
Supporting UDFs in Peloton

By
Haoran Wang
Nasrin Jaleel
Prashasthi Prabhakar

Proposed Goals
● 75% Goal: Registering a UDF

○ CREATE OR REPLACE FUNCTION increment (i int) RETURNS integer AS $$
○ BEGIN
○ RETURN i + 1;
○ END;
○ $$ LANGUAGE plpgsql;

● 100% Goal: Simple Add-One example
○ Ex: select increment(1);
○ Ex: select increment(a) from table;

● 125% Goal: Support complex constructs in UDF
○ Support if-else statement
○ Support Recursive

UDF Registration Example
CREATE OR REPLACE FUNCTION increment (i int)
RETURNS integer AS $$
BEGIN
 RETURN i + 1;
END;
$$ LANGUAGE plpgsql;

UDF Invocation Example
select increment(2);

-> Returns 3

How to implement UDF?

● Link the library of Postgres
○ Clean Interface?
○ Transformation!

● Include all files under Postgres UDF directories
○ Global variables & Dependencies
○ Transformation Again

● Build it from scratch
○ Start by small steps

How to implement UDF?

● Link the library of Postgres
○ Clear Interface?
○ Transformation!

● Include all files under its plpgsql directories
○ Global variables & Dependencies
○ Transformation Again

● Build it from scratch
○ Start by small steps

UDF Implementation & Interface

● Build the Yacc and Lex for UDF
○ If-else & return_stmt are supported

● UDF Handler is an interpreter
○ climb the parse-tree, execute and return the final value
○ UDF_Handle::Execute(vector<Value> values)

● UDF_Stmt is the base class with virtual method Evaluate()
○ UDF_Return_Stmt & UDF_IFELSE_Stmt are the children class

If-else Example
CREATE OR REPLACE FUNCTION OddEven (i int)
RETURNS integer AS $$
BEGIN

IF i % 2 = 0 THEN
RETURN i;

ELSE
RETURN - i;

END IF
END;
$$ LANGUAGE plpgsql;

UDF Handler Implementation & Interface

● Build the Yacc and Lex for UDF
○ If-else & return_stmt are supported

● UDF Handler is an interpreter
○ climb the parse-tree, execute and return the final value
○ UDF_Handle::Execute(vector<Value> values)

● UDF_Stmt is the base class with virtual method Evaluate()
○ UDF_Return_Stmt & UDF_IFELSE_Stmt are the children class

● Take “Select i + 1;” as the example
● The Token “i” is replaced by its value, say 5

○ “Select i + 1;” ------> “Select 5 + 1;”

● The replaced string is executed as normal SQL statement by
○ traffic_cop.ExecuteStatement(sql_expr)

■ Which does parse(), plan() and execute()

● This means, an identical plan is generated every time
● [TODO] Value injection happens after the plan is generated

○ So that “Select i + 1;” is parsed and node “i” is replaced by its value in every invocation

Execution of SQL Expression

DEMO

Future Work

1. Supporting more functionalities within the UDF - requires more work on yacc
and lex side

2. Supporting transactions in expressions
3. Function syntax and argument validations
4. Storing function pointer (UDFhandle) in the catalog
5. Performance overhead

