
Andy Pavlo // Carnegie Mellon University // Spring 2016

ADVANCED
DATABASE
SYSTEMS

Lecture #20 – Query Compilation

15-721

@Andy_Pavlo // Carnegie Mellon University // Spring 2017

http://15721.courses.cs.cmu.edu/spring2017/
https://twitter.com/andy_pavlo

CMU 15-721 (Spring 2017)

TODAY’S AGENDA

Background
Code Generation / Transpilation
JIT Compilation (LLVM)
Real-world Implementations

2

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

HEKATON REMARK

After switching to an in-memory DBMS, the only
way to increase throughput is to reduce the
number of instructions executed.
→ To go 10x faster, the DBMS must execute 90% fewer

instructions…
→ To go 100x faster, the DBMS must execute 99% fewer

instructions…

3

COMPILATION IN THE MICROSOFT SQL
SERVER HEKATON ENGINE
IEEE Data Engineering Bulletin 2011

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://15721.courses.cs.cmu.edu/spring2017/papers/20-compilation/freedman-ieee2014.pdf
http://15721.courses.cs.cmu.edu/spring2017/papers/20-compilation/freedman-ieee2014.pdf

CMU 15-721 (Spring 2017)

OBSERVATION

The only way that we can achieve such a reduction
in the number of instructions is through code

specialization.

This means generating code that is specific to a
particular task in the DBMS.

Most code is written to make it easy for humans to
understand rather than performance…

4

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

EXAMPLE DATABASE

5

CREATE TABLE A (
 id INT PRIMARY KEY,
 val INT
);

CREATE TABLE B (
 id INT PRIMARY KEY,
 val INT
);

CREATE TABLE C (
 a_id INT REFERENCES A(id),
 b_id INT REFERENCES B(id),
 PRIMARY KEY (a_id, b_id)
);

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

QUERY INTERPRETATION

6

SELECT *
 FROM A, C,
 (SELECT B.id, COUNT(*)
 FROM B
 WHERE B.val = ? + 1
 GROUP BY B.id) AS B
 WHERE A.val = 123
 AND A.id = C.a_id
 AND B.id = C.b_id

⨝ A.id=C.a_id

σ A.val=123

A

⨝ B.id=C.b_id

Γ B.id, COUNT(*)

σ B.val=?+1

B C

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

QUERY INTERPRETATION

6

SELECT *
 FROM A, C,
 (SELECT B.id, COUNT(*)
 FROM B
 WHERE B.val = ? + 1
 GROUP BY B.id) AS B
 WHERE A.val = 123
 AND A.id = C.a_id
 AND B.id = C.b_id

⨝ A.id=C.a_id

σ A.val=123

A

⨝ B.id=C.b_id

Γ B.id, COUNT(*)

σ B.val=?+1

B C

⨝
for t1 in left.getNext():
 buildHashTable(t1)
for t2 in right.getNext():
 if probe(t2): emit(t1⨝t2)

for t in child.getNext():
 if evalPred(t): emit(t) σ ⨝

for t1 in left.getNext():
 buildHashTable(t1)
for t2 in right.getNext():
 if probe(t2): emit(t1⨝t2)

for t in A:
 emit(t) A

for t in B:
 emit(t) B for t in C:

 emit(t) C

for t in child.getNext():
 if evalPred(t): emit(t) σ

Γ
for t in child.getNext():
 buildAggregateTable(t)
for t in aggregateTable:
 emit(t)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

PREDICATE INTERPRETATION

7

SELECT *
 FROM A, C,
 (SELECT B.id, COUNT(*)
 FROM B
 WHERE B.val = ? + 1
 GROUP BY B.id) AS B
 WHERE A.val = 123
 AND A.id = C.a_id
 AND B.id = C.b_id

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

Execution Context

PREDICATE INTERPRETATION

7

SELECT *
 FROM A, C,
 (SELECT B.id, COUNT(*)
 FROM B
 WHERE B.val = ? + 1
 GROUP BY B.id) AS B
 WHERE A.val = 123
 AND A.id = C.a_id
 AND B.id = C.b_id

Current Tuple
(123, 1000)

Query Parameters
(int:999)

Table Schema
B→(int:id, int:val)

TupleAttribute(val)

Constant(1)

=

+

Parameter(0)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

1000

Execution Context

PREDICATE INTERPRETATION

7

SELECT *
 FROM A, C,
 (SELECT B.id, COUNT(*)
 FROM B
 WHERE B.val = ? + 1
 GROUP BY B.id) AS B
 WHERE A.val = 123
 AND A.id = C.a_id
 AND B.id = C.b_id

Current Tuple
(123, 1000)

Query Parameters
(int:999)

Table Schema
B→(int:id, int:val)

TupleAttribute(val)

Constant(1)

=

+

Parameter(0)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

1000

999

Execution Context

PREDICATE INTERPRETATION

7

SELECT *
 FROM A, C,
 (SELECT B.id, COUNT(*)
 FROM B
 WHERE B.val = ? + 1
 GROUP BY B.id) AS B
 WHERE A.val = 123
 AND A.id = C.a_id
 AND B.id = C.b_id

Current Tuple
(123, 1000)

Query Parameters
(int:999)

Table Schema
B→(int:id, int:val)

TupleAttribute(val)

Constant(1)

=

+

Parameter(0)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

1000

999 1

Execution Context

PREDICATE INTERPRETATION

7

SELECT *
 FROM A, C,
 (SELECT B.id, COUNT(*)
 FROM B
 WHERE B.val = ? + 1
 GROUP BY B.id) AS B
 WHERE A.val = 123
 AND A.id = C.a_id
 AND B.id = C.b_id

Current Tuple
(123, 1000)

Query Parameters
(int:999)

Table Schema
B→(int:id, int:val)

TupleAttribute(val)

Constant(1)

=

+

Parameter(0)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

1000

999 1

true

1000

Execution Context

PREDICATE INTERPRETATION

7

SELECT *
 FROM A, C,
 (SELECT B.id, COUNT(*)
 FROM B
 WHERE B.val = ? + 1
 GROUP BY B.id) AS B
 WHERE A.val = 123
 AND A.id = C.a_id
 AND B.id = C.b_id

Current Tuple
(123, 1000)

Query Parameters
(int:999)

Table Schema
B→(int:id, int:val)

TupleAttribute(val)

Constant(1)

=

+

Parameter(0)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

CODE SPECIALIZATION

Any CPU intensive entity of database can be
natively compiled if they have a similar execution
pattern on different inputs.
→ Access Methods
→ Stored Procedures
→ Operator Execution
→ Predicate Evaluation
→ Logging Operations

8

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

BENEFITS

Attribute types are known a priori.
→ Data access function calls can be converted to inline

pointer casting.

Predicates are known a priori.
→ They can be evaluated using primitive data comparisons.

No function calls in loops
→ Allows the compiler to efficiently distribute data to

registers and increase cache reuse.

9

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

ARCHITECTURE OVERVIEW

10

SQL Query

Parser

Abstract

Syntax

Tree

Annotated

AST

Physical

Plan

Cost

Estimates

SQL Query

System

Catalog

Tree Rewriter

(Optional)

SQL Rewriter

(Optional)

Binder

Optimizer Annotated

AST

Native Code

Compiler

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

CODE GENERATION

Approach #1: Transpilation

→ Write code that converts a relational query plan into
C/C++ and then run it through a conventional compiler
to generate native code.

Approach #2: JIT Compilation

→ Generate an intermediate representation (IR) of the query
that can be quickly compiled into native code .

11

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

HIQUE – CODE GENERATION

For a given query plan, create a C/C++ program
that implements that query’s execution.
→ Bake in all the predicates and type conversions.

Use an off-shelf compiler to convert the code into
a shared object, link it to the DBMS process, and
then invoke the exec function.

12

GENERATING CODE FOR HOLISTIC QUERY
EVALUATION
ICDE 2010

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://15721.courses.cs.cmu.edu/spring2017/papers/20-compilation/krikellas-icde2010.pdf
http://15721.courses.cs.cmu.edu/spring2017/papers/20-compilation/krikellas-icde2010.pdf

CMU 15-721 (Spring 2017)

OPERATOR TEMPL ATES

13

SELECT * FROM A WHERE A.val = ? + 1

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

Interpreted Plan

OPERATOR TEMPL ATES

13

for t in range(table.num_tuples):
 tuple = get_tuple(table, t)
 if eval(predicate, tuple, params):
 emit(tuple)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

Interpreted Plan

OPERATOR TEMPL ATES

13

for t in range(table.num_tuples):
 tuple = get_tuple(table, t)
 if eval(predicate, tuple, params):
 emit(tuple)

1. Get schema in catalog for table.
2. Calculate offset based on tuple size.
3. Return pointer to tuple.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

Interpreted Plan

OPERATOR TEMPL ATES

13

for t in range(table.num_tuples):
 tuple = get_tuple(table, t)
 if eval(predicate, tuple, params):
 emit(tuple)

1. Get schema in catalog for table.
2. Calculate offset based on tuple size.
3. Return pointer to tuple.

1. Traverse predicate tree and pull values up.
2. If tuple value, calculate the offset of the target

attribute.
3. Perform casting as needed for comparison operators.
4. Return true / false.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

Templated Plan Interpreted Plan

OPERATOR TEMPL ATES

13

tuple_size = ###
predicate_offset = ###
parameter_value = ###

for t in range(table.num_tuples):
 tuple = table.data + t ∗ tuple_size
 val = (tuple+predicate_offset) + 1
 if (val == parameter_value):
 emit(tuple)

for t in range(table.num_tuples):
 tuple = get_tuple(table, t)
 if eval(predicate, tuple, params):
 emit(tuple)

1. Get schema in catalog for table.
2. Calculate offset based on tuple size.
3. Return pointer to tuple.

1. Traverse predicate tree and pull values up.
2. If tuple value, calculate the offset of the target

attribute.
3. Perform casting as needed for comparison operators.
4. Return true / false.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

Templated Plan Interpreted Plan

OPERATOR TEMPL ATES

13

tuple_size = ###
predicate_offset = ###
parameter_value = ###

for t in range(table.num_tuples):
 tuple = table.data + t ∗ tuple_size
 val = (tuple+predicate_offset) + 1
 if (val == parameter_value):
 emit(tuple)

for t in range(table.num_tuples):
 tuple = get_tuple(table, t)
 if eval(predicate, tuple, params):
 emit(tuple)

1. Get schema in catalog for table.
2. Calculate offset based on tuple size.
3. Return pointer to tuple.

1. Traverse predicate tree and pull values up.
2. If tuple value, calculate the offset of the target

attribute.
3. Perform casting as needed for comparison operators.
4. Return true / false.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

Templated Plan Interpreted Plan

OPERATOR TEMPL ATES

13

tuple_size = ###
predicate_offset = ###
parameter_value = ###

for t in range(table.num_tuples):
 tuple = table.data + t ∗ tuple_size
 val = (tuple+predicate_offset) + 1
 if (val == parameter_value):
 emit(tuple)

for t in range(table.num_tuples):
 tuple = get_tuple(table, t)
 if eval(predicate, tuple, params):
 emit(tuple)

1. Get schema in catalog for table.
2. Calculate offset based on tuple size.
3. Return pointer to tuple.

1. Traverse predicate tree and pull values up.
2. If tuple value, calculate the offset of the target

attribute.
3. Perform casting as needed for comparison operators.
4. Return true / false.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

DBMS INTEGRATION

The generated query code can invoke any other
function in the DBMS.

This allows it to use all the same components as
interpreted queries.
→ Concurrency Control
→ Logging / Checkpoints
→ Indexes

14

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

EVALUATION

Generic Iterators

→ Canonical model with generic predicate evaluation.

Optimized Iterators

→ Type-specific iterators with inline predicates.

Generic Hardcoded

→ Handwritten code with generic iterators/predicates.

Optimized Hardcoded

→ Direct tuple access with pointer arithmetic.

HIQUE

→ Query-specific specialized code.

15

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

QUERY COMPIL ATION EVALUATION

16

0

50

100

150

200

250

Generic

Iterators

Optimized

Iterators

Generic

Hardcoded

Optimized

Hardcoded

HIQUE

E
x

e
c
u

t
i
o

n

T

i
m

e

(
m

s
)

L2-cache Miss Memory Stall Instruction Exec.

Intel Core 2 Duo 6300 @ 1.86GHz

Join Query: 10k⨝ 10k→10m

Source: Konstantinos Krikellas

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
https://www.linkedin.com/in/konstantinoskrikellas

CMU 15-721 (Spring 2017)

QUERY COMPIL ATION EVALUATION

16

0

50

100

150

200

250

Generic

Iterators

Optimized

Iterators

Generic

Hardcoded

Optimized

Hardcoded

HIQUE

E
x

e
c
u

t
i
o

n

T

i
m

e

(
m

s
)

L2-cache Miss Memory Stall Instruction Exec.

Intel Core 2 Duo 6300 @ 1.86GHz

Join Query: 10k⨝ 10k→10m

Source: Konstantinos Krikellas

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
https://www.linkedin.com/in/konstantinoskrikellas

CMU 15-721 (Spring 2017)

QUERY COMPIL ATION COST

17

0

200

400

600

800

Q1 Q2 Q3

C
o

m
p

i
l
a

t
i
o

n

T

i
m

e

(
m

s
)

Compile (-O0) Compile (-O2)

Intel Core 2 Duo 6300 @ 1.86GHz

TPC-H Queries

Source: Konstantinos Krikellas

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
https://www.linkedin.com/in/konstantinoskrikellas

CMU 15-721 (Spring 2017)

OBSERVATION

Relational operators are a useful way to reason
about a query but are not the most efficient way to
execute it.

It takes a (relatively) long time to compile a
C/C++ source file into executable code.

HIQUE does not allow for full pipelining…

18

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

PIPELINED OPERATORS

19

SELECT *
 FROM A, C,
 (SELECT B.id, COUNT(*)
 FROM B
 WHERE B.val = ? + 1
 GROUP BY B.id) AS B
 WHERE A.val = 123
 AND A.id = C.a_id
 AND B.id = C.b_id

⨝ A.id=C.a_id

σ A.val=123

A

⨝ B.id=C.b_id

Γ B.id,COUNT(*)

σ B.val=?+1

B C

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

PIPELINED OPERATORS

19

SELECT *
 FROM A, C,
 (SELECT B.id, COUNT(*)
 FROM B
 WHERE B.val = ? + 1
 GROUP BY B.id) AS B
 WHERE A.val = 123
 AND A.id = C.a_id
 AND B.id = C.b_id

⨝ A.id=C.a_id

σ A.val=123

A

⨝ B.id=C.b_id

Γ B.id,COUNT(*)

σ B.val=?+1

B C

Pipeline Boundaries
#1

#4

#2

#3

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

HYPER – JIT QUERY COMPIL ATION

Compile queries in-memory into native code using
the LLVM toolkit.

Organizes query processing in a way to keep a
tuple in CPU registers for as long as possible.
→ Push-based vs. Pull-based
→ Data Centric vs. Operator Centric

20

EFFICIENTLY COMPILING EFFICIENT QUERY
PLANS FOR MODERN HARDWARE
VLDB 2011

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://15721.courses.cs.cmu.edu/spring2017/papers/20-compilation/p539-neumann.pdf
http://15721.courses.cs.cmu.edu/spring2017/papers/20-compilation/p539-neumann.pdf

CMU 15-721 (Spring 2017)

LLVM

Collection of modular and reusable compiler and
toolchain technologies.

Core component is a low-level programming
language (IR) that is similar to assembly.

Not all of the DBMS components need to be
written in LLVM IR.
→ LLVM code can make calls to C++ code.

21

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

PUSH-BASED EXECUTION

22

SELECT *
 FROM A, C,
 (SELECT B.id, COUNT(*)
 FROM B
 WHERE B.val = ? + 1
 GROUP BY B.id) AS B
 WHERE A.val = 123
 AND A.id = C.a_id
 AND B.id = C.b_id

Generated Query Plan

for t in A:
 if t.val == 123:
 Materialize t in HashTable ⨝(A.id=C.a_id)

for t in B:
 if t.val == <param> + 1:
 Aggregate t in HashTable Γ(B.id)

for t in Γ(B.id):
 Materialize t in HashTable ⨝(B.id=C.b_id)

for t3 in C:
 for t2 in ⨝(B.id=C.b_id):
 for t1 in ⨝(A.id=C.a_id):
 emit(t1⨝t2⨝t3)

#1

#4

#2

#3

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

QUERY COMPIL ATION EVALUATION

23

1

10

100

1000

10000

100000

Q1 Q2 Q3 Q4 Q5

E
x

e
c
u

t
i
o

n

T

i
m

e

(
m

s
)

HyPer (LLVM) HyPer (C++) VectorWise MonetDB ???

Dual Socket Intel Xeon X5770 @ 2.93GHz

TPC-H Queries

Source: Thomas Neumann

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://sites.computer.org/debull/A14mar/p3.pdf

CMU 15-721 (Spring 2017)

QUERY COMPIL ATION COST

24

274

403

619

13 37 15
0

200

400

600

800

Query #1 Query #2 Query #3

C
o

m
p

i
l
a

t
i
o

n

T

i
m

e

(
m

s
)

HIQUE HyPer

HIQUE (-O2) vs. HyPer

TPC-H Queries

Source: Konstantinos Krikellas

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
https://www.linkedin.com/in/konstantinoskrikellas

CMU 15-721 (Spring 2017)

NEXT-GEN PELOTON

25

88147

26350

87473

9960
21500

901 1396 2641 383 540
0

20000

40000

60000

80000

100000

Q1 Q3 Q13 Q14 Q19

E
x

e
c
u

t
i
o

n

T

i
m

e

(
m

s
)

Interpreted Compiled (LLVM)

Dual Socket Intel Xeon E5-2630v4 @ 2.20GHz

TPC-H 10 GB Database

Source: Prashanth Menon

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
https://www.youtube.com/watch?v=HjMQbzBhTb4

CMU 15-721 (Spring 2017)

REAL-WORLD IMPLEMENTATIONS

IBM System R
Oracle
Microsoft Hekaton
Cloudera Impala
Actian Vector (formerly Vectorwise)
MemSQL
VitesseDB

26

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

IBM SYSTEM R

A primitive form of code generation and query
compilation was used by IBM in 1970s.
→ Compiled SQL statements into assembly code by

selecting code templates for each operator.

Technique was abandoned when IBM built DB2:
→ High cost of external function calls
→ Poor portability
→ Software engineer complications

27

A HISTORY AND EVALUATION OF SYSTEM R
Communications of the ACM 1981

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://dl.acm.org/citation.cfm?id=358784
http://dl.acm.org/citation.cfm?id=358784

CMU 15-721 (Spring 2017)

ORACLE

Convert PL/SQL stored procedures into Pro*C
code and then compiled into native C/C++ code.

They also put Oracle-specific operations directly
in the SPARC chips as co-processors.
→ Memory Scans
→ Bit-pattern Dictionary Compression
→ Vectorized instructions designed for DBMSs
→ Security/encryption

28

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

MICROSOFT HEKATON

Can compile both procedures and SQL.
→ Non-Hekaton queries can access Hekaton tables through

compiled inter-operators.

Generates C code from an imperative syntax tree,
compiles it into DLL, and links at runtime.

Employs safety measures to prevent somebody
from injecting malicious code in a query.

29

COMPILATION IN THE MICROSOFT SQL
SERVER HEKATON ENGINE
IEEE Data Engineering Bulletin 2011

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://15721.courses.cs.cmu.edu/spring2017/papers/20-compilation/freedman-ieee2014.pdf
http://15721.courses.cs.cmu.edu/spring2017/papers/20-compilation/freedman-ieee2014.pdf

CMU 15-721 (Spring 2017)

CLOUDERA IMPAL A

LLVM JIT compilation for predicate evaluation
and record parsing.
→ Not sure if they are also doing operator compilation.

Optimized record parsing is important for Impala
because they need to handle multiple data formats
stored on HDFS.

30

IMPALA: A MODERN, OPEN-SOURCE SQL
ENGINE FOR HADOOP
CIDR 2015

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://www.cidrdb.org/cidr2015/Papers/CIDR15_Paper28.pdf
http://www.cidrdb.org/cidr2015/Papers/CIDR15_Paper28.pdf

CMU 15-721 (Spring 2017)

ACTIAN VECTOR

Pre-compiles thousands of “primitives” that
perform basic operations on typed data.
→ Example: Generate a vector of tuple ids by applying a less

than operator on some column of a particular type.

The DBMS then executes a query plan that
invokes these primitives at runtime.
→ Function calls are amortized over multiple tuples

31

MICRO ADAPTIVITY IN VECTORWISE
SIGMOD 2013

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://dl.acm.org/citation.cfm?id=2465292
http://dl.acm.org/citation.cfm?id=2465292

CMU 15-721 (Spring 2017)

ACTIAN VECTOR

Pre-compiles thousands of “primitives” that
perform basic operations on typed data.
→ Example: Generate a vector of tuple ids by applying a less

than operator on some column of a particular type.

The DBMS then executes a query plan that
invokes these primitives at runtime.
→ Function calls are amortized over multiple tuples

31

MICRO ADAPTIVITY IN VECTORWISE
SIGMOD 2013

size_t scan_lessthan_int32(int *res, int32_t *col, int32_t val) {
 size_t k = 0;
 for (size_t i = 0; i < n; i++)
 if (col[i] < val) res[k++] = i;
 return (k);
}

size_t scan_lessthan_double(int *res, int32_t *col, double val) {
 size_t k = 0;
 for (size_t i = 0; i < n; i++)
 if (col[i] < val) res[k++] = i;
 return (k);
}

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://dl.acm.org/citation.cfm?id=2465292
http://dl.acm.org/citation.cfm?id=2465292

CMU 15-721 (Spring 2017)

MEMSQL (PRE–2016)

Performs the same C/C++ code generation as
HIQUE and then invokes gcc.
Converts all queries into a parameterized form and
caches the compiled query plan.

32

SELECT * FROM A
 WHERE A.id = ?

SELECT * FROM A
 WHERE A.id = 123

SELECT * FROM A
 WHERE A.id = 456

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

MEMSQL (2016–PRESENT)

A query plan is converted into an imperative plan
expressed in a high-level imperative DSL.
→ MemSQL Programming Language (MPL)
→ Think of this as a C++ dialect.

The DSL then gets converted into a second
language of opcodes.
→ MemSQL Bit Code (MBC)
→ Think of this as JVM byte code.

Finally the DBMS compiles the opcodes into
LLVM IR and then to native code.

33

Source: Drew Paroski

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://highscalability.com/blog/2016/9/7/code-generation-the-inner-sanctum-of-database-performance.html
http://highscalability.com/blog/2016/9/7/code-generation-the-inner-sanctum-of-database-performance.html

CMU 15-721 (Spring 2017)

VITESSEDB

Query accelerator for Postgres/Greenplum that
uses LLVM + intra-query parallelism.
→ JIT predicates
→ Push-based processing model
→ Indirect calls become direct or inlined.
→ Leverages hardware for overflow detection.

Does not support all of Postgres’ types and
functionalities. All DML operations are still
interpreted.

34

Source: CK Tan

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
https://www.youtube.com/watch?v=PEmVuYjhQFo

CMU 15-721 (Spring 2017)

PARTING THOUGHTS

Query compilation makes a difference but is non-
trivial to implement.

The 2016 version of MemSQL is the best query
compilation implementation out there.
Hekaton is very good too.

Any new DBMS that wants to compete has to
implement query compilation.

35

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

NEXT CL ASS

Vectorization

36

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

	ADVANCED�DATABASE SYSTEMS
	TODAY’S AGENDA
	HEKATON REMARK
	OBSERVATION
	EXAMPLE DATABASE
	QUERY INTERPRETATION
	QUERY INTERPRETATION
	PREDICATE INTERPRETATION
	PREDICATE INTERPRETATION
	PREDICATE INTERPRETATION
	PREDICATE INTERPRETATION
	PREDICATE INTERPRETATION
	PREDICATE INTERPRETATION
	CODE SPECIALIZATION
	BENEFITS
	ARCHITECTURE OVERVIEW
	CODE GENERATION
	HIQUE – CODE GENERATION
	OPERATOR TEMPLATES
	OPERATOR TEMPLATES
	OPERATOR TEMPLATES
	OPERATOR TEMPLATES
	OPERATOR TEMPLATES
	OPERATOR TEMPLATES
	OPERATOR TEMPLATES
	DBMS INTEGRATION
	EVALUATION
	QUERY COMPILATION EVALUATION
	QUERY COMPILATION EVALUATION
	QUERY COMPILATION COST
	OBSERVATION
	PIPELINED OPERATORS
	PIPELINED OPERATORS
	HYPER – JIT QUERY COMPILATION
	LLVM
	PUSH-BASED EXECUTION
	QUERY COMPILATION EVALUATION
	QUERY COMPILATION COST
	NEXT-GEN PELOTON
	REAL-WORLD IMPLEMENTATIONS
	IBM SYSTEM R
	ORACLE
	MICROSOFT HEKATON
	CLOUDERA IMPALA
	ACTIAN VECTOR
	ACTIAN VECTOR
	MEMSQL (PRE–2016)
	MEMSQL (2016–PRESENT)
	VITESSEDB
	PARTING THOUGHTS
	NEXT CLASS

