1 Background

After switching to an in-memory DBMS, the only ways to increase throughput is to reduce the number of instructions executed [4]:

- To go $10 \times$ faster, the DBMS must execute 90% fewer instructions.
- To go $100 \times$ faster, the DBMS must execute 99% fewer instructions.

One way to achieve such a reduction is through code specialization. This means generating code that is specific to a particular task in the DBMS (e.g., a specific query).

2 Query Processing

There are three ways for a DBMS to execute a query plan:

- **Tuple-at-a-time**: Each operator calls `next` on their child to get the next tuple to process. Also known as the Volcano [5] iterator model.
 Example: This is the approach used by most DBMSs.

- **Operator-at-a-time**: Each operator materializes their entire output for their parent operator. This approach is ideal for in-memory OLTP engines because it reduces the number of function calls and the number of tuples emitted per operator is small.
 Example: H-Store/VoltDB, MonetDB.

- **Vector-at-a-time**: Each operator calls `next` on their child to get the next batch of data to process.
 Example: VectorWise [2], Peloton [10].

Predicate Interpretation:

- DBMS evaluates predicates using an expression tree.
- Expression trees are expensive to interpret when a query accesses a lot of tuples.

3 Code Specialization

Any CPU intensive entity of database can be natively compiled if they have a similar execution pattern on different inputs.

- Access methods
- Stored procedure
- Operator execution
- Predicate evaluation
• Logging operations

Benefits of Code Specialization:

• Attribute types are known \(a \text{ priori} \); data access function calls can be converted to in-line pointer casting.
• Predicates are known \(a \text{ priori} \); the DBMS can evaluate them using primitive data comparisons.
• No function calls in loops; this allows the compiler to efficiently distribute data to registers and increase cache reuse.

4 Code Generation

Approach #1 – Transpilation (Source-to-Source Compilation)

Write code that converts a relational query plan into C/C++ and then run it through a conventional compiler to generate native code [8]:

• For a given query plan, generate a C/C++ program that implements that query’s execution.
• Use an off-shelf compiler (e.g., gcc) to convert the code into a shared object, link it to the DBMS process, and invoke the exec function to execute the query.
• The generated query code can invoke any other function in the DBMS.
• This allows it to use all the same components as interpreted queries (e.g. concurrency control, logging/checkpoints).
• The evaluation of the HIQUE [8] system shows that the DBMS incurs fewer memory stalls when executing the query but the compilation time is long (i.e., greater than 100-600 ms).

Approach #2 - JIT Compilation

Generate an intermediate representation (IR) of the query that can be quickly compiled into native code [11].

• Organizes query processing in a way to keep a tuple in CPU registers for as long as possible. The query plan is divided into pipelines (i.e., how far up the query tree the DBMS can continue processing a tuple before needing the next tuple becomes necessary).
 – Push-based vs. Pull-based
 – Data-Centric vs. Operator-Centric
• The DBMS can compile queries into native code using the LLVM toolkit [9]:
 – Collection of modular and reusable compiler and tool chain technologies.
 – Core component is a low-level programming language (IR) that is similar to assembly.
 – Not all of the DBMS components need to be written in LLVM IR. The LLVM code can make calls to C++ code.
• Query Compilation Cost:
 – LLVM compilation time grows super-linearly relative to the query size (# of joins, predicates, and aggregations).
 – Not a big issues with OLTP applications. Major problem with OLAP workloads.

One solution to mask the compilation time is HyPer’s Adaptive Execution model [6]:

1. First generate the LLVM IR for the query.
2. Execute the IR in an interpreter while compiling the query in a background thread.
3. When the compiled query is ready, seamlessly replace the interpretive execution.
5 Real World Implementations

• **IBM System R** [3]
 – A primitive form of code generation and query compilation was used by IBM in 1970s.
 – Compiled SQL statements into assembly code by selecting code templates for each operator.
 – Technique was abandoned when IBM built **DB2** in the 1980s.

• **Oracle**
 – Convert PL/SQL stored procedures into **Pro*C** code and then compiled into native C/C++ code.
 – They also put Oracle-specific operations directly in the SPARC chips as co-processors.

• **Microsoft Hekaton** [4]
 – Can compile both procedures and SQL.
 – Non-Hekaton queries can access Hekaton tables through compiled inter-operators.
 – Generates C code from an imperative syntax tree, compiles it into DDL, and links at runtime.

• **Cloudera Impala** [7]
 – LLVM JIT compilation for predicate evaluation and record parsing.
 – Optimized record parsing is important for Impala because they need to handle multiple data formats stored on HDFS.

• **Actian Vector** (formerly **VectorWise**) [13]
 – Pre-compile thousands of “primitives” that perform basic operations on typed data.
 – The DBMS then executes a query plan that invokes these primitives at runtime.

• **MemSQL** (pre-2016)
 – Performs the same C/C++ code generation as HIQUE [8] and then invokes gcc.
 – Converts all queries into a parameterized form and caches the compiled query plan.

• **MemSQL** (Since 2016) [12]
 – A query plan is converted into an imperative plan expressed in a high-level imperative DSL called the **MemSQL Programming Language** (MLP).
 – The DSL then gets executed into a second language of opcodes.
 – Finally the DBMS compiles the opcodes into LLVM IR and then to native code.

• **VitesseDB**
 – Query accelerator for Postgres/Greenplum that uses LLVM + intra-query parallelism.

• **Apache Spark** [1]
 – Introduced in the new Tungsten engine in 2015 that included code generation.
 – The system converts a query’s WHERE clause expression trees into an AST.
 – It then compiles these ASTs to generate JVM byte code that it executes natively.

• **Peloton** [10]
 – Full compilation of the entire query plan
 – Relax the pipeline breakers of HyPer to create mini-batches for operators that can be vectorized.
 – Use software pre-fetching to hide memory stalls.
References

