value entries indicate a newly inserted row in a table, (3) invalidations in-
validate an existing row, (4) commit entries indicate a successfully committed
transaction, (5) rollback entries indicate that a transaction performed a rollback
and aborted, (6) skip entries are padding entries used for alignment, (7) check-
point start entries indicate the start of a checkpoint, (8) checkpoint end entries
indicate the end of a checkpoint. Dictionary Entries do not include the insert-
ing transaction’s TID, as this information is irrelevant to the recovery process.
Even if a transaction that inserted a value into the dictionary needs to be rolled

back, the value can stay in the dictionary without compromising functionality.
If a log entry is to be written and its size would overlap into another block, the
remaining space is filled with a Skip Entry and the log entry is written to the
beginning of the next block in order to align the log-file to a specified block-size.
Thereby, it is guaranteed that log entries to not span across block boundaries
which allows easy parallel recovery as thread can start reading the log entries at
block boundaries. Skip entries consist only out of bytes set to 0xFF and intro-
duce only a minimal overhead as block sizes for the alignment are typically in
the range of multiple megabytes.

Figure 4 outlines the used format for writing the log file. New log entries
are buffered in a ring-buffer before they are flushed to the log-file. Similarly to
recent work, buffer fill operations are only synchronized while acquiring buffer
regions and threads can fill their regions in parallel [6]. Each entry in the buffer
starts with a character specifying the size of the entry, followed by its data and
closed by the type of the entry. This design allows to forward iterate through
the list of entries by skipping the respective sizes of entries and to read the
log entries backwards in case of recovery by processing each entry based on its
type. Entries do have a fixed length based on their type, except variable length
dictionary entries which contain a dedicated value length in the log entry.

5.2 Checkpointing

Checkpoints create a consistent snapshot of the database as a binary dump on
disk in order to speed up recovery. They are periodically initiated by a checkpoint
daemon running in the background. In a recovery case, only the binary dumps
from the last checkpoint need to be loaded and only the part starting at the
last checkpoint time from the delta log needs to be replayed. In contrast to disk
based database systems where a buffer manager only needs to flush all dirty
pages in order to create a snapshot, Hyrise needs to persist the complete delta
partition of all tables including vbeg and vend.

A checkpoint is created in three steps: (1) prepare checkpoint, (2) write
checkpoint and (3) finish checkpoint. In the first step, the checkpoint is assigned
a unique id and the global log file is switched from the current file A to a new
empty log file B, redirecting all subsequent log entries into the new file. The first
entry in the new log file is the checkpoint start entry. Additionally, the necessary
folder structure is created with a file indicating that the checkpoint is in progress.
The transaction manager then waits for all currently running transactions to
finish before the checkpoint enters the next phase. This guarantees that log file
B contains all relevant information to roll forward to the latest consistent state
during recovery. This mechanism adds a delay to the checkpoint process, but
does not block any transactions from executing. In the second phase, the actual
checkpoint is written and all delta tables are written in a binary format to disk,
including eventually existing index structures. Additionally, the vbeg and vend of
all tables are persisted to disk, as the delta potentially contains updated versions
of rows from the main. In the third and final checkpoint phase, a checkpoint end
entry is written to the log and a file is created indicating that the checkpoint as
finished successfully. This makes the checkpoint the latest available checkpoint in

Task
Dispatcher ...

QP1

QP2

QPn

GQ

Queue
Access
Tokens

Worker threads

...

...

T1
T2

Tn

Fig. 5. Task queues for partitionable transactions

the system so that it will be used in case of a recovery. Due to the applied insert-
only approach, the checkpoint mechanism can operate concurrently as writing
transactions are executed.

5.3 Recovery Process

The recovery process is executed in two steps: (1) load checkpoint and (2) replay
delta log. The checkpoint contains binary dumps of the main and delta partition
and is loaded in parallel. The delta replay step can be easily distributed across
multiple threads based on the layout of the log-file in blocks.

Each thread reads its assigned blocks from the back and replays all success-
fully committed transactions which are identified by a commit entry as their
first log entry. This can be executed in parallel without any synchronization as
the log entry replay is independent of the replay order. The only requirement
is some upfront meta-data about table sizes, dictionary sizes and transaction
numbers in order to preallocate the data structures. In case a thread does not
read a commit entry for one transaction, it needs to make sure that no other
thread has processed the respective commit entry before ultimately discarding
the changes of this transaction. This synchronization between threads is han-
dled by setting a field in a global bit- vector based on the transaction id for each
processed commit entry and parking all log entries that are not preceded by a
commit entry for later evaluation. After the processing of all blocks, the threads
are synchronized through a barrier and reevaluate all discarded transactions by
checking if another thread read a commit entry by looking up the transaction id
in the bit-vector and replaying the changes if necessary.

Both steps are reasonably optimized and implemented distributing the work
across all available cores to fully leverage the available parallelism and bandwidth
on modern systems to provide the fastest possible delta log replay.

6 Scheduling

To execute mixed database workloads, Hyrise leverages a task-based query ex-
ecution model. The main advantages of this execution model are (1) almost
perfect load balancing on multi-core CPUs, (2) efficient workload management
based on a non-preemptive priority task scheduling policy.

The general idea of this execution model is to partition a query into smaller,
non-preemptive units of work, so called tasks, and map these tasks dynamically
to a pool of worker threads by a user-level scheduler. Short running OLTP queries
are executed as a single task, complex OLAP style queries are transformed into
a graph of fine granular tasks by applying data parallelism on operator level.
The granularity of tasks is controlled by a system parameter for the maximum
task size. Each partitionable operator is split dynamically at runtime into tasks,
based on the size of the input data and the maximum task size [27].

The task-based execution model achieves almost perfect load balancing, as
the actual degree of parallelism for executing complex queries can vary dynam-
ically throughout execution depending on the current workload. Assuming a
complex query is executed as the only query on a multi-core machine, it can
leverage all worker threads for execution. Once another query enters the system,
tasks of both queries are distributed over the available worker threads taking
query priorities or predefined resource shares into account [29,28].

To optimize scheduling for transactional throughput, we extend the task-
based execution model by introducing specific queues for partitionable trans-
actions. Note that we still apply the concurrency control mechanism described
in Section 3 to enable transaction safe read access for analytical queries based
on snapshot isolation. Figure 5 gives an overview of the concept of transaction
specific queues. Queries that modify data of a particular data partition n are
placed in one of the corresponding queues shown as QPn in Figure 5. Analyt-
ical queries are placed in the general queue GQ. Each worker thread tries to
pull tasks from the partitionable queues with priority and only takes tasks from
the general queue, if no tasks from transactional query is available. Tasks of
one partition are serialized through a token mechanism to ensure that only one
transactional query per partition is executed at a time. This mechanism avoids
the execution of multiple tasks of one partition and therefore eliminates possible
write conflicts.

7 Conclusion

In this paper, we presented implementation specific design choices for the in-
memory storage engine Hyrise to optimize transaction processing in a mixed
enterprise workload setting. We outlined the main architectural design choices
and addressed the following parts in particular: (1) a multi-version concurrency
control mechanism with lock-free commit steps, (2) tree-based multi-column
indices, (3) in-memory optimized logging and recovery mechanisms and (4) a
mixed workload scheduling mechanism addressing partition-able transactional
workloads in combination with analytical queries.

References

1. P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and
Recovery in Database Systems. Addison-Wesley, 1987.

2. C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mittal, R. Stonecipher,
N. Verma, and M. Zwilling. Hekaton: SQL server’s memory-optimized OLTP
engine. SIGMOD, 2013.

3. M. Faust, M. Grund, T. Berning, D. Schwalb, and H. Plattner. Vertical Bit-
Packing: Optimizing Operations on Bit-Packed Vectors Leveraging SIMD
Instructions. BDMA in conjunction with DASFAA,, 2014.

4. M. Faust, D. Schwalb, J. Krueger, and H. Plattner. Fast lookups for in-
memory column stores: group-key indices, lookup and maintenance. ADMS
in Conjunction with VLDB, 2012.

5. M. Grund, J. Krueger, H. Plattner, A. Zeier, P. Cudre-Mauroux, and S. Mad-
den. HYRISE—A Main Memory Hybrid Storage Engine. VLDB, 2010.

6. R. Johnson, I. Pandis, R. Stoica, M. Athanassoulis, and A. Ailamaki. Aether:
a scalable approach to logging. VLDB, 2010.

7. R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik, E. Jones,
S. Madden, M. Stonebraker, and Y. Zhang. H-store: a high-performance,
distributed main memory transaction processing system. VLDB, 2008.

8. M. Kaufmann, P. Vagenas, P. M. Fischer, D. Kossmann, and F. Färber.
Comprehensive and interactive temporal query processing with SAP HANA.
VLDB, 2013.

9. A. Kemper and T. Neumann. HyPer: A hybrid OLTP&OLAP main memory
database system based on virtual memory snapshots. ICDE, 2011.

10. J. Krüger, C. Kim, M. Grund, N. Satish, D. Schwalb, J. Chhugani, H. Plat-
tner, P. Dubey, and A. Zeier. Fast Updates on Read-Optimized Databases
Using Multi-Core CPUs. VLDB, 2011.

11. P.-A. Larson, S. Blanas, C. Diaconu, C. Freedman, J. M. Patel, and M. Zwill-
ing. High-performance concurrency control mechanisms for main-memory
databases. VLDB, 2011.

12. P.-A. Larson, C. Clinciu, E. N. Hanson, A. Oks, S. L. Price, S. Rangarajan,
A. Surna, and Q. Zhou. SQL server column store indexes. SIGMOD, 2011.

13. V. Leis, A. Kemper, and T. Neumann. The adaptive radix tree: ARTful
indexing for main-memory databases. ICDE, 2013.

14. C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz. ARIES: a
transaction recovery method supporting fine-granularity locking and partial
rollbacks using write-ahead logging. TODS, 1998.

15. H. Mühe, A. Kemper, and T. Neumann. Executing Long-Running Trans-
actions in Synchronization-Free Main Memory Database Systems. CIDR,
2013.

16. T. Mühlbauer, W. Rödiger, A. Reiser, A. Kemper, and T. Neumann. ScyPer:
A Hybrid OLTP&OLAP Distributed Main Memory Database System for
Scalable Real-Time Analytics. BTW, 2013.

17. I. Pandis, R. Johnson, N. Hardavellas, and A. Ailamaki. Data-oriented trans-
action execution. VLDB, 2010.

18. H. Plattner. A Common Database Approach for OLTP and OLAP Using
an In-Memory Column Database. SIGMOD, 2009.

19. V. Raman, G. Attaluri, R. Barber, N. Chainani, D. Kalmuk, V. Ku-
landaiSamy, J. Leenstra, S. Lightstone, S. Liu, G. M. Lohman, T. Malke-
mus, R. Mueller, I. Pandis, B. Schiefer, D. Sharpe, R. Sidle, A. Storm, and

L. Zhang. DB2 with BLU acceleration: so much more than just a column
store. VLDB, 2013.

20. D. Schwalb, M. Faust, J. Krueger, and H. Plattner. Physical Column Orga-
nization in In-Memory Column Stores. DASFAA, 2013.

21. V. Sikka, F. Färber, W. Lehner, S. K. Cha, T. Peh, and C. Bornhövd.
Efficient Transaction Processing in SAP HANA Database - The End of a
Column Store Myth. SIGMOD, 2012.

22. M. Stonebraker, D. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira,
E. Lau, A. Lin, S. Madden, and E. O’Neil. C-store: A Column-oriented
DBMS. VLDB, 2005.

23. M. Stonebraker and A. Weisberg. The VoltDB main memory DBMS. IEEE
Data Eng. Bull., 36(2), 2013.

24. S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden. Speedy transactions
in multicore in-memory databases. SOSP, 2013.

25. T. Willhalm, N. Popovici, Y. Boshmaf, H. Plattner, A. Zeier, and
J. Schaffner. SIMD-Scan: Ultra Fast in-Memory Table Scan Using on-Chip
Vector Processing Units. VLDB, 2009.

26. J. Wust, J.-H. Boese, F. Renkes, S. Blessing, J. Krueger, and H. Plattner.
Efficient logging for enterprise workloads on column-oriented in-memory
databases. In CIKM, 2012.

27. J. Wust, M. Grund, K. Hoewelmeyer, and D. Schwalb. Concurrent Execution
of Mixed Enterprise Workloads on In-Memory Databases. DASFAA, 2014.

28. J. Wust, M. Grund, and H. Plattner. Dynamic query prioritization for in-
memory databases. IMDM in conjunction with VLDB, 2013.

29. J. Wust, M. Grund, and H. Plattner. Tamex: a task-based query execution
framework for mixed enterprise workloads on in-memory databases. In GI-
Jahrestagung, 2013.

	Efficient Transaction Processing for Hyrise in Mixed Workload Environments

