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TODAY’S  AGENDA 

Background 
Code Generation / Transpilation 
JIT Compilation (LLVM) 
Real-world Implementations 
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HEKATON REMARK 

After switching to an in-memory DBMS, the only 
way to increase throughput is to reduce the 
number of instructions executed. 
→ To go 10x faster, the DBMS must execute 90% fewer 

instructions… 
→ To go 100x faster, the DBMS must execute 99% fewer 

instructions… 
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COMPILATION IN THE MICROSOFT SQL 
SERVER HEKATON ENGINE 
IEEE Data Engineering Bulletin 2011 

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://15721.courses.cs.cmu.edu/spring2017/papers/20-compilation/freedman-ieee2014.pdf
http://15721.courses.cs.cmu.edu/spring2017/papers/20-compilation/freedman-ieee2014.pdf


CMU 15-721 (Spring 2017) 

OBSERVATION 

The only way that we can achieve such a reduction 
in the number of instructions is through code 

specialization. 
 

This means generating code that is specific to a 
particular task in the DBMS. 
 

Most code is written to make it easy for humans to 
understand rather than performance… 
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EXAMPLE DATABASE 
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CREATE TABLE A ( 
  id INT PRIMARY KEY, 
  val INT 
); 

CREATE TABLE B ( 
  id INT PRIMARY KEY, 
  val INT 
); 

CREATE TABLE C ( 
  a_id INT REFERENCES A(id), 
  b_id INT REFERENCES B(id), 
  PRIMARY KEY (a_id, b_id) 
); 

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016


CMU 15-721 (Spring 2017) 

QUERY INTERPRETATION 

6 

SELECT * 
  FROM A, C,  
   (SELECT B.id, COUNT(*) 
      FROM B 
     WHERE B.val = ? + 1 
     GROUP BY B.id) AS B 
  WHERE A.val = 123  
    AND A.id = C.a_id 
    AND B.id = C.b_id 

⨝ A.id=C.a_id 

σ A.val=123 

A 

⨝ B.id=C.b_id 

Γ B.id, COUNT(*) 

σ B.val=?+1 

B C 

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
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QUERY INTERPRETATION 

6 

SELECT * 
  FROM A, C,  
   (SELECT B.id, COUNT(*) 
      FROM B 
     WHERE B.val = ? + 1 
     GROUP BY B.id) AS B 
  WHERE A.val = 123  
    AND A.id = C.a_id 
    AND B.id = C.b_id 

⨝ A.id=C.a_id 

σ A.val=123 

A 

⨝ B.id=C.b_id 

Γ B.id, COUNT(*) 

σ B.val=?+1 

B C 

⨝ 
for t1 in left.getNext(): 
  buildHashTable(t1) 
for t2 in right.getNext(): 
  if probe(t2): emit(t1⨝t2) 

for t in child.getNext(): 
  if evalPred(t): emit(t) σ ⨝ 

for t1 in left.getNext(): 
  buildHashTable(t1) 
for t2 in right.getNext(): 
  if probe(t2): emit(t1⨝t2) 

for t in A: 
  emit(t) A 

for t in B: 
  emit(t) B for t in C: 

  emit(t) C 

for t in child.getNext(): 
  if evalPred(t): emit(t) σ 

Γ 
for t in child.getNext(): 
  buildAggregateTable(t) 
for t in aggregateTable: 
  emit(t) 

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
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PREDICATE INTERPRETATION 
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SELECT * 
  FROM A, C,  
   (SELECT B.id, COUNT(*) 
      FROM B 
     WHERE B.val = ? + 1 
     GROUP BY B.id) AS B 
  WHERE A.val = 123  
    AND A.id = C.a_id 
    AND B.id = C.b_id 

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
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Execution Context 

PREDICATE INTERPRETATION 

7 

SELECT * 
  FROM A, C,  
   (SELECT B.id, COUNT(*) 
      FROM B 
     WHERE B.val = ? + 1 
     GROUP BY B.id) AS B 
  WHERE A.val = 123  
    AND A.id = C.a_id 
    AND B.id = C.b_id 

Current Tuple 
(123, 1000) 

Query Parameters 
(int:999) 

Table Schema 
B→(int:id, int:val) 

TupleAttribute(val) 

Constant(1) 

= 

+ 

Parameter(0) 

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
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1000 

Execution Context 

PREDICATE INTERPRETATION 
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SELECT * 
  FROM A, C,  
   (SELECT B.id, COUNT(*) 
      FROM B 
     WHERE B.val = ? + 1 
     GROUP BY B.id) AS B 
  WHERE A.val = 123  
    AND A.id = C.a_id 
    AND B.id = C.b_id 

Current Tuple 
(123, 1000) 

Query Parameters 
(int:999) 

Table Schema 
B→(int:id, int:val) 

TupleAttribute(val) 

Constant(1) 

= 

+ 

Parameter(0) 

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
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1000 

999 

Execution Context 

PREDICATE INTERPRETATION 
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SELECT * 
  FROM A, C,  
   (SELECT B.id, COUNT(*) 
      FROM B 
     WHERE B.val = ? + 1 
     GROUP BY B.id) AS B 
  WHERE A.val = 123  
    AND A.id = C.a_id 
    AND B.id = C.b_id 

Current Tuple 
(123, 1000) 

Query Parameters 
(int:999) 

Table Schema 
B→(int:id, int:val) 

TupleAttribute(val) 

Constant(1) 

= 

+ 

Parameter(0) 
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http://15721.courses.cs.cmu.edu/spring2016


CMU 15-721 (Spring 2017) 
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SELECT * 
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   (SELECT B.id, COUNT(*) 
      FROM B 
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Current Tuple 
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Query Parameters 
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Table Schema 
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= 
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http://15721.courses.cs.cmu.edu/spring2016
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CODE SPECIALIZATION 

Any CPU intensive entity of database can be 
natively compiled if they have a similar execution 
pattern on different inputs.  
→ Access Methods 
→ Stored Procedures 
→ Operator Execution 
→ Predicate Evaluation 
→ Logging Operations 
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http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
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BENEFITS 

Attribute types are known a priori. 
→ Data access function calls can be converted to inline 

pointer casting. 

Predicates are known a priori. 
→ They can be evaluated using primitive data comparisons. 

No function calls in loops 
→ Allows the compiler to efficiently distribute data to 

registers and increase cache reuse. 
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http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
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ARCHITECTURE OVERVIEW 
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SQL Query 

Parser 

Abstract 

Syntax 

Tree 

Annotated 

AST 

Physical 

Plan 

Cost 

Estimates 

SQL Query 

System 

Catalog 

Tree Rewriter 

(Optional) 

SQL Rewriter 

(Optional) 

Binder 

Optimizer Annotated 

AST 

Native Code 

Compiler 

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
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CODE GENERATION 

Approach #1: Transpilation 

→ Write code that converts a relational query plan into 
C/C++ and then run it through a conventional compiler 
to generate native code. 

 

Approach #2: JIT Compilation 

→ Generate an intermediate representation (IR) of the query 
that can be quickly compiled into native code . 

11 

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
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HIQUE – CODE GENERATION 

For a given query plan, create a C/C++ program 
that implements that query’s execution. 
→ Bake in all the predicates and type conversions. 
 

Use an off-shelf compiler to convert the code into 
a shared object, link it to the DBMS process, and 
then invoke the exec function. 

12 

GENERATING CODE FOR HOLISTIC QUERY 
EVALUATION 
ICDE 2010 

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://15721.courses.cs.cmu.edu/spring2017/papers/20-compilation/krikellas-icde2010.pdf
http://15721.courses.cs.cmu.edu/spring2017/papers/20-compilation/krikellas-icde2010.pdf
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OPERATOR TEMPL ATES 

13 

SELECT * FROM A WHERE A.val = ? + 1 

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
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Interpreted Plan 

OPERATOR TEMPL ATES 

13 

for t in range(table.num_tuples): 
  tuple = get_tuple(table, t) 
  if eval(predicate, tuple, params): 
    emit(tuple) 

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
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Interpreted Plan 

OPERATOR TEMPL ATES 

13 

for t in range(table.num_tuples): 
  tuple = get_tuple(table, t) 
  if eval(predicate, tuple, params): 
    emit(tuple) 

1. Get schema in catalog for table. 
2. Calculate offset based on tuple size. 
3. Return pointer to tuple. 

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
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Interpreted Plan 

OPERATOR TEMPL ATES 

13 

for t in range(table.num_tuples): 
  tuple = get_tuple(table, t) 
  if eval(predicate, tuple, params): 
    emit(tuple) 

1. Get schema in catalog for table. 
2. Calculate offset based on tuple size. 
3. Return pointer to tuple. 

1. Traverse predicate tree and pull values up. 
2. If tuple value, calculate the offset of the target 

attribute. 
3. Perform casting as needed for comparison operators. 
4. Return true / false. 

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
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Templated Plan Interpreted Plan 

OPERATOR TEMPL ATES 

13 

tuple_size = ### 
predicate_offset = ### 
parameter_value = ### 
 
for t in range(table.num_tuples): 
    tuple = table.data + t ∗ tuple_size 
    val = (tuple+predicate_offset) + 1 
    if (val == parameter_value): 
      emit(tuple) 

for t in range(table.num_tuples): 
  tuple = get_tuple(table, t) 
  if eval(predicate, tuple, params): 
    emit(tuple) 

1. Get schema in catalog for table. 
2. Calculate offset based on tuple size. 
3. Return pointer to tuple. 

1. Traverse predicate tree and pull values up. 
2. If tuple value, calculate the offset of the target 

attribute. 
3. Perform casting as needed for comparison operators. 
4. Return true / false. 

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
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Templated Plan Interpreted Plan 

OPERATOR TEMPL ATES 

13 
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Templated Plan Interpreted Plan 

OPERATOR TEMPL ATES 

13 
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DBMS INTEGRATION 

The generated query code can invoke any other 
function in the DBMS. 
 

This allows it to use all the same components as 
interpreted queries. 
→ Concurrency Control 
→ Logging / Checkpoints 
→ Indexes 

14 

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
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EVALUATION 

Generic Iterators 

→ Canonical model with generic predicate evaluation. 

Optimized Iterators 

→ Type-specific iterators with inline predicates. 

Generic Hardcoded 

→ Handwritten code with generic iterators/predicates. 

Optimized Hardcoded 

→ Direct tuple access with pointer arithmetic. 

HIQUE 

→ Query-specific specialized code. 

15 

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
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QUERY COMPIL ATION EVALUATION 

16 
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https://www.linkedin.com/in/konstantinoskrikellas


CMU 15-721 (Spring 2017) 

QUERY COMPIL ATION EVALUATION 
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QUERY COMPIL ATION COST 
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OBSERVATION 

Relational operators are a useful way to reason 
about a query but are not the most efficient way to 
execute it. 
 

It takes a (relatively) long time to compile a 
C/C++ source file into executable code. 
 

HIQUE does not allow for full pipelining… 
 
 

18 

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
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PIPELINED OPERATORS 

19 

SELECT * 
  FROM A, C,  
   (SELECT B.id, COUNT(*) 
      FROM B 
     WHERE B.val = ? + 1 
     GROUP BY B.id) AS B 
  WHERE A.val = 123  
    AND A.id = C.a_id 
    AND B.id = C.b_id 

⨝ A.id=C.a_id 

σ A.val=123 

A 

⨝ B.id=C.b_id 

Γ B.id,COUNT(*) 

σ B.val=?+1 

B C 

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
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PIPELINED OPERATORS 

19 

SELECT * 
  FROM A, C,  
   (SELECT B.id, COUNT(*) 
      FROM B 
     WHERE B.val = ? + 1 
     GROUP BY B.id) AS B 
  WHERE A.val = 123  
    AND A.id = C.a_id 
    AND B.id = C.b_id 

⨝ A.id=C.a_id 

σ A.val=123 

A 

⨝ B.id=C.b_id 

Γ B.id,COUNT(*) 

σ B.val=?+1 

B C 

Pipeline Boundaries 
#1 

#4 

#2 

#3 

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
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HYPER – JIT  QUERY COMPIL ATION 

Compile queries in-memory into native code using 
the LLVM toolkit. 
 

Organizes query processing in a way to keep a 
tuple in CPU registers for as long as possible. 
→ Push-based vs. Pull-based 
→ Data Centric vs. Operator Centric 

20 

EFFICIENTLY COMPILING EFFICIENT QUERY 
PLANS FOR MODERN HARDWARE 
VLDB 2011 

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://15721.courses.cs.cmu.edu/spring2017/papers/20-compilation/p539-neumann.pdf
http://15721.courses.cs.cmu.edu/spring2017/papers/20-compilation/p539-neumann.pdf
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LLVM 

Collection of modular and reusable compiler and 
toolchain technologies. 
 

Core component is a low-level programming 
language (IR) that is similar to assembly. 
 

Not all of the DBMS components need to be 
written in LLVM IR. 
→ LLVM code can make calls to C++ code. 

21 

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
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PUSH-BASED EXECUTION 

22 

SELECT * 
  FROM A, C,  
   (SELECT B.id, COUNT(*) 
      FROM B 
     WHERE B.val = ? + 1 
     GROUP BY B.id) AS B 
  WHERE A.val = 123  
    AND A.id = C.a_id 
    AND B.id = C.b_id 

Generated Query Plan 

for t in A: 
  if t.val == 123: 
    Materialize t in HashTable ⨝(A.id=C.a_id) 
 
for t in B: 
  if t.val == <param> + 1: 
    Aggregate t in HashTable Γ(B.id) 
 
for t in Γ(B.id): 
  Materialize t in HashTable ⨝(B.id=C.b_id) 
   
for t3 in C: 
  for t2 in ⨝(B.id=C.b_id): 
    for t1 in ⨝(A.id=C.a_id): 
      emit(t1⨝t2⨝t3) 

#1 

#4 

#2 

#3 

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
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QUERY COMPIL ATION EVALUATION 
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QUERY COMPIL ATION COST 
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NEXT-GEN PELOTON 
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REAL-WORLD IMPLEMENTATIONS 

IBM System R 
Oracle 
Microsoft Hekaton 
Cloudera Impala 
Actian Vector (formerly Vectorwise) 
MemSQL 
VitesseDB 

26 
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IBM SYSTEM R 

A primitive form of code generation and query 
compilation was used by IBM in 1970s. 
→ Compiled SQL statements into assembly code by 

selecting code templates for each operator. 
 

Technique was abandoned when IBM built DB2: 
→ High cost of external function calls 
→ Poor portability 
→ Software engineer complications 

27 

A HISTORY AND EVALUATION OF SYSTEM R 
Communications of the ACM 1981 

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://dl.acm.org/citation.cfm?id=358784
http://dl.acm.org/citation.cfm?id=358784
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ORACLE 

Convert PL/SQL stored procedures into Pro*C 
code and then compiled into native C/C++ code. 
 

They also put Oracle-specific operations directly 
in the SPARC chips as co-processors. 
→ Memory Scans 
→ Bit-pattern Dictionary Compression 
→ Vectorized instructions designed for DBMSs 
→ Security/encryption 

28 

http://db.cs.cmu.edu/
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MICROSOFT HEKATON 

Can compile both procedures and SQL. 
→ Non-Hekaton queries can access Hekaton tables through 

compiled inter-operators. 

Generates C code from an imperative syntax tree, 
compiles it into DLL, and links at runtime. 
 

Employs safety measures to prevent somebody 
from injecting malicious code in a query. 

29 

COMPILATION IN THE MICROSOFT SQL 
SERVER HEKATON ENGINE 
IEEE Data Engineering Bulletin 2011 

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://15721.courses.cs.cmu.edu/spring2017/papers/20-compilation/freedman-ieee2014.pdf
http://15721.courses.cs.cmu.edu/spring2017/papers/20-compilation/freedman-ieee2014.pdf
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CLOUDERA IMPAL A 

LLVM JIT compilation for predicate evaluation 
and record parsing. 
→ Not sure if they are also doing operator compilation. 
 

Optimized record parsing is important for Impala 
because they need to handle multiple data formats 
stored on HDFS. 
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IMPALA: A MODERN, OPEN-SOURCE SQL 
ENGINE FOR HADOOP 
CIDR 2015 

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://www.cidrdb.org/cidr2015/Papers/CIDR15_Paper28.pdf
http://www.cidrdb.org/cidr2015/Papers/CIDR15_Paper28.pdf
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ACTIAN VECTOR 

Pre-compiles thousands of “primitives” that 
perform basic operations on typed data. 
→ Example: Generate a vector of tuple ids by applying a less 

than operator on some column of a particular type. 
 

The DBMS then executes a query plan that 
invokes these primitives at runtime. 
→ Function calls are amortized over multiple tuples 
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MICRO ADAPTIVITY IN VECTORWISE 
SIGMOD 2013 

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://dl.acm.org/citation.cfm?id=2465292
http://dl.acm.org/citation.cfm?id=2465292
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ACTIAN VECTOR 

Pre-compiles thousands of “primitives” that 
perform basic operations on typed data. 
→ Example: Generate a vector of tuple ids by applying a less 

than operator on some column of a particular type. 
 

The DBMS then executes a query plan that 
invokes these primitives at runtime. 
→ Function calls are amortized over multiple tuples 
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MICRO ADAPTIVITY IN VECTORWISE 
SIGMOD 2013 

size_t scan_lessthan_int32(int *res, int32_t *col, int32_t val) { 
  size_t k = 0; 
  for (size_t i = 0; i < n; i++) 
    if (col[i] < val) res[k++] = i; 
  return (k); 
} 

size_t scan_lessthan_double(int *res, int32_t *col, double val) { 
  size_t k = 0; 
  for (size_t i = 0; i < n; i++) 
    if (col[i] < val) res[k++] = i; 
  return (k); 
} 

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://dl.acm.org/citation.cfm?id=2465292
http://dl.acm.org/citation.cfm?id=2465292
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MEMSQL (PRE–2016)  

Performs the same C/C++ code generation as 
HIQUE and then invokes gcc. 
Converts all queries into a parameterized form and 
caches the compiled query plan. 
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SELECT * FROM A  
 WHERE A.id = ? 

SELECT * FROM A  
 WHERE A.id = 123 

SELECT * FROM A  
 WHERE A.id = 456 

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
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MEMSQL (2016–PRESENT )  

A query plan is converted into an imperative plan 
expressed in a high-level imperative DSL. 
→ MemSQL Programming Language (MPL) 
→ Think of this as a C++ dialect. 

The DSL then gets converted into a second 
language of opcodes. 
→ MemSQL Bit Code (MBC) 
→ Think of this as JVM byte code. 

Finally the DBMS compiles the opcodes into 
LLVM IR and then to native code. 
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Source: Drew Paroski  

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://highscalability.com/blog/2016/9/7/code-generation-the-inner-sanctum-of-database-performance.html
http://highscalability.com/blog/2016/9/7/code-generation-the-inner-sanctum-of-database-performance.html
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VITESSEDB 

Query accelerator for Postgres/Greenplum that 
uses LLVM + intra-query parallelism. 
→ JIT predicates 
→ Push-based processing model 
→ Indirect calls become direct or inlined. 
→ Leverages hardware for overflow detection. 
 

Does not support all of Postgres’ types and 
functionalities. All DML operations are still 
interpreted. 
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Source: CK Tan 

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
https://www.youtube.com/watch?v=PEmVuYjhQFo
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PARTING THOUGHTS 

Query compilation makes a difference but is non-
trivial to implement. 
 

The 2016 version of MemSQL is the best query 
compilation implementation out there. 
Hekaton is very good too. 
 

Any new DBMS that wants to compete has to 
implement query compilation. 
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http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
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NEXT CL ASS 

Vectorization 
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http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
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