
SOFORT: A Hybrid SCM-DRAM Storage Engine
for Fast Data Recovery

Ismail Oukid
Technische Universität

Dresden & SAP AG
i.oukid@sap.com

Daniel Booss
SAP AG

daniel.booss@sap.com

Wolfgang Lehner
Technische Universität

Dresden
wolfgang.lehner@tu-

dresden.de
Peter Bumbulis

SAP AG
peter.bumbulis@sap.com

Thomas Willhalm
Intel GmbH

thomas.willhalm@intel.com

ABSTRACT
Storage Class Memory (SCM) has the potential to significantly im-
prove database performance. This potential has been well docu-
mented for throughput [4] and response time [25, 22]. In this paper
we show that SCM has also the potential to significantly improve
restart performance, a shortcoming of traditional main memory
database systems. We present SOFORT, a hybrid SCM-DRAM stor-
age engine that leverages full capabilities of SCM by doing away
with a traditional log and updating the persisted data in place in
small increments. We show that we can achieve restart times of a
few seconds independent of instance size and transaction volume
without significantly impacting transaction throughput.

1. INTRODUCTION
Availability guarantees form an important part of many service level
agreements (SLAs) for production database systems [7]: minimiz-
ing database downtime has economic as well as usability benefits.
Database systems crash for a variety of reasons including software
bugs, hardware faults and user errors. Many of these conditions
are transient: for these, restarting - after logging the error - is a
reasonable approach to recovery. In these cases database restart time
has a significant and direct impact on database availability.

In-memory DBMSs recover by rebuilding DRAM-based data struc-
tures from a consistent state persisted on durable media. The per-
sisted state typically consists of a copy (checkpoint) of the database
state at a particular instant in time and a log of subsequent updates.
Recovery consists of reloading portions of the checkpointed state,
applying subsequent updates and then undoing the effects of unfin-
ished transactions. Database restart time not only includes the time
to recover the consistent state as it existed before the crash but also
the time to reload any data required by the current workload. This
second component can be substantial for OLAP workloads.

Storage Class Memory (SCM) is Non-Volatile Memory (NVM)
with latency characteristics close to that of DRAM and density, dura-
bility and economic characteristics comparable to existing storage
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
DaMoN ’14, June 22-27 2014, Snowbird, UT, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2971-2/14/06 ...$15.00.
http://dx.doi.org/10.1145/2619228.2619236.

media. Examples of SCM are Phase Change Memory [16], Spin
Transfer Torque RAM [12], Magnetic RAM [9], and Memristors [26].
Continuing advances in NVM technology hold the promise that SCM
will become a reality in the near future. Current NVM technologies
provide read and write latencies within an order of magnitude of
DRAM, with writes being noticeably slower than reads.

In this paper we present SOFORT, a hybrid SCM-DRAM storage
engine that speeds up restarts by taking advantage of the properties
of SCM to operate on the persisted data directly without having
to first cache it in DRAM. SOFORT also speeds up recovery by
doing away with a traditional log and updating the persisted data
in place in small increments. In this paper we show that, with
accepted assumptions for SCM performance, SOFORT can achieve
this without compromising transactional throughput. To do so, we
propose a novel programming model for persistent memory. We
carefully choose which structures to put on SCM and which ones
to keep in DRAM. This flexibility enables performance/restart time
trade-offs since DRAM is faster than SCM and the structures that
are not persisted in real time on SCM need to be rebuilt at restart
time. To build SOFORT, we have designed persistent, single-level,
lock-free, and concurrent data structures that are self-sufficient to
recover in a consistent way relative to the state of the database.

To evaluate SOFORT, we compare it with Shore-MT on ramdisk
using the TATP benchmark [2]. Our evaluation shows that SOFORT
has up to 4 times higher throughput than Shore-MT on ramdisk.
As we do not know yet the final latencies of SCM, we consider a
range of latencies and report incurred performance variations using
special hardware that enables the tuning of emulated SCM latency.
We show that SOFORT stays competitive even in a high latency SCM
environment, recovers in seconds and is resilient to user contention.

The paper is structured as follows: In Section 2, we discuss
the design of SOFORT. Section 3 describes our persistent memory
programming model. We describe the core operations of SOFORT
in Section 4. We evaluate SOFORT in Section 5 and discuss related
work in Section 6. Finally, Section 7 concludes the paper and
outlines future work.

2. SOFORT DESIGN
SOFORT is a main-memory transactional storage engine intended
for mixed OLAP and OLTP workloads. To achieve good OLAP per-
formance, tables are stored column-wise. While SOFORT has been
implemented as a column store, the same principles also apply for
row stores. As in other column-stores, such as SAP HANA, data
is split into a larger read-optimized, read-only main storage and
a smaller write-optimized, read-write delta storage, with periodic

Figure 1: Overview of SOFORT.

merges from delta to main to keep the size of the delta bounded.
Currently only the delta is implemented in SOFORT; implementing
the main is straightforward as it is read-only. Given our architectural
choices, we expect SOFORT to have high OLAP performance.

SOFORT uses Multi-Version Concurrency Control (MVCC) [14,
15] and dictionary encoding. In particular, every column has its own
dictionary. Dictionary codes are integers called ValueIDs. Figure 1
gives an overview of SOFORT. An instance of SOFORT consists
of multiple persistent tables (PTables) and a persistent array of
currently running transaction objects (TRX array). In the current
implementation, the size of the TRX array is fixed and bounds the
maximum number of concurrent transactions. A transaction object
holds information related to the state of the transaction including a
transaction time-stamp (TTS). A transaction ID (TXID) is the index
of a transaction in the TRX array. Each PTable encompasses several
persistent columns (PColumns) and a persistent MVCC array.

There is one MVCC entry per row of a table. An MVCC entry
consists of a commit time-stamp (CTS) and a deletion time-stamp
(DTS) which are both initialized to ∞. Time-stamps are logical
and generated starting from sizeof (TRX array) by a global counter.
When a transaction starts, it is assigned a TTS which is equal to the
current logical time. The time-stamp counter is incremented for
every commit. A CTS or DTS is interpreted as a TXID if it is lower
than or equal to the size of the TRX array. Based on its MVCC entry
and relative to a transaction, a row is:

Visible, if the TTS is greater than or equal to the CTS and lower
than the DTS. If the DTS is a transaction ID (TXID), then
we compare with the commit time-stamp of the transaction
pointed to by that TXID.

Invisible, if it is not visible.

Locked, if its DTS is a TXID.

A PColumn is append-only and contains a persistent dictionary array
(PDict.) that maps ValueIDs to Values, supported by a dictionary
index that maps Values to ValueIDs. Since not all data structures
need to be persistent, we carefully choose which ones to put on SCM
and which ones we keep on DRAM. In general, column structures are
more bandwidth-bound while tree structures are more latency-bound.
Since the dictionary index is heavily accessed and is latency-bound,
we keep it on DRAM for better performance. Hence, we need to
reconstruct it from the dictionary array at restart time. All the other
data structures are persistent in SCM.

Figure 2 is an example of a SOFORT table of employees and their
offices. It illustrates how multiple versions are managed. When a
row is updated (in the example, Ingo changes office), the current
version of the row is invalidated by updating the DTS of the corre-
sponding MVCC entry, and a new version of the row is created, with
its corresponding CTS equal to the DTS of the deleted row.

SOFORT is latch-free and uses atomic instructions only, except
when resizing tables, where only writers are blocked. All data
structures are concurrent and no centralized lock is needed. This
makes SOFORT highly scalable to the number of cores and resilient
to user contention. At the moment, SOFORT supports only statement
level isolation.

3. PROGRAMMING MODEL
First, we discuss what persistent primitives current hardware offers.
Then, we give an overview of SOFORT’s memory management. Last,
we detail the recovery mechanism of SOFORT.

3.1 Persistence Primitives
In our proof-of-concept, SCM is connected via PCIe. However

in the future, SCM may be tightly integrated into the memory sub-
system and may use the CPU’s cache interface. Independent from
the implementation, enforcing persistency is critical. Using the
existing architecture, one could envision an implementation using
non-temporal stores, CPU flushing instructions and memory barriers
[3]. The primitives we use are:

CLFLUSH: Flushing Instruction. Invalidates the cache line that
contains a given linear address. Writes back this cache line if
it is inconsistent with memory.

MOVNT: Store Instruction. Bypasses the cache and writes directly
to memory.

Modern CPUs implement complex out-of-order execution, where
for example, a flushing instruction can be reordered with previous
instructions, leading to the eviction of a cache line that may not take
into account the new writes that should have happened before the
flushing instruction. To order memory instructions, we use memory
barriers. On x86 architecture, we use [3]:

SFENCE: Memory Barrier. Performs a serializing operation on all
store-to-memory instructions that were issued prior to this
instruction.

MFENCE: Memory Barrier. Performs a serializing operation on all
memory instructions (load and store) that were issued prior to
this instruction.

For example, let persistentInt be a persistent integer variable. We
want to persistently write 1 to this variable. To do so, we have to
execute the following sequence of instructions:

persistentInt = 1;
MFENCE();
CLFLUSH(&persistentInt);
MFENCE();

The first memory barrier guarantees that value 1 has effectively been
written to persistentInt and that the following flushing instruction
will write back the new value of persistentInt. The cache line
flushing instruction invalidates the cache line where persistentInt
is held and writes it back to its location in SCM. This implies that
persistent variables must not be split between two cache lines. The
last memory barrier ensures that the cache line flushing instruction
is not reordered with the next instructions. This is required to order
persistent write operations. In the following sections, we use the
suffix “Flush” to indicate a persistent write operation.

Figure 2: Example of a SOFORT PTable. The office of Ingo is updated from B1.01 to B1.03.

Figure 3: SOFORT Persistent Memory Pointer PMPtr.

Memory controllers on modern hardware have write buffers that
can hold a write even after it has been flushed. To overcome this
issue, a mechanism needs to be put in place so that the memory
controller drains its buffer on power failures.

3.2 Persistent Memory Management
Persistent memory is managed using a file system. User space access
to persistent memory is granted via memory mapping using mmap.
The mapping behaves like mmap for traditional files, except that
the persistent data is directly mapped to the virtual address space,
instead of a DRAM-cached copy.

When a program crashes, its pointers become invalid since the
program gets a new address space when it restarts. This implies that
these pointers cannot be used to recover persistent data structures. To
solve this problem, we propose a new pointer type, denoted Persis-
tent Memory Pointer (PMPtr). As illustrated in Figure 3, it consists
of a base, which is a persistent memory page ID, and an offset that
relates to the start of the allocated block. To manage persistent mem-
ory, we propose a persistent memory allocator (PMAllocator) that
provides a mapping of persistent memory to virtual memory which
enables the conversion of PMPtrs to regular pointers. We denote
“work pointers” regular pointers that are conversions of PMPtrs. In
this context, [27] have proposed “pointer swizzling at page fault
time” where disk pointers are converted to virtual memory pointers
at page fault time. While our pointer conversion principle is the
same as in [27], we convert pointers only at restart time and not for
every page fault.

Another solution would be to recover persistent memory in the
same virtual address space, in which case regular pointers would
remain valid. However, the operating system does not guarantee
that the previous virtual address segments will remain free. For
example, using the option MAP_FIXED of mmap allows to recover
data in the same address space but will unmap any mapped files
in the specified memory region, eventually leading to undesirable
behaviors. Besides, using fixed addresses for data is a bad idea for
security reasons.

The PMAllocator uses big persistent memory pages that are cut
into smaller segments for allocation. It maps these pages to virtual
memory to enable the conversion of PMPtrs to work pointers. At
restart time, a new mapping to virtual memory is created, allowing

Figure 4: SOFORT Recovery Diagram.

to re-convert PMPtrs to new valid work pointers. The PMAllocator
is also persistent. It maintains a persistent memory page counter
to know how many pages it has created. It also stores meta-data
at the beginning of every allocated segment. At restart time, the
PMAllocator re-opens its persistent memory pages and reconstructs
the mapping of its persistent memory to virtual memory.

To perform recovery, we need to keep track of a persistent memory
entry point. One entry point is sufficient for the whole storage engine
since every structure is encapsulated into a larger structure up to the
full engine. A persistent entry point can simply be two PMPtrs: the
first points to SOFORT’s persistent structures and the second to the
PMAllocator persistent object. The entry point is kept in SCM on a
small persistent memory page with a fixed ID.

3.3 Recovery Mechanism
Figure 4 shows how recovery at restart is performed from a single
persistent entry point. Once the PMAllocator has recovered its ob-
jects, SOFORT recovers its tables in parallel. Every data structure has
a reload function which checks the sanity of its state, restores work
pointers from PMPtrs, and recovers from problematic situations,
such as crashing in the middle of a table resize. In every transaction,
updating MVCC information is the last operation to perform. Since
our data structures are append-only, we do not need to do anything
since MVCC entries attest the validity and visibility of every row.

The only time consuming operation left is rebuilding the dic-
tionary indexes. We made the choice to keep them volatile for
performance reasons, but we could make them persistent on SCM
using a persistent map structure, such as the CDDS-Btree [23].
Therefore, recovery time depends on the size of the dictionary in-
dexes. As demonstrated in Section 5, although we rebuild dictionary
indexes, SOFORT total recovery time takes only a few seconds.

4. SOFORT ALGORITHMS
In this section, we detail some core operations of SOFORT in order
to demonstrate how consistency and durability are achieved. The
primary challenge is to make the operations failure atomic: regard-
less of crash condition, we can recover the database to a consistent
state. We exclude read operations since they do not change the

database state and thus, read operations are not a challenge for
consistent recovery. Due to space constraints, we discuss only the
Update operation. The Insert and the Delete operations are detailed
in Appendix A.

4.1 Update

Algorithm 1 Update(TableName,Key,NewRow)

1: // Get table pointer from table name
2: ptab = find(TableName)
3:
4: // Get RowID from key value
5: DeleteIdx = ptab–>getLatestVisible(Key)
6:
7: // Reserve a row and get back its index
8: InsertIdx = ptab–>ReserveRow()
9:

10: // Update the transaction object with InsertIdx and DeleteIdx
11: UpdateTransFlush(DeleteIdx, InsertIdx)
12:
13: // Try lo lock the row
14: if !AtomicLock(MVCCArray[DeleteIdx]) then
15: Abort
16: end if
17: // Persistently insert new row
18: ptab–>pushBackFlush(InsertIdx, NewRow)
19:
20: // Commit by updating the two MVCC entries
21: CommitUpdate(DeleteIdx, InsertIdx)
22: Flush MVCCArray[DeleteIdx]
23: Flush MVCCArray[InsertIdx]

The update operation is effectively a Delete operation followed
by an Insert operation. Algorithm 1 describes the core steps of
this operation. First, we get a pointer to the target table using a
mapping from table names to table IDs (line 2). Then, we look up
the indexes of the target table to get the latest visible row where the
key value (Key) occurs (line 5). Afterwards, we reserve a new row
in the table and get back the corresponding row index (line 8). If
needed, a resize of the table is triggered. The index of the new row
is computed with an atomic increment of a counter maintained by
the table. No other operation will write neither to the row pointed by
this index nor to the corresponding MVCC entry. Thus, the operation
is latch-free and thread-safe. Afterwards, we persistently update
the transaction object with the index of the row to be inserted and
the index of the row to be deleted (line 11). Then, we execute an
atomic compare-and-swap operation to try to lock the row to be
deleted by setting its DTS to the transaction ID (line 14) and abort
the transaction if the atomic operation fails (line 15). If it succeeds,
we persistently append the row to to be inserted to the table (line
18). The transaction commits by fetching a commit time-stamp and
assigning it to the CTS of the row to be inserted and the DTS of the
row to be deleted (21). Finally, we persist the commit by flushing
the updated MVCC entries (lines 22-23).

The only challenging failure scenario is a crash between lines
22 and 23 in which case the commit might or might not have been
propagated to persistent memory. To address this scenario, during
recovery, we rollback the update transactions that were active at the
time of failure. To do so, we visit every TRX array entry and do
the following for every update transaction: if the CTS of the row to
insert and the DTS of the row to delete are valid time-stamps, then
do nothing. Otherwise, reset both the CTS of the row to insert and
the DTS of the row to delete to∞. As shown in Appendix A, only

Figure 5: System Setup Overview.

update operations need to be rolled back.

5. EVALUATION
In this section, we give an overview of our system setup. Afterwards,
we evaluate SOFORT in two steps. First, we evaluate SOFORT’s
OLTP performance using the TATP benchmark. Second, we evaluate
SOFORT’s restart time using a micro-benchmark.

5.1 System Setup
We assume a hybrid SCM-DRAM environment where both DRAM

and SCM can be accessed using load-store semantics. We envision
in the future SCM maybe fully integrated into the memory subsys-
tem where SCM can be accessed using Load/Store semantics. In
this paper, we attempted to emulate this scenario. We used a sys-
tem equipped with a dual socket Intel R©Xeon R©E5 processor @
2.60GHz, with 20MB of L3 cache and 8 physical cores per socket.
Figure 5 gives an overview of the system setup. During all our
tests, Intel HyperThreading Technology was disabled. In order to
avoid NUMA effects in the performance measurements, we bind
the process of the benchmark to run to a single socket. (NUMA
effects could be of the same order of magnitude as the higher SCM
latencies.) The DRAM latency was measured with Intel Memory
Latency Checker[24] as 90ns. Since different SCM media expose
different latencies, we used multiple SCM latencies during our tests.

SCM is managed by Persistent Memory File System (PMFS), a file
system optimized for byte-addressable non-volatile memory [10].
Memory mapped PMFS files are not buffered in DRAM. This ensures
that applications are given direct access to SCM. The PMAllocator
uses 1GB PMFS files, each corresponding to a logical memory page.

The hardware uses a custom BIOS to emulate the different higher
latencies of SCM. One limitation of this emulation is that the tuned
latency is read-write symmetric, while SCM is expected to have
asymmetric read-write latencies, with writes slower than reads.

5.2 Throughput
To measure the throughput of SOFORT, we have implemented the
TATP benchmark, a simple but realistic transactional benchmark that
simulates a telecommunication application [2]. It is composed of
80% read transactions and 20% write transactions. TATP measures
Maximum Qualified Throughput, which is the number of successful
transactions per second. We run two sets of experiments to measure
throughput. The first one is read only and consists of running
GetSubData, one of the TATP queries. The second one is running
the full TATP benchmark. In both cases, we vary the number of
users from 1 to 16. We also vary the latency of SCM, from 200 ns to
700 ns. To provide an upper bound of SOFORT’s performance, we
also run SOFORT on shared memory, i.e. on DRAM with a latency
of 90 ns. We run TATP with a scale factor of 100 which corresponds
to an initial population of 1M subscribers.

To provide a baseline for SOFORT’s throughput performance,
we also experiment with Shore-MT [13]. We use Shore-MT on
ramdisk (a Temporary File System mount) (Shore-MT-ramdisk) to
get an upper bound of Shore-MT’s performance. We have also tuned
the configuration of Shore-MT baseline to get the highest possible
throughput.

SOFORT-shm SOFORT-200ns SOFORT-300ns SOFORT-700ns Shore-MT-ramdisk

0 4 8 12 16

#users

0

0.5

1

1.5

2
[x106 TXs/s]

T
hr

ou
gh

pu
t

(a) TATP GetSubData

0 4 8 12 16

#users

0

0.5

1

1.5

2
[x106 TXs/s]

M
ax

.Q
ua

lifi
ed

T
hr

ou
gh

pu
t

(b) TATP Mix

0 4 8 12 16

#users

0

20

40

60

80

100
[% of throughput drop]

Pe
rf

.d
iff

.t
o

SO
FO

R
T

-s
hm

(c) Higher latencies impact on TATP Mix

Figure 6: TATP benchmark SF 100 throughput results. SOFORT outperforms Shore-MT and resists better to user contention. SOFORT stays
competitive even in a high read-write latency (700 ns) SCM environment.

SOFORT-SkipList SOFORT-HashMap

20 40 60 80 100
0

2

4

6

8

time[s]

DB Size(M rows)

R
ec

ov
er

y
Ti

m
e

(a) Dict. size fixed(10M entries/col)

2 4 6 8 10
0

2

4

6

8

time[s]

Dict Size(M entries/col)

R
ec

ov
er

y
Ti

m
e

(b) DB size fixed(10M rows)

Figure 7: SOFORT Restart Time. Recovery time is dominated by
the rebuild time of dictionary indexes.

Figure 6 illustrates throughput results for the experiments de-
scribed above. SOFORT on shared memory (SOFORT-shm) achieves
up to 1.8M transaction per second for the read benchmark (Fig-
ure 6a), and up to 1.1M transaction per second for the full TATP
benchmark (Figure 6b). We also notice that even in a high SCM
latency environment (700 ns), SOFORT stays competitive and still
outperforms Shore-MT on ramdisk. Figure 6c highlights the im-
pact of higher SCM latencies on SOFORT’s TATP throughput relative
to using shared memory. We observe that for a latency of 200 ns,
which is more than the double of shared memory latency (90 ns),
the performance drop is only approximately 20%. This results from
the hybrid design of SOFORT, where structures can be either volatile
(hence, faster access) or non-volatile. Additionally, SOFORT resists
user contention regardless of SCM latency.

The throughput of Shore-MT on ramdisk drops to almost zero
with more than 8 users due to resource contention. However, with
Dora, Shore-MT resists to a certain extent user contention [19].

5.3 Recovery
We define recovery time as the time it takes the database to recover
and answer a first simple select query. To measure this time, we
have implemented a micro-benchmark. The database consists of a
single table of 4 integer columns. We change the database size by
varying the number of rows, and the dictionaries size by varying the
number of dictionary entries, i.e. the number of distinct values per
column. In the following experiments, SCM latency is set to 200 ns.

We compare two configurations of SOFORT. They differ in the
data structure used for the dictionary index. One uses a lock-free

Table 1: Breakdown of SOFORT’s Restart Time. DB Size=100M
rows. Dict. Size=10M entries/column.

Configuration Dict. Indexes Rebuild. Rest of Recov.

SOFORT-HashMap 1848ms 74ms
SOFORT-SkipList 7599ms 58ms

0 10 20 30 40 50
time[s]

0

2

4

6

[x105 TXs/s]
T

hr
ou

gh
pu

t

(a) SOFORT-PMFS-200ns

0 10 20 30 40 50
time[s]

0

2

4

6

[x105 TXs/s]

T
hr

ou
gh

pu
t

(b) SOFORT-Disk

Figure 8: SOFORT Recovery. TATP throughput with 4 users. The
database is crashed at second 15.

skip list map (default configuration) whereas the other one uses
the Intel Threading Building Blocks hash map [1]. In Figure 7b,
we vary the database size while keeping dictionaries size fixed.
In Figure 7a, we keep a fixed database size and vary dictionaries
size. The first observation is that SOFORT-HashMap is faster to
recover than SOFORT-SkipList. We also observe that recovery time
increases linearly with the dictionaries size. This shows the price to
pay at recovery time for keeping a volatile structure for dictionary
indexes, although it enables better throughput. Besides, we notice
that the restart time does not depend on the database size for a given
dictionaries size.

Table 1 represents the breakdown of the restart time into two
parts: the time spent in rebuilding the dictionary indexes and the
time spent doing the rest of the recovery process. We observe that
rebuilding dictionary indexes largely dominates total restart time.

To illustrate recovery time, we run TATP with 4 users on SOFORT
and crash the database at second 15, as shown in Figure 8. To
provide a baseline, we have implemented SOFORT on disk using
memory mapping. This means that data is kept on DRAM and is
backed by files on disk. Since SOFORT on disk is not crash safe,
we call sync to flush all the dirty memory mapped pages to disk
before crashing the system. Figure 8a shows SOFORT’s throughput
on PMFS before, during, and after recovery. SOFORT recovers in

approximately 1 second and delivers right away full throughput
performance since it does not need to warm up. Figure 8b shows the
throughput of SOFORT on disk, where recovery takes approximately
18 seconds, even though SOFORT on disk does not have a real
persistence. In conclusion, SOFORT on SCM offers a good trade-off
as it achieves high OLTP throughput performance and recovers from
system failures in seconds.

6. RELATED WORK
To our knowledge, we are the first to propose a SCM-based trans-
actional column-store. Bailey et al. [4] presented Echo, a persis-
tent key-value storage system with snapshot isolation. Contrary
to SOFORT which assumes that DRAM and SCM are of the same
memory hierarchy level, Echo adopts a two-level memory design
with a thin layer of DRAM on top of SCM. Other works use SCM to
optimize OLTP durability management [20, 11]. Their focus is on
disk-based, row-store databases while our focus is on main-memory
column-stores. Additionally, Chen et al. [5] discuss how B+-trees
and hash joins can benefit from SCM. Venkataraman et al. [23]
contributed Consistent and Durable Data Structures that leverage
the non-volatility of SCM using versioning.

To manage SCM, Condit et al. [8] presented BPFS, a carefully
designed, high performance transactional file system that runs on
top of SCM. Nayaranan et al. [18] proposed Whole System Persis-
tence (WSP), where data is flushed only on power failures using
the residual energy of the system. However, they do not consider
software failures. Recent works have also looked at how to architect
SCM. Qureshi et al. [21] discussed how to architect SCM-based high
performance main-memory systems and showed that a buffer of
1GB of DRAM can hide the higher latency of 32GB of SCM. More-
over, Lee et al. [17] discussed how to use Phase Change Memory
as a scalable DRAM alternative. Zhao et al. [28] proposed Kiln,
a persistent memory design that employs a non-volatile last level
cache and SCM to offer persistent in-place updates without logging
or copy-on-write. Finally, other works have proposed interfaces to
ease the use of SCM as persistent memory for programmers [6, 25].

7. CONCLUSION AND OUTLOOK
In this paper, we investigated how to design a columnar transactional
storage engine that leverages full capabilities of SCM. We proposed
SOFORT, a log-less, single-level columnar data store with high OLTP
throughput performance and fast data recovery. SOFORT relies on
persistent, self-managed data structures and a novel programming
model for persistent memory to achieve its goals. Besides, SOFORT
exhibits competitive performance, even in high-latency SCM envi-
ronments.

We believe that our approach can also benefit main-memory row-
stores. For future work, we plan to extend the concurrency control
mechanism of SOFORT to support arbitrarily long transactions, de-
sign persistent index structures and experiment with write-through
caching policy.

Acknowledgement
Special thanks go to Thomas Kissinger, Anisoara Nica, Norman
May and the SAP HANA PhD students for their helpful suggestions
and discussions. We are also grateful to Porobic Danica for her help
with Shore-MT.

8. REFERENCES
[1] Intel R©Threading Building Blocks.

https://www.threadingbuildingblocks.org/.

[2] Telecommunication Application Transaction Processing
(TATP) Benchmark.
http://tatpbenchmark.sourceforge.net/.

[3] Intel R©Architecture Instruction Set Extensions Programming
Reference. Technical report, 2014. http:
//software.intel.com/en-us/intel-isa-extensions.

[4] K. A. Bailey, P. Hornyack, L. Ceze, S. D. Gribble, and H. M.
Levy. Exploring storage class memory with key value stores.
In INFLOW 2013.

[5] S. Chen, P. B. Gibbons, and S. Nath. Rethinking database
algorithms for phase change memory. In CIDR 2011.

[6] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K.
Gupta, R. Jhala, and S. Swanson. Nv-heaps: Making
persistent objects fast and safe with next-generation,
non-volatile memories. SIGPLAN Not., 47(4), Mar. 2011.

[7] R. Colledge. SQL Server 2008 administration in action.
Manning, Greenwich, CT, 2010.

[8] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee,
D. Burger, and D. Coetzee. Better i/o through
byte-addressable, persistent memory. In SOSP 2009.

[9] X. Dong, X. Wu, G. Sun, Y. Xie, H. Li, and Y. Chen. Circuit
and microarchitecture evaluation of 3d stacking magnetic ram
(mram) as a universal memory replacement. In DAC 2008.

[10] S. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz,
R. Sankaran, J. Jackson, and D. Subbareddy. System software
for persistent memory. In EuroSys 2014.

[11] R. Fang, H.-I. Hsiao, B. He, C. Mohan, and Y. Wang. High
performance database logging using storage class memory. In
ICDE 2011.

[12] M. Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho, Y. Higo,
K. Yamane, H. Yamada, M. Shoji, H. Hachino, C. Fukumoto,
H. Nagao, and H. Kano. A novel nonvolatile memory with
spin torque transfer magnetization switching: spin-ram. In
IEDM 2005.

[13] R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki, and
B. Falsafi. Shore-mt: A scalable storage manager for the
multicore era. In EDBT 2009.

[14] H. T. Kung and J. T. Robinson. On optimistic methods for
concurrency control. ACM Trans. Database Syst., 6(3), 1981.

[15] P.-A. Larson, S. Blanas, C. Diaconu, C. Freedman, J. M. Patel,
and M. Zwilling. High-performance concurrency control
mechanisms for main-memory databases. Proc. VLDB
Endow., 5(4), Dec. 2011.

[16] B. Lee, P. Zhou, J. Yang, Y. Zhang, B. Zhao, E. Ipek,
O. Mutlu, and D. Burger. Phase-change technology and the
future of main memory. Micro, IEEE, 30(1), Jan 2010.

[17] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting
phase change memory as a scalable dram alternative.
SIGARCH Comput. Archit. News, 37(3), June 2009.

[18] D. Narayanan and O. Hodson. Whole-system persistence. In
ASPLOS XVII, 2012.

[19] I. Pandis, R. Johnson, N. Hardavellas, and A. Ailamaki.
Data-oriented transaction execution. Proc. VLDB Endow.,
3(1-2), Sept. 2010.

[20] S. Pelley, T. F. Wenisch, B. T. Gold, and B. Bridge. Storage
management in the nvram era. PVLDB, 7(2), 2013.

[21] M. K. Qureshi, V. Srinivasan, and J. A. Rivers. Scalable high
performance main memory system using phase-change
memory technology. In ISCA 2009.

[22] B. M. Sang-Won Lee. Accelerating in-page logging with
non-volatile memory. IEEE Data Eng. Bull., 33, 2010.

https://www.threadingbuildingblocks.org/
http://tatpbenchmark.sourceforge.net/
http://software.intel.com/en-us/intel-isa-extensions
http://software.intel.com/en-us/intel-isa-extensions

[23] S. Venkataraman, N. Tolia, P. Ranganathan, and R. H.
Campbell. Consistent and durable data structures for
non-volatile byte-addressable memory. In FAST 2011.

[24] V. Viswanathan, K. Kumar, and T. Willhalm. Intel memory
latency checker. Technical report.
http://www.intel.com/software/mlc.

[25] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne:
Lightweight persistent memory. SIGPLAN Not., 47(4), 2011.

[26] R. Williams. How we found the missing memristor. Spectrum,
IEEE, Dec 2008.

[27] P. R. Wilson. Pointer swizzling at page fault time: Efficiently
supporting huge address spaces on standard hardware.
SIGARCH Comput. Archit. News, 19(4):6–13, July 1991.

[28] J. Zhao, S. Li, D. H. Yoon, Y. Xie, and N. P. Jouppi. Kiln:
Closing the performance gap between systems with and
without persistence support. In MICRO-46, 2013.

APPENDIX
A. SOFORT ALGORITHMS

This appendix is the continuation of Section 4 in which we de-
scribe some of SOFORT’s core algorithms.

A.1 Insert
Algorithm 2 illustrates the core steps of an insert operation. First,
we get a pointer to the table using a mapping from table names to
table IDs (line 2). Then, we reserve a new row and get back the
corresponding row index (line 5). No other writers will write neither
to the row pointed by this index nor to the corresponding MVCC
entry. Thus, the operation is latch-free and thread-safe. If needed, a
resize of the table is triggered. Afterwards, the row is persistently
appended to the table (line 8). The last step is to atomically and
persistently commit the transaction by updating the CTS of the new
MVCC entry (lines 11-12).

If a crash happens at any step before the commit has reached
SCM, the transaction is considered as aborted and the row will be
recovered in an invisible state (see Section 2), i.e., without any
impact on the state of the database. Therefore, there is nothing to
do at restart time.

Algorithm 2 InsertRow(TableName,NewRow)

1: // Get table pointer from table name
2: ptab = find(TableName)
3:
4: // Reserve a row and get back its index
5: InsertIdx = ptab–>ReserveRow()
6:
7: // Persistently insert row and get back
8: ptab–>pushBackFlush(InsertIdx,NewRow)
9:

10: // Commit by updating the CTS
11: CommitInsert(InsertIdx)
12: Flush MVCCArray[InsertIdx]

A.2 Delete
The delete operation is described in Algorithm 3. First, we get a
pointer to the target table (line 2). By a column index lookup, we get
the latest visible row where the key value (Key) occurs (line 5). The
DTS of the corresponding MVCC entry indicates whether this row is
being modified by another write transaction. We execute an atomic
compare-and-swap operation to try to lock the row and commit
the delete at the same time by setting its DTS to the transaction’s
commit time-stamp (line 8). If the atomic operation fails, we abort
the transaction (line 9). Otherwise, the row has been successfully
locked and the delete operation committed. The commit is finalized
by persisting the updated MVCC entry (line 12).

If a crash occurs before locking and committing a row, the trans-
action is considered as aborted and there is nothing to do at recovery
time.

Algorithm 3 Delete(TableName,Key)

1: // Get table pointer from table name
2: ptab = find(TableName)
3:
4: // Get RowID from key value
5: DeleteIdx = ptab–>getLatestVisible(Key)
6:
7: // Try lo lock and commit the row
8: if !AtomicTryLockCommit(MVCCArray[DeleteIdx]) then
9: Abort

10: end if
11: // Flush updated MVCC
12: Flush MVCCArray[DeleteIdx]

http://www.intel.com/software/mlc

	Introduction
	SOFORT Design
	Programming Model
	Persistence Primitives
	Persistent Memory Management
	Recovery Mechanism

	SOFORT Algorithms
	Update

	Evaluation
	System Setup
	Throughput
	Recovery

	Related Work
	Conclusion and Outlook
	References
	SOFORT Algorithms
	Insert
	Delete

