
How to Architect a Query Compiler

Amir Shaikhha, Yannis Klonatos, Lionel Parreaux, Lewis Brown,
Mohammad Dashti, and Christoph Koch

{firstname}.{lastname}@epfl.ch
École Polytechnique Fédérale de Lausanne

ABSTRACT
This paper studies architecting query compilers. The state of the art
in query compiler construction is lagging behind that in the com-
pilers field. We attempt to remedy this by exploring the key causes
of technical challenges in need of well founded solutions, and by
gathering the most relevant ideas and approaches from the PL and
compilers communities for easy digestion by database researchers.
All query compilers known to us are more or less monolithic tem-
plate expanders that do the bulk of the compilation task in one large
leap. Such systems are hard to build and maintain. We propose to
use a stack of multiple DSLs on different levels of abstraction with
lowering in multiple steps to make query compilers easier to build
and extend, ultimately allowing us to create more convincing and
sustainable compiler-based data management systems. We attempt
to derive our advice for creating such DSL stacks from widely ac-
ceptable principles. We have also re-created a well-known query
compiler following these ideas and report on this effort.

1. INTRODUCTION
Query compilation has been with us since the dawn of the rela-

tional database era: IBM’s System R employed query compilation
in its very first prototype, but this approach was quickly abandoned
in favor of query interpretation [15]. Recently, query compilation
has returned to the limelight, with commercial systems such as
StreamBase, IBM Spade, Microsoft’s Hekaton, Cloudera Impala,
and MemSQL employing it. Academic research has also intensi-
fied [33, 2, 52, 56, 64, 53, 54, 55, 50, 84, 19, 62, 44, 6].

We can argue that, despite all this recent work, the state of the
art in the design of query compilers lags behind the programming
languages and compilers research field. To the best of our knowl-
edge, all existing query compilers are template expanders at heart.
A template expander is a procedure that, simply speaking, gener-
ates low-level code in one direct macro expansion step. While a
query interpreter calls an operator implementation used inside a
query plan, the template expander essentially inlines the operator
code in the plan, for each operator, to obtain low-level code for the
entire plan. We restrict our study to the actual compiler component
of a possibly larger data management system. For instance, a sys-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’16, June 26-July 01, 2016, San Francisco, CA, USA
c© 2016 ACM. ISBN 978-1-4503-3531-7/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2882903.2915244

tem which first parses SQL into query plans and optimizes these
Selinger-style, then feeds such plans to a compiler which gener-
ates LLVM bytecode, which is in turn lowered to machine code by
LLVM, is still a template expander if that core compiler component
– into which all of the DBMS engineering team’s compiler efforts
went – is sufficiently primitive, even if more than two languages
and abstraction levels are present in the system as a whole.

Template expansion is a robust and intellectually accessible con-
cept, but it has a number of drawbacks. The System R team reports
that query compilation was abandoned in favor of interpretation
since query compiler code was hard to maintain (cf. [15]). More
fundamentally, template expanders make it impractical to support a
range of sophisticated optimizations since multiple code transform-
ers (with different optimization roles) have to be composed and
inlined in all possible ways and orderings, causing a code size ex-
plosion in compiler code bases. Furthermore, template expanders
make cross-operator code optimization impossible [50]1.

To illustrate the above-mentioned code explosion further, con-
sider the example of a template expander that is to support two
transformations: 1) pipelining (i.e. removing the need to materi-
alize intermediate results between query operators) and 2) data-
structure specialization (i.e. adapting the definition of a data struc-
ture to the particular context in which it is used). In order to per-
form these two optimizations together, one has to implement every
combination of their respective cases. For example, if each op-
timization handles 3 different cases, one has to create a template
expander with 9 cases to handle their combination. In general, the
code complexity grows exponentially with the depth of the stack of
desired transformations. Figure 1a illustrates this code explosion.

System R’s initial query compiler as well as Hekaton are con-
firmed template expanders (cf., [15] and a private communication
with the Hekaton team). While academic work makes numerous
contributions to the practice of query compilers, it is fair to say
that creating a query compiler that produces highly optimized code
is a formidable challenge due to the needs to work with various
Domain-Specific Languages (DSLs), understand their optimization
potentials, and build on the wealth of algorithmic and systems re-
sults created by the research over multiple decades. The database
community can profit from further tools and techniques from the
compilers field.

In this paper, we provide, to the best of our knowledge, the first
principled methodology for building query compilers.

We create tools and techniques to increase the modularity of
query compiler components, to manage the complexity of these
systems. Instead of using template expansion to directly gener-

1The key contribution of [64] is to show how a push operator inter-
face can eliminate the need for cross-operator fusion transformers,
making template expanders produce faster code.

ate low-level code from a high-level query plan, we propose pro-
gressively lowering the level of abstraction until we reach the
lowest level, and only then generating low-level code. Each level
of abstraction and each associated optimization can be seen as in-
dependent modules, enforcing the principle of separation of con-
cerns. There are two kinds of code transformations, optimizations
(where the source and target DSLs are the same) and lowerings. By
supporting optimizations on every abstraction level, we obtain real
power – moving to a lower-level DSL tends to expand the code size
and there is a tradeoff between the search space for optimizations
and the granularity of the DSL. Optimizations such as join reorder-
ings are only feasible in high-level DSLs, while register allocation
decisions can only be expressed in very low-level DSLs. We pro-
pose to use a stack of multiple internal DSLs, one for each such
abstraction layer. We attempt to derive our advice for creating such
DSL stacks from easily acceptable principles.

Returning to the above example, we can define a third interme-
diate abstraction level, a data-structure aware DSL, to place be-
tween the source and target languages. Pipelining transforms a
high-level query plan to that intermediate language which has ex-
plicit constructs for the operations on the hash-table and list data
structures. Then, data-structure specialization transforms the pro-
gram from this language to low-level code by using an appropriate
implementation of each data structure based on its context. Using
this intermediate DSL and stepwise lowering, there is no longer
any need to consider every combination of the two optimizations,
as they no longer interfere by manipulating the same expression.
As a result, the complexity of the query compiler code base is more
manageable, as demonstrated in Figure 1b.

Creating a sophisticated query compiler is a challenging under-
taking, and there are a number of results from the PL and compilers
research communities that can help. We explore the key technical
challenges in need of well founded solutions, and attempt to gather
the most relevant ideas and solution approaches from the PL and
compilers communities for easy digestion by database researchers.
Specifically, we look at the choice of intermediate languages, how
to maximize the separation of concerns among compiler optimiza-
tions and lowerings, implementation design choices, and several
transformations expressible using this approach.

Throughout this paper, we use the Scala language for our ex-
amples and for embedding our DSLs, but nowhere does this paper
specifically depend on this choice of programming language.

This is an atypical paper in that our main contributions are hard
to experimentally validate. Our insights are based on building four
distinct compiler-based data management systems over the past
seven years, but creating query compilers with a maximally shared
codebase for the multitude of alternatives discussed in this paper is
beyond the resources of any research group.

Instead, we have re-created a well-known query compiler [50]
following our ideas – our DSL stack with stepwise lowering – and
report on this effort. We report on the productivity of creating this
compiler using a suitable DSL compiler framework [1], and show
that we are able to implement all the optimizations of [50] (and
more), obtaining at least comparable and often better performance.

2. OVERALL DESIGN PRINCIPLES

2.1 Background
Most database management systems to date use high-level DSLs

such as SQL to express queries. Those queries are transformed into
optimized physical query plans, and then passed to an engine that
interprets them. This approach pays the cost of interpretation over-
head, and many low-level optimization opportunities are missed

(a) Pipelining and data-structure spe-
cialization are applied concurrently.
Hence, we should apply brute-force
to all combinations, resulting in code
explosion.

(b) Pipelining and data-structure spe-
cialization are applied sequentially.
Hence, there is no need to consider
all combinations, resulting in man-
aged code base.

Figure 1: Handling concurrent optimizations in template expansion
and progressive compilation approaches.

(e.g. function inlining), because they are not expressible in the
high-level DSL of query plans. These sources of overhead may
become especially significant for queries working with in-memory
data, where computation is increasingly CPU-bound (rather than
I/O-bound). To circumvent these limitations, query compilation
aims to generate low-level code from the high-level query plans,
allowing specific optimizations to be applied at this low-level rep-
resentation2.

However, by directly generating low-level code, we also miss op-
timization opportunities that are both not available at the high level,
and hard to express at the low level – mainly because the locality
of code patterns to match is lost. For example, loop fusion (i.e. re-
placing multiple loops with a single one) is not expressible in query
plans, as there is no notion of loop at this abstraction level. Also, it
is proven to be NP-complete [21, 48] and impractical in imperative
languages such as C [26], the usual target of query compilers.

We propose the introduction of intermediate abstraction levels
(referred to as intermediate DSLs) for expressing such optimiza-
tions. This has already been done in other domains, such as signal
transforms and linear algebra. In these domains, we can cite the Σ-
SPL [26] and Σ-LL [73] intermediate languages, which have been
developed in Spiral [67] for expressing loop fusion optimizations.

In this work, we show that by using several abstraction levels and
by doing step-wise lowering across them, we can express powerful
optimizations (such as pipelining and data-structure synthesis) that
are hard or impossible to express in existing query compilation ap-
proaches. The resulting set of DSLs, ordered from higher level to
lower level, is referred to as the DSL stack.

2.2 Choosing The DSLs
Although the design space for a DSL stack may seem overwhelm-

ing, there are several constraints that make some design choices
impractical, or even infeasible. These directions can be discarded.
Among these constraints, there is an important principle for design-
ing intermediate abstraction levels related to the expressive power
of programming languages, in the sense of Felleisen [23]:

2In this work, we consider compilation as a form of partial evalu-
ation [38]. A compiler-based approach can always delay some of
this partial evaluation to runtime, in which case the nature of the
system moves, at least in some aspect, from compilation to inter-
pretation. A strict choice of either one or the other at design time
is not, however, necessary. More concretely, there are scenarios
where compilation staging, just-in-time compilation, or even inter-
pretation are desirable: if some essential piece of information that
can substantially speed up evaluation is not available at compile
time, it is better to delay this partial evaluation until that informa-
tion is available. The classical example is probably statistics for
query optimization. Even a compilation-based query engine can-
not afford to go without a query optimizer.

Expressibility principle: Any program written in a given
DSL should be expressible in any of the lower-level DSLs
as well. Therefore, by lowering the level of abstraction
from the former to the latter, one should retain the same
expressive power or gain more.

Note that the converse does not need to hold: a program in a low-
level DSL does not need to be expressible in higher-level DSLs.
Based on the expressibility principle, we can start designing an ap-
propriate DSL stack. For that, we need to answer the following
questions: 1) What abstraction levels (DSLs) do we need? 2) On
which abstraction level(s) should we put each transformation?

We propose a methodology that naturally answers both questions
at the same time: to design a DSL stack, one should start from the
simplest stack possible (a high-level DSL that maps directly to a
low level one), then iteratively examine the desired transformations
one by one and see if the existing DSL stack is sufficient for it or if
a new abstraction level needs to be introduced.

Every transformation requires an input program in a source lan-
guage and produces a program in a target language. If the source
language and the target language are the same, the transformation
is called an optimization, whereas if the target language is at lower
level, it is called a lowering transformation. We will see in the next
section why the source language is never going to be lower-level
than the target language.

Optimizations are subject to the well-known phase-ordering prob-
lem [80]: most optimizations can produce opportunities for other
optimizations that apply to the same language, but it is not clear
how to order them optimally. This problem is still a topic of re-
search in the Programming Language community, and no definitive
answer has been formulated yet.3 To mitigate this, we recursively
apply optimizations inside the same abstraction level until we reach
a fixed point,4 where either no more optimizations can be applied
or the application of an optimization does not yield structurally dif-
ferent code. On the other hand, lowering transformations are not
subject to this issue, because they change the abstraction level of
the program so previous optimizations are no longer applicable.

Note that lowering transformations should always be applica-
ble, irrelevant of the input program. Otherwise, the transformation
chains would be broken. In contrast, optimizations may or may not
be applicable, depending on the information and patterns found in
the program being optimized.

2.3 Constructing The Stack
For the DSL stack to be well-formed and to maximize the reuse

of transformations, we need to ensure that transformations are not
redundant. Each lowering transformation translates a DSL to the
next lower-level DSL, and each high-level DSL program is, through
a sequence of lowerings, eventually mapped to the target language.
This requirement is summarized in the following principle:

Transformation cohesion principle: Between any two
DSLs of different abstraction levels, there should be a
unique path of lowering transformations translating pro-
grams in the higher-level DSL into programs in the lower-
level one.

3Online (or local) transformations do help removing ordering prob-
lems for a certain class of optimizations [39]. We provide facilities
(cf. [13]) to encode them in our framework, but this is out of the
scope of the current paper.
4Special care needs to be taken in the design of optimizations to
ensure that iteratively applying them leads to termination.

Notice that this does not prevent having several different high-
level front-end DSLs, or different low-level target languages. On
the other hand, the principle implies that there can be no transfor-
mations from a given DSL a to a higher-level DSL b, as there would
also need to be a path down from b to a, creating a loop, and thus
an infinity of lowering paths from b to a, violating the principle.

Let us consider the case where we need to introduce a new ab-
straction level, which mainly happens when we have more than
one lowering transformation between two particular DSLs. In such
a case, we have to split either the source language or the target lan-
guage into two separate languages. The new intermediate language
should follow the expressibility principle, interpolating between the
level above and below. Furthermore, the affected transformations
should update their source or target languages: optimizations on the
source and target languages, and the lowering transformations from
the source to the target language. This update in the existing lower-
ing transformations is necessary as, otherwise, the transformation
cohesion principle would be violated.

Going back to our working example, consider a query compiler
with SQL as the query language, C as the target language, and
pipelining and data-structure specialization as transformations. First,
we start from a two-level DSL stack, as shown in Figure 1a.

Second, we consider where to place the pipelining transforma-
tion. The information required for checking the applicability of
pipelining is available in SQL. However, it is very hard to check
such opportunities in a low-level language like C. Expressing a
pipelined program is not possible in SQL. This requires the ex-
pressibility of a lower language, like C in this case. Hence, pipelin-
ing is a lowering transformation from SQL to C.

Finally, we examine the existing DSL stack (which is still two
levels till now) for adding data-structure specialization. Similar to
pipelining, this transformation is a lowering from SQL to C. This is
because we need the high-level information available in SQL, but
also a way to explicitly represent data structures (not possible in
SQL). We now have two lowering transformations from SQL to C.
This means we should break one of these languages into two lan-
guages to modularize these two transformations. In this case, we
break C into two languages: 1) Data-structure-aware C, which is an
extension to the standard C language with specific constructs for the
data structures of a query engine, and 2) The standard C language.
Data-structure specialization can now use data-structure-aware C as
its source language and low-level C as its target language. At last,
all transformations which had C as their source or target language
should be updated accordingly. In this case, pipelining should up-
date its target language in order to follow the transformation cohe-
sion principle. Pipelining can be expressed in data-structure-aware
C as well. Hence, the pipelining transformation is now a lowering
transformation between SQL and data-structure-aware C. The new
DSL stack is shown in Figure 1b.

In the next section, we further discuss the design space as well
as compilation concerns for different DSL stacks.

3. DESIGN SPACE

3.1 Imperative vs. Declarative
So far, we have been referring to high-level and low-level lan-

guages without providing a clear definition for these terms. A more
precise terminology would have us use declarative and imperative
instead, although these do not always coincide. This dichotomy
is not the only criterion to take into account while designing ab-
straction levels, but it does play a central role, as we will see. In
a declarative language, programs are close to specifications of the
results we want to compute, while in an imperative language, de-

Paradigm Advantages
Declarative X Concise programs

X Small search space of equivalent programs
X Simple to analyze and verify
X Simple to parallelize

Imperative X Efficient data structures
X Precise control of runtime constructs
X More predictable performance

Table 1: Comparison of declarative and imperative languages

tails about how the result is computed are made explicit. The latter
usually involves the use of side-effects like mutation. Table 1 sum-
marizes the important differences between these two approaches.

Different mixes of declarative and imperative features in a DSL
are amenable to different optimizations, and require different com-
pilation techniques. Programs in high-level languages are smaller,
and the search space of semantically equivalent programs is there-
fore more manageable. This allows us to use search strategies sim-
ilar to the ones query optimizers use. These result in global op-
timizations that have more impact on the resulting program than
optimizations on low-level programs, since an expression in a high-
level program corresponds to many low-level expressions.

Moreover, high-level languages usually target specific domains
– in our case, query processing. As a result, they need not be as
complete and powerful as general-purpose languages: like SQL,
they do not even need to be Turing-complete [59]. This allows
compilers to provide more guarantees, and to perform better rea-
soning, static analysis, and optimization [83]. For example, it is
feasible to statically reason about the runtime cost of a SQL query
with typically good or acceptable accuracy. This is not possible in
low-level Turing-complete languages without actually running the
program [51].

Since low-level programs are larger, there is a large number of
equivalent low-level programs. This makes the use of search tech-
niques [51] impractical, preventing the global optimization of these
programs. Instead, optimizing compilers usually perform only lo-
cal optimizations (typically, so-called “peephole” optimizations,
that only consider a small part of the program at a time).

In the rest of this section, we see how to design our intermedi-
ate DSLs to integrate more or less imperative and declarative fea-
tures, depending on the type of optimizations we want to perform
on them. Then, we discuss different possible Intermediate Repre-
sentations (IRs) to encode programs written in these DSLs.

3.2 DSL Design and Optimization
Functional languages are a particularly important class of declar-

ative languages. We use functional features to represent the declar-
ative aspects of our DSLs for several reasons: first, these languages
are easy to understand and to reason about, possibly reusing frame-
works developed in the PL community [14]; second, functional
constructs integrate well with imperative ones [65], supporting our
goal of progressively turning programs from a declarative to an
imperative form; finally, the hybrid Scala programming language,
which we use in our framework, naturally allows such a mix of
functional and imperative code.

Although functional programs are executable, they introduce a
relatively heavy performance penalty and do not allow enough con-
trol on runtime constructs. This prevents the fine tuning of program
performance. For example, standard functional data structures are
immutable, and do not allow in-place modification of their ele-
ments, requiring copies instead. Without aggressive optimizations
like deforestation [86], this translates into many unnecessary allo-

cations and copies. Therefore, we need to lower these high-level
declarative constructs into specific, optimized imperative represen-
tations. Such representations are close to the underlying architec-
ture, providing opportunities for fine-grained performance tuning.

On the other hand, imperative programs that exhibit poor perfor-
mance are harder to optimize. For example, detecting loop fusion
opportunities is much harder in imperative programs than in func-
tional ones. If the loops in an imperative program are not manually
fused by the programmer, there is little chance that the compiler
will be able to fuse them automatically. The reason is that optimiz-
ing imperative programs with side effects is notoriously hard [7],
chiefly because the compiler has to reason about aliased mutable
memory locations, a problem that has been shown to be intractable
in general [69]. This has implications on low-level optimizations.

For example, consider a for loop written in C that only manip-
ulates local variables. Modern compilers know how to optimize
such constructs in near-optimal, almost unbeatable ways. But as
soon as one introduces non-trivial function calls inside the loop,
the compiler’s bets are off and many automatic rewritings become
impossible. Consider the following code:

for (int i = 0; i < size(str); i++) { str[i] = ’X’; }

In general, a compiler must not assume that it is safe to ex-
tract the call to size(str) out of the loop, because the way it
is computed could be influenced by assignments performed inside
the loop body. In fact, for the particular case where str is a simple
C string, the compiler cannot know that we are not going to over-
ride the string termination character while iterating over the string
(which would change the result of a subsequent call to size).5

This would prevent the compiler from implementing resetting the
characters of a string as an efficient memset instruction.

In this context, human expertise becomes important again. Based
on domain-specific knowledge, one can make assumptions that low-
level C compilers cannot, even after expensive program analyses
that try to recover high-level information from the low-level code.
Since we progressively lower abstraction one step at a time, we can
exploit as many optimization opportunities as possible along the
way. Our framework allows the expression of effectful computa-
tions, but can still reason about code that is known to be pure, and
our transformations can leverage invariants that are known to hold
in the intermediate DSLs.

Next, we discuss various intermediate representation choices for
each abstraction level.

3.3 Intermediate Representation
Compilers usually convert input programs, given as text strings,

into an Intermediate Representation (IR) which contains all essen-
tial information available about the program after parsing6. Opti-
mizing compilers use IRs to facilitate the definition and application
of optimizations.

The simplest form of an IR is an Abstract Syntax Tree (AST). In
database management systems, an AST represents a query in rela-
tional algebra or its physical plan. This representation is sufficient
for performing algebraic rewrite rules on such algebraic languages
without variable bindings. Examples of transformations include
pushing down selections or changing the join order in relational
algebra. As an example, Stratego [85] uses ASTs for its IR.

5A special case could be added in the compiler to handle this par-
ticular example, but this approach does not scale, as the general
problem is undecidable.
6Observe that different DSLs or abstractions levels may use the
same IR as their underlying data structure; however, the informa-
tion (DSL constructs) encoded using these IRs may vary signifi-
cantly.

However, there are optimizations that require more sophisticated
IRs. For example, Common Subexpression Elimination (CSE) in-
volves sharing leaves among sub-trees, which calls for a DAG rather
than a tree representation, or equivalently a language with variable
bindings (cf. [3, 30]).

Furthermore, as the language becomes more complicated (e.g.,
through the introduction of mutability), programs start requiring
data-flow analysis [43, 42, 47] to check for the applicability of op-
timizations. Performing data-flow analysis for every independent
optimization that requires it results in more analysis passes than
necessary and is difficult to implement, debug, and maintain [79].
Hence, the need to replace plain ASTs with a data structure that
stores the result of data-flow analysis, as a better representation on
which to apply optimizations.

Several IRs have been proposed in the PL community for simpli-
fying data-flow analysis and optimization. These IRs encode data-
flow information by converting a given program into a canonical
representation. For example, in all of these IRs, every subexpres-
sion in a program is bound to a local variable, and reassignment to
these variables is not allowed (i.e. they are immutable) [14].

All DSLs in our stack use administrative-normal form (ANF) [25].
This form is better illustrated with an example. Consider the fol-
lowing expression which represents a part of an aggregation:

agg1 += R_A * R_B
agg2 += R_A * R_B * (1 - R_C)
agg3 += R_D * (1 - R_C)

After converting to ANF, all operators should accept either a con-
stant or a local variable. Hence, every arithmetic operation is con-
verted to a version which uses the local variable bound to its argu-
ments. The ANF representation of this expression is as follows:

val x1 = R_A * R_B
agg1 += x1
val x2 = 1 - R_C
val x3 = x1 * x2
agg2 += x3
val x4 = R_D * x2
agg3 += x4

While converting a subexpression to an immutable variable, one
can look up the mappings between the existing variable bindings
and their corresponding subexpressions. If there is already a subex-
pression with the same operator and the same arguments, then the
existing bound variable can be reused. This provides CSE for free.
In the previous example, the expression R_A * R_B is computed
once and is used twice for both agg1 and agg2. The same happens
for 1 - R_C in both agg2 and agg3. Observe that this optimiza-
tion is only one of the advantages of the ANF form. Appendix A
presents more information on ANF and several other well-known
IRs in the PL community.

Finally, we encode additional information (other than data-flow
information) about the expressions in the IR. There are cases in
which we need some high-level information about the expressions
which is not available in the current abstraction level. Such infor-
mation can be guided through annotations from a higher level of
abstraction. Note that since ANF assigns a unique symbol to each
subexpression, this process is simplified by keeping a hash-table
from these unique symbols to their associated annotations.

4. DSL STACK
In this section, we present the construction of our DSL stack by

progressively refining a naïve two-level stack consisting of query
plans and C, respectively the source and target languages com-
monly used in existing query compilers. We progressively add
intermediate abstraction levels to perform new optimizations in a
modular way, as described in Section 2. Finally, we demonstrate
the straightforward addition of a new front-end language which

QPlan QMonad

ScaLite[Map, List]

ScaLite[List]

ScaLite

C / C.Scala

Declarative

Imperative

+ Mutable DS
+ Looping

− Hash table

− List
+ Memory
Management

Pipelining

Hash-Table Specialization

List Specialization

Storage Layout

Figure 2: DSL Stack for Query Compilation

reuses the lower abstraction levels already defined in the DSL stack,
thereby benefiting from all transformations that apply to them.
Scala DSLs. Figure 2 shows the final DSL stack. On the right,
we show which constructs are added and removed by each inter-
mediate DSL. Scala is the implementation language of the frame-
work, and we use a subset of its features to encode intermediate
DSLs as well. We refer to the main subset as ScaLite. We write
ScaLite[X,Y,...] to denote ScaLite augmented with features X, Y,
etc. QPlan and QMonad are Scala DSLs used as two possible front-
ends for the DSL stack. ScaLite[Map, List] and ScaLite[List] are
intermediate, data-structure-aware DSLs used for specializing the
abstract hash table and list data structures. As we will see, we en-
force more restrictions on higher-level DSLs, so that for example,
restricted mutability makes ScaLite[Map, List] in fact less expres-
sive than ScaLite[List], where mutable Maps can be implemented
directly. In ScaLite, all data structure are completely implemented
in the language itself, but the memory is assumed to be managed by
the garbage collector of a runtime system (e.g. the JVM). Finally,
C.Scala is another Scala DSL that expresses C constructs, and in
particular memory manipulation constructs, so a program written
in C.Scala is equivalent to a C program, modulo a straightforward
syntactic transformation (called stringification or unparsing).

The advantage of using Scala to host these DSLs (we say they
are embedded [36] in Scala) is that we benefit from its compilation
tool-chain: parsing, type-checking, execution and debugging. In-
deed, each DSL is executable as a Scala program, with low perfor-
mance but improved debugging possibilities. Note that these DSLs
could be designed in other programming languages (e.g. quoted
DSLs [63] in Haskell) or as external DSLs if one is willing to build
the compilation tool-chain from scratch.
Example Query. We use one query as a running example for
demonstrating transformations. The query is shown in SQL and ex-
pressed in each intermediate DSL (with Scala syntax) in Figure 4.

4.1 Two-Level Stack (QPlan & C)
This is the two-level stack corresponding to existing query com-

pilers, which are template-based.7 The high-level DSL is an alge-
braic representation of query operators. A query optimizer typically
finds the best query plan for a given SQL query, and produces a pro-
gram in this declarative DSL. The low-level DSL is an architecture-
dependent language that can express implementation details useful
for tuning performance. Typical choices include C and LLVM IR.
QPlan. The QPlan DSL contains query plan operators typically en-
countered in various commercial database systems, including semi-,
anti- and outer joins. These operators are sufficient for expressing
a large class of SQL queries, including the 22 TPC-H [81] queries.

7A state-of-the-art database system will often manipulate SQL, re-
lational algebra and basic query plans before handing the result to
the query compiler, but these are not seen by the query compiler,
and are thus not considered in this paper.

C.Scala. C.Scala is an extension of ScaLite with basic memory
management constructs (e.g. malloc and free) and memory ref-
erencing constructs (pointers and pointer arithmetic). We use the
GLib data structures to represent dynamic Arrays and sorted lists
(as binary search trees).
Transformations. At this stage, we perform pipelining while pro-
ducing C.Scala code, either by pulling [31] or pushing [64] data.
With this approach, we remove many materialization points, which
results in improved data locality and I/O costs. This transformation
is discussed further in Section 5.1.

4.2 Three-Level Stack (+ ScaLite)
We saw in the introduction that this two-level stack with pipelin-

ing is not appropriate for adding a transformation that affects con-
structs that are also affected by pipelining. This is because both
transformations interfere by manipulating related constructs at the
same time (single compilation stage). Here, we want to intro-
duce memory-management and layout optimizations. To resolve
the problem as suggested in Section 2, we add a new intermedi-
ate DSL that can express pipelining, but does not contain memory
management constructs yet.
ScaLite. The core of ScaLite is the simply-typed λ-calculus, which
does not have recursion and mainly consists of constructs for func-
tion abstraction (a.k.a. λ abstraction) and for function application
(invoking a function with an input parameter, possibly another func-
tion). ScaLite additionally supports control-flow constructs such
as if statements and bounded loops (loops for which we statically
know the maximum number of iterations). This DSL is not a purely
functional language, as it also supports variables that are either im-
mutable (as in val x = e; f(x)) or mutable (as in var x =
e1; f(x); x = e2). It supports user-defined records and three
data structures: fixed-size arrays, dynamic arrays, and sorted lists.

These make ScaLite a powerful enough low-level language satis-
fying the expressibility principle. The restrictions (bounded loops,
no recursion) simplify program analysis.
Transformations. While lowering ScaLite programs to C.Scala,
we enhance memory management. For example, we use memory
pools to preallocate intermediate records. By using statistical infor-
mation about the input, a worst-case estimate of the cardinality of
elements is used to preallocate a memory pool, which obviates the
need to perform a system call when allocating new memory. An-
other memory-management enhancement is to specialize the mem-
ory layout of data structures. For example, depending on the con-
text, we represent an array of records either as: 1) an array of point-
ers to structs – a boxed [88] layout; 2) an array of structs [84]; or
3) a struct containing one array for each record field – a columnar
layout [37, 75], which often has a positive impact on cache locality.
These data-layout representations are demonstrated in Figure 3.

Figure 4g shows our working example in C.Scala. Line 1 explic-
itly specifies the representation of an array of records as an array
of pointers to records. In line 2, we use the malloc function to
allocate the array. In the rest of the program, we use arrows (->) to
access the fields of a referenced record, as in C.

4.3 Four-Level Stack (+ ScaLite[Map, List])
Now, consider adding a transformation for data-structure spe-

cialization, which requires a data-structure-aware DSL, as explained
in Section 2. Such a DSL has specific constructs for representing
the operations of a set of data structures.

Hash tables and lists are two essential data structures for query
engines [68]. Hash tables are used for implementing the aggrega-
tion and hash join operators, while lists are used for storing in-

(a) Boxed layout (b) Row layout (c) Columnar layout

Figure 3: Different data-layout representations.

termediate collections of records. There are two kinds of hash
tables we are interested in: HashMaps associate every key to a
single value, and are used for expressing aggregation operators;
MultiMaps associate every key to a set or list of values, and are
used for expressing hash join operators.

These data structures are specialized to efficient implementa-
tions, depending on the context in which they are used, which re-
quires a prior analysis phase. This is not possible to do with naïve
expansion strategies, like with C++ templates or C macros. It could
also be interesting to consider other specialized data structures such
as indexed trees to extend the DSL further. This can be useful for
other workloads, which we leave as future work.
ScaLite[Map, List]. This DSL is an extension of ScaLite with the
HashMap, MultiMap, and List data structures, as well as opera-
tions defined on them. For simplifying program analysis, we ensure
that for every program in this DSL, the following invariant holds:
hash-table data structures are not allowed to contain mutable ele-
ments, which means that the records we put into these hash tables
should be immutable. This is because if we were allowed to read
and write fields of an element obtained from a hash table, inferring
the access patterns for this hash table would become significantly
more complicated. Another way of expressing this invariant is to
state that the DSL does not allow nested mutability.
Transformations. At this level, we can perform optimizations that
use hash tables, such as string dictionaries [10]. This optimization
maps string operations to integer operations and is discussed further
in Section 5.3. Also, hash-table specialization is performed while
lowering ScaLite[Map, List] programs. Access patterns are ana-
lyzed before this transformation in order to make informed materi-
alization decisions and push some computations to a pre-processing
phase, which is explained in more details in Section 5.2.

Figure 4d shows our working example in ScaLite[Map, List].
Implementing a hash join is done in two phases: the first phase
(lines 3-12) iterates over the elements of the first relation and builds
a hash table which groups these elements based on their join key; in
the second phase, the algorithm probes the elements of the second
relation and iterates over the corresponding elements of the first
relation using the constructed hash table.

4.4 Five-Level Stack (+ ScaLite[List])
Directly translating hash tables to arrays is not necessarily opti-

mal. We would like to translate them to lists first, so we can reuse
the fine-grained, context-dependent lowering already defined that
converts lists to arrays. Sometimes, it is better to lower lists to
linked lists, whereas in some other cases, it is better to lower them
to arrays. In order to do that, we add an abstraction level similar to
the one above, but without hash tables.
ScaLite[List]. ScaLite[List] is also built atop ScaLite, but only
adds constructs related to Lists. However, to encode MultiMaps
using arrays of lists, we need to relax the restrictions imposed on
ScaLite[Map, List]: if nested mutability was forbidden, there would
be no way to express MultiMaps in a useful way, because we

SELECT COUNT(*)
FROM R, S
WHERE R.name == "R1"
AND R.sid == S.rid

(a) The example query in SQL.

AggOp(
HashJoinOp(
SelectOp(R, "name", EQ,"R1"),
S, "sid", "rid"), COUNT)

(b) The example query in QPlan.

R.filter(r =>
r.name == "R1"

).hashJoin(S)(r => r.sid)(s => s.rid)
.count

(c) The example query in QMonad.

1 val hm = new MultiMap[Int, R]
2

3 for(r <- R) {
4 if(r.name == "R1") {
5

6

7 hm.addBinding(r.sid, r)
8

9

10

11 }
12 }
13 var count = 0
14 for(s <- S) {
15 hm.get(s.rid) match {
16 case Some(rList) =>
17 for(r <- rList) {
18 if(r.sid == s.rid)
19 count += 1
20 }
21 case None => ()
22 }
23 }
24 return count

(d) The example query in
ScaLite[Map, List].

val MR: Array[List[R]] =
new Array[List[R]](R_GROUPS)

for(r <- R) {
if(r.name == "R1") {

MR(r.sid) += r

}
}
var count = 0
for(s <- S) {

val rList = MR(s.rid)
for(r <- rList) {
if(r.sid == s.rid)
count += 1

}
}

return count

(e) The example query in ScaLite[List].
Note that List is a mutable data structure.

val MR: Array[R] =
new Array[R](R_GROUPS)

for(r <- R) {
if(r.name == "R1") {
if(MR(r.sid) == null) {
MR(r.sid) = r

} else {
r.next = MR(r.sid)
MR(r.sid) = r

}
}

}
var count = 0
for(s <- S) {

var r = MR(s.rid)
while(r != null) {
if(r.sid == s.rid)
count += 1

r = r.next
}

}

return count

(f) The example query in ScaLite.

val MR: Array[Pointer[R]] =
malloc[Pointer[R]](R_GROUPS)

for(r <- R) {
if(r->name == "R1") {
if(MR(r->sid) == null) {
MR(r->sid) = r

} else {
r->next = MR(r->sid)
MR(r->sid) = r

}
}

}
var count = 0
for(s <- S) {

var r: Pointer[R] = MR(s->rid)
while(r != null) {
if(r->sid == s->rid)
count += 1

r = r->next
}

}

return count

(g) The example query in C.Scala.

Figure 4: Representations of a query in different DSLs.

would not be able to update the set of elements associated with
a particular key incrementally (a capability that was hidden behind
the MultiMap interface of ScaLite[Map, List]).
Transformations. We perform list specialization while lowering
from ScaLite[List] to ScaLite. Consider the case in which we lower
lists to linked lists. In a typical scenario, lists are used for holding
records. In that case, we use intrusive linked lists, which store the
next pointer of each list node in the records themselves. This re-
moves one level of indirection caused by the separate allocations
of the container nodes and the records. On the other hand, since
we are working with ScaLite, which only has bounded loops, it is
sometimes possible to perform worst-case size analysis and obtain
an estimate of the maximum cardinality of some lists. We conse-
quently lower them to native static Arrays, instead of linked lists.
This way, we benefit from the existing array layout optimizations
provided for ScaLite down the DSL stack (e.g. columnar layout).

Figure 4e shows the working example in ScaLite[List]. Lines 1-2
contain the lowered representation of the MultiMap data structure.
Line 7 shows the implementation of the addBinding method us-
ing the += method of List. Line 16 shows how we lower the get
method of MultiMap by accessing a bucket in the lowered array.

4.5 Collection Programming Front-end
We refer to collection programming as the practice of preferring

generic operations defined on collections like lists and associative
maps (filter, groupBy, sum, etc.) rather than writing them out
as loops. The user base of collection programming APIs is grow-
ing. These APIs improve the integration of applications with data-
base back-ends by making them more seamless [61, 34, 33]. Thus,
it makes sense to consider a DSL with a collection programming
API as an alternative front-end for a query compiler.
QMonad. The QMonad DSL is a functional language inspired by
Monad Calculus on lists [11, 12, 87], Query and Monoid Com-
prehensions [35, 82, 22] and other collection programming APIs

like Spark RDDs [89]. In addition to standard collection operators
(such as map, filter, fold, etc.), this DSL contains different join
operators including semi-, anti-, and outer joins.8

Transformations. As we discussed in Section 3.2, declarative and
functional languages are not appropriate for performance tuning.
It is thus necessary to compile and optimize programs written in
QMonad before executing them. Thankfully, by simply lowering
those programs to ScaLite[Map, List], we can reuse the transfor-
mations provided by the lower level DSLs of our stack for free. To
produce even faster code, we should perform pipelining to remove
materialization points (pipeline breakers). This transformation has
a similar effect to what we do for QPlan, by pushing or pulling data.
Section 5.1 gives more detail about it.

Figure 4c shows our working example in QMonad. The filter
method is a higher order function that corresponds to the selection
operator in relational algebra. It takes the selection predicate as
a parameter. The first parameter of the hashJoin method is the
second relation, and the second and third parameters indicate the
join keys of the first and second relations, respectively. The count
method returns the number of elements in a list.

4.6 Extensibility
One of the main advantages of our DSL stack design is its exten-

sibility in various dimensions. First, as we just saw, one can use an-
other algebra as the front-end by replacing the front-end DSL (here,
QMonad and QPlan). By providing a lowering transformation from
the new algebra to one of our intermediate DSLs, the existing in-
frastructure generates optimized C code for that new front-end.

Second, user-defined functions (UDFs) can be added to input
queries. There are two approaches for doing so: 1) expressing
them in terms of our low-level DSLs – in this case, we miss high-

8Map and join expressions are expressively redundant with nested
fold expressions, but represent an important performance choice,
and are hard to reconstruct from folds.

R.map(f).map(g) −−−−−−−−→ R.map(f o g)y x
build { k1 =>
(build { k2 =>
R.foreach(e => k2(f(e)))

}).foreach(e => k1(g(e)))
}

(T)
−−−−−−−−−−−→

build { k1 =>
R.foreach(e =>
k1(g(f(e)))

)}

(T): build(f1).foreach(f2) ; f1(f2)

Figure 5: A simple example of loop fusion using short-cut fusion.

level optimization opportunities that could apply to them; 2) adding
UDFs as constructs in a high-level DSL, and defining lowerings to
immediately-lower DSLs in the appropriate phase. This approach
works best if the user provides additional information (by using an-
notations, which was desribed in Section 3.3) about the additional
language construct (e.g. their side-effects).

Third, we can change our target language without any need to
change the higher-level DSLs, and still benefit from the optimiza-
tions provided in those higher-level DSLs. The only thing we need
to do is to provide a lowering from ScaLite (or a higher-level DSL)
to our desired target language, and then unparse the generated IR
in a similar way as we unparse C.Scala to C. This approach works
well as long as the underlying architecture is not changed. The ex-
tensibility of our DSL stack in the case of changing the target archi-
tecture (e.g. using a multi-core architecture instead of a single-core
one) is discussed in Section 8.

5. TRANSFORMATIONS
In this section, we detail three transformations that were pre-

viously introduced, and which are expressed using the proposed
DSL stack. First, we present the pipelining transformation used to
improve data locality. Second, we present data-structure synthesis,
which specializes and materializes data structures to improve query
execution performances. Finally, we provide more details about the
string dictionaries.

5.1 Pipelining – From Fusion to Push Query
Engines

A query written using QMonad consists of chained invocations
of higher-order functions such as map, filter, flatMap, etc. Af-
ter naively generating low-level code for such queries (e.g. using
template expansion), the generated code typically contains: 1) in-
termediate list constructions and destructions; and 2) loops corre-
sponding to each higher-order function. Creating intermediate lists
causes space and time overheads due to unnecessary allocations.

Loop fusion removes these overheads by removing the need to
create intermediate lists. This is because in the fused version of the
loops, the elements are pipelined from one operation to the next.
Moreover, by merging several loops into a single loop, a single
traversal is performed, reducing the iteration overhead.

The literature contains a very well-defined set of algebraic rewrite
rules for Monad Calculus [11]. These rules are sufficient to express
loop fusion for the Monad Calculus subset of QMonad. However,
fusion is also needed outside of that subset. Since we add con-
structs to the language, we need to add the corresponding loop fu-
sion rewrite rules. For this, it is important to be aware of relevant
research that has been conducted in the PL community. In fact, it
turns out that QMonad with n constructs needs O(n2) loop fusion
rewrite rules, which is not scalable [27]. Ideally, one should need
only O(n) rewrite rules for a DSL with n constructs. Furthermore,
there are cases in which the fusion of two operators in QMonad is
not expressible in QMonad itself. Figure 4c shows a program that
exhibits this property: the fusion of filter and hashJoin cannot

class QueryMonad[T] {
/* These methods are both consumer and producer */
def map[S](f: T => S): QueryMonad[S] = build { k =>
for(e <- this) k(f(e))

}
def filter(p: T => Boolean): QueryMonad[T] = build { k =>
for(e <- this) if(p(e)) k(e)

}
def hashJoin[S](list2: QueryMonad[S])
(leftHash: T => Int)
(rightHash: S => Int): QueryMonad[(T, S)] = build { k =>
val hm = new MultiMap[Int, T]()
for(e <- this)
hm.addBinding(leftHash(e), e)

for(e2 <- list2) {
val key = rightHash(e)
hm.get(key) match {
case Some(list1) =>
for(e1 <- list1)
if(leftHash(e1) == rightHash(e2))
k((e1, e2))

case None => ()
}

}
}
/* This method is only a consumer */
def count: Int = {
var result = 0
for(e <- this)
result += 1

result
}

}

Figure 6: Producer-consumer encoding of QMonad opera-
tors. Note that in Scala, for(e <- R) f(e) is the same as
R.foreach(e => f(e)).

be expressed using a single QMonad operator. This transformation
needs to be expressed using operations provided by a lower level
DSL. Hence, for these cases loop fusion is no longer an optimiza-
tion but a lowering transformation (refer to Section 2).

Deforestation [86] is a well-known technique in the PL commu-
nity that is used to remove intermediate data structures. This is
the approach we use for performing loop fusion. There are several
implementations of this technique, among which short-cut fusion
(known as cheap deforestation or foldr/build fusion) [27, 28] has
been proven to achieve pipelined query execution [35]. This ap-
proach requires defining every operator in the language using two
primitive combinators: 1) a build combinator that produces a list;
and 2) a foldr combinator that consumes a list. This way, the num-
ber of rewrite rules needed for QMonad with n constructs become
O(n) (the implementations of the n operators using the build and
foldr combinators). Loop fusion is then achieved by eliminating
adjacent occurrences of build and foldr.

We implement a variant of short-cut fusion [40] in which ev-
ery operator is expressed using the church-encoding of lists [66],
or tranducers [72] . For simplicity, we use the foreach opera-
tor and side effects, instead of the pure foldRight operator. This
transformation is implemented as a lowering step from QMonad to
ScaLite[Map, List]. Figure 6 shows the implementation of a few
QMonad operators using build and foreach. Inlining this high-
level implementation leads to pipelining transformation.

Figure 5 shows a simple example in which short-cut fusion is
used to apply loop fusion (long path at the bottom). Transformation
(T) is what allows us to transition from the code at the bottom-left
corner to the code at the bottom-right. This example shows that
short-cut fusion has the same impact as the corresponding algebraic
rewrite rule from Monad Calculus (short path, on top).

Figure 4d shows the code resulting from the example in Fig-
ure 4c, after the pipelining. The filter operation is fused with
the first loop of the hashJoin operation, which is responsible for

creating a hash table based on the join key of the first relation. The
count operation is fused with the second loop of hashJoin, which
is responsible for iterating over the second relation and probing rel-
evant partitions from the hash table. Our observations show that
short-cut fusion has the same effect as the push-engines proposed
in [64]. This is not a surprise, since every operator in the latter is
modeled after a producer/consumer pattern, which directly corre-
sponds to the foldr/build model described above.

After pipelining the query engine and lowering it to ScaLite[Map,
List], there are new optimization opportunities to be applied on
the resulting mutable data structures, as we saw in Section 4.3.
Next, we discuss how to synthesize specialized data structures from
ScaLite[Map, List] programs.

5.2 Specialized Data-Structure Synthesis
A pipelined query uses mutable data structures to perform in-

place updates, instead of cloning the list every time a single ele-
ment is updated. The resulting program is no longer in QMonad
(or QPlan), but has been lowered to ScaLite[Map, List], and is thus
no longer purely functional. This makes optimizations harder to ex-
press than in higher level, purely declarative DSLs, mainly because
of the presence of side-effects. To resolve this issue, we enforce
several restrictions on this DSL, which facilitate program analysis.
For example, by not allowing nested mutability, we simplify side-
effect analysis. This analysis helps identifying data dependencies
among statements, after which we can safely reorder them without
changing the semantics of the program.
MultiMaps, which are used to implement hash joins, can be spe-

cialized depending on the way they are used. For example, under
circumstances described below, and if there is a one-to-one rela-
tionship between a write operation and its corresponding read, we
can remove the MultiMap altogether. In Figure 7a, we iterate over
a relation R and add its tuples into a MultiMap. We then access
the relevant partitions of R while iterating over a second relation
S. Instead of these two steps, we would like to directly access
the elements of R while iterating over S. For it to be safe, such
a transformation requires reordered statements to be free of data
dependencies related to the two iterations, outside of read/write de-
pendencies on the elements of the MultiMap we want to elide.

However, naïvely removing the intermediate MultiMap and sub-
stituting its read operation with an iteration over R clearly will not
improve performance (it is equivalent to a nested loop join). Fig-
ure 7b shows the result of that naïve transformation. We can see
that for each element of S, instead of iterating over the relevant tu-
ples in R, we iterate over the whole relation. In order to correct this,
we can materialize R based on the join key sid. First, we make sure
R is not an intermediate relation, but an input relation (otherwise,
the transformation is not applicable). Then, at query loading time,
we materialize an array of lists which is indexed based on sid. As
a result, we can now iterate only over the relevant parts of R, as is
shown in Figure 7c.

Furthermore, in case sid is a primary key, the materialized data
structure can be specialized further: since there will only be one
tuple associated with each key (by definition of a primary key),
there is no need for buckets anymore: a one dimensional array is
sufficient, instead of an array of lists. We remove the corresponding
bucket iteration in the main loop. Figure 7d shows the resulting
code, in case the join key is a primary key.

Data-structure synthesis is not limited to MultiMaps. HashMaps,
which are used to implement aggregations, can also be specialized.
In that case, we synthesize materialized data structures which par-
tition the HashMaps based on their grouping key, automatically in-
ferring the grouping indices.

String C code Integer Dictionary
Operation Operation Type
equals strcmp(x, y) == 0 x == y Normal
notEquals strcmp(x, y) != 0 x != y Normal
startsWith strncmp(x, y, strlen(y))

== 0
x>=start
&& x<=end

Ordered

Table 2: Mapping of string operations to integer operations through
the corresponding types of string dictionaries. x and y are string
arguments which are mapped to integers.

5.3 String Dictionaries
Operations on non-primitive data types, such as Strings, incur

a very high performance overhead. This is true for two reasons:
There is a function call associated with such operations, and most
of these operations typically need to execute loops to process the
encapsulated data types. Hence, such operations significantly affect
branch prediction and cache locality.

For strings, we use String Dictionaries [10] to remove their ab-
straction overhead. One dictionary is maintained for every attribute
of String type, which generally operates as follows. First, at data
loading time, each string value of an attribute is mapped to an in-
teger value. Then, at query execution time, string operations are
mapped to their integer counterparts, as shown in Table 2. This
mapping allows to significantly improve the query execution per-
formance, as it completely eliminates underlying loops and, thus,
significantly reduces the number of CPU instructions executed.

Special care is needed for string operations that require ordering.
For example, Q14 of TPC-H needs to perform the startsWith
string operations with a constant string. This requires that we uti-
lize a dictionary that maintains the data in order; that is, if stringx
< stringy lexicographically, then Intx < Inty as well. To do so, we
take advantage of the fact that all input data is already materialized,
and thus after computing the list of distinct values, we can then sort
this list lexicographically, and then assign to the string attributes the
integer value of the index in the corresponding sorted list for using
during query execution. More specifically, the constant string is
converted to a [start,end] range, by iterating over the list of dis-
tinct values and finding the first and last strings which start or end
with this string. Then, this range is used for lowering the opera-
tion, as shown in Table 2. This two-phase string dictionary allows
to map all operations that require some notion of ordering.

Finally, it is important to note that string dictionaries, even though
they significantly improve query execution performance, have a
negative performance impact on data loading. In addition, string
dictionaries can actually degrade performance when they are used
for primary keys or for attributes that contain many distinct values.
Thus, one should avoid using string dictionaries in such cases.

6. PUTTING IT ALL TOGETHER – THE
DBLAB/LB QUERY ENGINE

We have implemented the DSLs of our multi-level stack and
the associated transformers in DBLAB,9 a framework for build-
ing efficient database systems via high-level programming. Us-
ing the components provided by DBLAB we have re-created the
LegoBase [50] query engine. We refer to this re-implementation as
DBLAB/LB.

First, developers write their queries in DBLAB/LB using one
of the front-end languages of DBLAB/LB (QPlan or QMonad).
DBLAB/LB uses the Yin-Yang [41] framework to construct the

9http://github.com/epfldata/dblab

val hm = new MultiMap[Int, R]
for(r <- R) {
if(r.name == "R1")
hm.addBinding(r.sid, r)

}
var count = 0
for(s <- S) {

hm.get(s.rid) match {
case Some(rList) =>

for(r <- rList) {
if(r.sid == s.rid)
count += 1

}
case None => ()

}
}
count

(a) The optimized version of the
query in ScaLite[Map, List].

/*
The iteration over the first
relation is moved to the
next step.
*/
var count = 0
for(s <- S) {

for(r <- R) {
if(r.name == "R1")
if(r.sid == s.rid)
count += 1

}

}
count

(b) Naïvely removing the MultiMap
abstraction in ScaLite[List].

/* Precomputation */
val MR: Array[List[R]] =
// Indexed R on sid

/* Actual Query Processing */
var count = 0
for(s <- S) {

val rList = MR(s.rid)
for(r <- rList) {
if(r.name == "R1")
if(r.sid == s.rid)
count += 1

}

}
count

(c) The optimized version of the
query in ScaLite[List] when R.sid
is a foreign key. Note that List is a
mutable data structure.

/* Precomputation */
val MR: Array[R] =
// Indexed R on sid

/* Actual Query Processing */
var count = 0
for(s <- S) {

val r = MR(s.rid)
if (r.name == "R1")
if(r.sid == s.rid)
count += 1

}

count

(d) The optimized version of the
query in ScaLite[List] when R.sid
is a primary key.

Figure 7: Representations of an example query after applying pipelining and data-structure synthesis.

corresponding IR from these queries. As already discussed in Sec-
tion 4, the front-end languages are progressively lowered and opti-
mized until they reach the abstraction level of the C programming
language. Finally, the generated C programs are compiled using
any traditional C compiler such as CLang or GCC. At this point, our
stack has generated a stand-alone executable for the given query,
which includes data loading and data processing and whose execu-
tion produces the final query results. The overall DSL code base
(without the optimizations, whose lines of code are presented in
Section 7) is around a thousand lines of Scala code.

DBLAB heavily relies upon the functionality provided by SC
(“Systems Compiler”) [1], a generic DSL compiler framework. SC
provides a complete tool-chain for easily defining DSLs and the
corresponding transformations as well as a number of general-pur-
pose optimizations out-of-the-box. Note that applying one of the
optimizations mentioned throughout this paper does not necessar-
ily lead to performance improvements for a given query. In general,
finding the combination of optimizations that leads to optimal per-
formance is a very hard problem; for this reason, the SC DSL com-
piler does not try to automatically infer the optimal combination of
optimizations for each incoming query. Instead, SC was designed
so that it provides full control over the compilation process to the
DSL developers, while hiding the complicated internal implemen-
tation details of the compiler itself. Like DBLAB/LB, SC is also
written in Scala, and currently consists of around 27K LoC.

In this work, we extend the library of optimizations provided
by SC with several domain-specific optimizations which we apply
on and across the presented DSLs using the interfaces provided by
SC. These domain-specific optimizations can be found in previous
query compilation approaches, like those found in the HyPer [64]
database, the HIQUE [56] query compiler and the LegoBase [50]
query engine. More specifically, the DBLAB/LB DSL stack pro-
vides support for: 1) A push-based query engine [64], 2) Operator
Inlining [64], 3) Specialization of hash-table data structures [50],
4) Control flow optimizations to improve branch prediction and
cache locality [64], 5) String Dictionaries 10 [10], 6) Optimization
of memory allocations, by converting malloc calls to using memory
pools instead and, finally, 7) Standard compiler optimizations like
Partial Evaluation, Function Inlining, Scalar Replacement, DCE
and CSE [50].

10All performance numbers reported for LegoBase in [50] were ob-
tained by including string dictionaries.

7. EXPERIMENTAL RESULTS
Our experimental platform consists of a server-type x86 machine

equipped with two Intel Xeon E5-2620 v2 CPUs running at 2GHz
each, 256GB of DDR3 RAM at 1600Mhz and two commodity hard
disks of 2TB storing the experimental datasets. The operating sys-
tem is Red Hat Enterprise 6.7. For compiling the generated pro-
grams throughout our evaluation we use version 2.9 of the CLang
compiler with the default optimization flags. Finally, for C data
structures we use the GLib library (version 2.42.1).

For our evaluation we use TPC-H [81], a benchmark suite which
simulates data-warehousing and decision support; it provides a set
of 22 queries which represent actual business analytics operations
to a database with sales information. These queries have a high
degree of complexity and express most SQL features.

As a reference point for all results presented in this section, we
use the LegoBase query engine [50], an in-memory query execu-
tion engine written in the high-level programming language Scala.
This is in contrast to the traditional wisdom which calls for the use
of low-level languages for DBMS development. To avoid the over-
heads of a high-level language (e.g. complicated memory man-
agement) while maintaining nicely defined abstractions, LegoB-
ase uses generative programming [70, 77] and compiles the Scala
code to optimized, low-level C code for each SQL query. By pro-
gramming databases in a high-level style and still being able to
get good performance, the time saved can be spent implementing
more database features and optimizations. LegoBase already sig-
nificantly outperforms both a commercial in-memory database and
an existing state-of-the-art query compiler.

Our evaluation is divided into three parts. First, we present ex-
perimental results which demonstrate that by utilizing our multi-
level DSL stack, developers can build a query engine that matches
or even significantly outperforms the LegoBase system. This is be-
cause, by splitting optimizations across different abstraction layers
and separating concerns, it becomes easier to detect performance
bottlenecks that are evasive otherwise. Note that some optimiza-
tions of the SC DSL stack are not compliant with the TPC-H rules.
For this reason, we also present results for a TPC-H compliant set
of optimizations11. Second, we examine how much memory foot-
print is required for running the optimized queries (generated with
DBLAB/LB 5) and report on the compilation times. This is impor-

11To obtain this TPC-H compliant configuration we have disabled:
1) String Dictionaries 2) Data-Structure Partitioning 3) Automatic
Index Inference and, finally, 4) Removing unused table attributes.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22
LegoBase 168 108 195 283 2220 100 209 462 447 488 105 281 604 188 134 1326 75 245 371 495 669 191
DBLAB/LB 2 5936 1510 6176 12162 4904 580 4815 20069 27686 5500 797 3763 1846 1832 1633 16962 23765 6329 3075 1629 18636 1320
DBLAB/LB 3 1298 749 4978 10779 3514 289 2714 20069 27686 3411 339 3068 1002 1238 955 14956 18471 3055 3075 938 11595 885
DBLAB/LB 4 177 58 178 141 159 64 109 56 628 433 59 311 860 39 97 4285 38 198 64 194 385 91
DBLAB/LB 5 177 58 117 141 158 46 109 20 537 433 59 120 591 12 27 723 11 196 19 167 385 91
TPC-H Compliant 1298 611 4099 5628 2194 290 2745 6012 19944 3524 80 2567 855 446 1022 4285 4795 4228 2693 427 12070 900

Table 3: Performance results (in milliseconds) for TPC-H (scaling factor 8) for (a) the generated optimized C code of LegoBase [50], (b) the
generated C code of DBLAB/LB using an increasing number of levels in our DSL stack and, finally, (c) the TPC-H compliant DSL stack.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
10

Q
11

Q
12

Q
13

Q
14

Q
15

Q
16

Q
17

Q
18

Q
19

Q
20

Q
21

Q
22

M
e

m
o

ry
 C

o
n

s
u

m
p

ti
o

n
 [

G
B

]

Figure 8: Memory consumption for generated C code of TPC-H.

tant, as both these metrics are important indicators about whether
our approach scales to large datasets and whether it is usable in
practice. Finally, we are addressing the question of how much im-
plementation effort is required for introducing additional abstrac-
tion layers or DSLs to an existing stack. We do so by reporting
how many lines of code each optimization requires.

7.1 Performance Evaluation
In this section we experimentally evaluate the performance of

the DBLAB/LB query compiler. Table 3 presents experimental re-
sults for all 22 queries of the TPC-H benchmark for both our sys-
tem (while incrementally introducing DSLs and their correspond-
ing optimizations as presented in Section 4) and LegoBase [50].
We observe the following three things.

DBLAB/LB achieves a speedup of up to 23× (Q8), with an av-
erage performance improvement of 5×. More specifically, for 20
out of 22 queries, DBLAB/LB significantly outperforms the state-
of-the-art LegoBase system. This improvement was achieved by
introducing optimizations related to removing intermediate mate-
rializations that have a significant negative performance impact at
query execution. These materialization points (and other perfor-
mance bottlenecks) were not easy to be detected in the compli-
cated generated code of the original LegoBase system. In addi-
tion, we have introduced automatic inference of database indices,
based on database statistics, a technique that provided significant
performance improvements and was not expressed as a compiler
optimization before. However, we also note that in cases where
DBLAB/LB is slower than LegoBase (Q1, Q9), this is because the
latter was more aggressively optimizing the data structures, e.g. by
partitioning data using a composite set of attributes at data load-
ing time. We plan to investigate such optimization opportunities,
which are easily expressible with our DSL stack, in the future.

Second, Table 3 also presents a more detailed break-down of how
performance improves as DSLs and their corresponding optimiza-
tions are introduced in DBLAB/LB. In general we observe that as
more DSLs are introduced, performance can be significantly im-
proved. More specifically, when moving from a three to a four-
level DSL stack we get an additional 56× performance improve-
ment. This is because the introduction of the additional DSL “un-
locks” many optimization opportunities that were not expressible
before with a three-level stack. Observe also that the introduction
of additional DSLs does not always improve performance for all
queries. For example, when moving from a two-level to a three-

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
10

Q
11

Q
12

Q
13

Q
14

Q
15

Q
16

Q
17

Q
18

Q
19

Q
20

Q
21

Q
22D

B
L
A

B
/L

B
 +

 C
L
a
n
g
 [
s
e
c
o
n
d
s
]

DBLAB/LB Generation
CLang C Compilation

Figure 9: Compilation time for generated C code of TPC-H.

level DSL stack, performance is marginally improved (if at all) for
10 out of 22 queries. Yet, the introduction of an additional DSL
significantly improves the performance of Q1. Thus, we see that it
is definitely possible to express even query-specific optimizations
with the DBLAB/LB DSL stack. More importantly, Table 3 clearly
illustrates that performance is never negatively affected by the in-
troduction of an additional DSL level, for all 22 TPC-H queries.

Finally, we observe that the TPC-H compliant set of DBLAB/LB
optimizations typically leads to a better performance than that of a
three-level DSL stack, however it does not outperform the four-
level DSL stack. This is because, at the four-level stack we start
introducing optimizations that are no-longer TPC-H compliant.

7.2 Memory and Compilation Overheads
Figures 8 and 9 show the memory consumption and compilation

times, respectively, for all TPC-H queries (generated by DBLAB/LB
with 5 DSL levels). For memory profiling we use Valgrind as well
as a custom memory profiler, while the JVM is always first warmed
up. Compilation time includes the time that (a) DBLAB/LB re-
quires in order to perform program optimization and C code gener-
ation, as well as the (b) CLang compilation time.

First, we observe that the allocated memory is at most twice the
size of the input data for most TPC-H queries. Second, the com-
pilation time is divided almost equally between DBLAB/LB and
CLang. These results suggest that our approach is usable in prac-
tice, as even for complicated, multi-way join queries both the mem-
ory footprint and the compilation time remain small. Observe that
compilation overheads can be further reduced by generating LLVM
code directly, a direction that we plan to investigate in the future.

7.3 Productivity Evaluation
In this section we investigate how hard it is to introduce new op-

timizations in the DSL stack of DBLAB/LB. This is a very impor-
tant question, as it directly relates to the adaptivity of our proposed
solution to new requirements not covered so far in our work. We
address this question by presenting in detail our own experience
with developing DBLAB/LB so far. More specifically, Table 4
presents the amount of code lines required in order to introduce
new IR nodes for the associated transformations of each DSL in
our stack. We make three observations.

First, it becomes clear from this table that new transformations
can be introduced in DBLAB/LB with relative small programming

Column Store Transformer 184
Automatic Index Inference 318
Memory Allocation Hoisting 186
Pipelining in QPlan 0
Pipelining in QMonad 303
Horizontal Fusion in QMonad 152
Constant-Size Array to Local Vars 125
Flattening Nested Structs 118
Data-Structure Partitioning 505
Scala Constructs to C Transformer 1294

Total 3185

Table 4: Lines of code of several transformations in DBLAB/LB.

effort. This becomes evident when one considers complicated trans-
formations like those of Automatic Index Inference and Horizon-
tal Fusion12 which can both be coded for merely ∼ 500 lines of
code. More importantly, the overall coding effort of programming
DSLs and their transformations in DBLAB/LB (∼ 3.7KLoC) is al-
most the same as that reported by LegoBase (∼ 4.8KLoC [50])13.
Second, we see that pipelining in QPlan does not require any cod-
ing effort, while for QMonad it requires a transformation of ∼ 500
lines. This difference is due to the fact that QPlan inherently en-
codes a push engine; this is however not possible to do with the
purely functional characteristics of QMonad. Finally, we observe
that around half of the code-base concerns converting Scala code
to C; however this is a naïve task to be performed by developers,
as it usually results in a one-to-one translation between Scala and
C constructs. More importantly, this is a task that is required to be
performed only once for each language construct, and it needs to
be extended only as new constructs are introduced in the low-level
languages of DBLAB/LB.

8. OUTLOOK: PARALLELISM
One possible question regarding the extensibility of our approach

would be adding parallelism to the query engine. There are many
different variants of parallelization for database systems. Here, we
focus only on the intra-operator (or partitioned) parallelism which
can be achieved by (a) partitioning the input data of each operator
in the operator tree, (b) applying the sequential operator implemen-
tations on each partition and, finally, (c) merging the result obtained
on each partition [31]. Next, we show how our DSL stack can be
enriched with parallelization through demonstrating the modifica-
tions needed for the DSLs and the transformations.

First, we present the required modifications for the DSLs in our
stack. The parallelization logic is encoded in the QPlan DSL by
adding the split and merge operators [60]. As these two operators
are not expressible by middle level DSLs, the expressibility princi-
ple is violated. To solve this issue, the intermediate DSLs require
an appropriate set of facilities for parallelism. This is achieved by
adding threading facilities (i.e. forking and joining threads) to the
ScaLite DSL. As ScaLite[List], ScaLite[Map, List], and C.Scala
are extensions to ScaLite, these DSLs are also enriched with par-

12To perform a good loop fusion, short-cut deforestation is not suffi-
cient. Such techniques only provide vertical loop fusion, in which
one loop uses the result produced by another loop. However, in
order to perform further optimizations one requires to perform hor-
izontal loop fusion, in which different loops iterating over the same
range are fused into one loop [9, 29]. Good loop fusion is still an
open research topic in the PL community [76, 18, 27].

13DBLAB/LB comes with additional optimizations not listed in Ta-
ble 4; however their combined code size does not exceed 200LOC.

allelism for free. The framework generates parallel code by un-
parsing the parallel C.Scala constructs to the corresponding C code
(e.g. by using pthreads).

Second, we analyze what modifications are required for the trans-
formations. If the queries are not using parallel physical query
plans at all (e.g. there is no use of split and merge operators), then
no change is required for the transformations. However, the gener-
ated code for a query with split and merge operators should use an
appropriate set of parallelization constructs, as we described above.
To do so, we add the implementation of these two operators using
the threading constructs. This implementation leads to adjust the
pipelining transformation rules for these two operators, as was de-
scribed in Section 5.1. The merge operator needs special care based
on the class of the aggregation (e.g. SUM is distributive and AVG is
algebraic [32]). Apart from these two operators, there is no other
modification needed for the existing query operators. Also, this
modification is introduced only once and it is reused for all parallel
physical query plans. Furthermore, as the rest of existing trans-
formations are not modified, the generated code for each thread
benefits from the optimizations provided for the sequential version
of the DSL stack for free.

It has been shown that in some cases using shared data structures
(which requires a locking mechanism) is better than using private
data structures for each thread (which is the approach we demon-
strated here) [16]. Also, there is a possibility of using lock-free data
structures and work-stealing for scheduling the workload across the
worker threads [57]. Finally, although we use hash partitioning,
there are a number of other approaches for partitioning the input
data (e.g. range partitioning, etc.): the performance of each scheme
is dependent on the underlying workload scenario and data charac-
teristics [60]. We plan to investigate these directions by employing
program analysis and compilation techniques in the future.

9. CONCLUSIONS
In this paper we argue that it is time for a rethinking of how query

compilers are designed and implemented. Current solutions are
mainly using template expansion to generate low-level code from
high-level queries in one single step. Our experience with systems
built using this technique indicates that, in practice, it becomes very
difficult to maintain and extend such query compilers over time; the
complexity of their code-bases increases to unmanageable levels as
more and more optimizations are added.

Our suggested approach advocates modularizing a query com-
piler by defining several abstraction levels. Each abstraction level is
responsible for expressing only a subset of optimizations, a design
decision which creates a separation of concerns between different
optimizations. In addition, we propose progressively lowering the
high-level query to low-level code through multiple abstraction lev-
els. This allows for a more controlled code-generation approach.

We show that our approach, while introducing multiple abstrac-
tion layers, does not in fact negatively impact the performance of
the generated code, but instead improves it. This is because it al-
lows for expressing compiler optimizations that are already avail-
able in existing query compilers, but also new optimizations not
available before. More importantly, it does so while actually pro-
viding for a great degree of programmer productivity, a property
not found in any previous query compilation approach to date.

Acknowledgments
We thank Vojin Jovanovic and Manohar Jonalagedda for insight-
ful discussions that helped to improve this paper. This work was
supported by NCCR MARVEL and ERC grant 279804.

10. REFERENCES
[1] SC - Systems Compiler. http://data.epfl.ch/sc.
[2] Y. Ahmad and C. Koch. DBToaster: A SQL compiler for

high-performance delta processing in main-memory databases.
PVLDB, 2(2):1566–1569, 2009.

[3] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers, Principles,
Techniques. Addison wesley, 1986.

[4] A. W. Appel. SSA is functional programming. SIGPLAN notices,
33(4):17–20, 1998.

[5] A. W. Appel. Compiling with continuations. Cambridge University
Press, 2006.

[6] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley,
X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi, and M. Zaharia.
Spark SQL: Relational Data Processing in Spark. SIGMOD ’15,
pages 1383–1394, New York, NY, USA, 2015. ACM.

[7] K. Asai, H. Masuhara, and A. Yonezawa. Partial evaluation of
call-by-value λ-calculus with side-effects. PEPM ’97, pages 12–21.
ACM, 1997.

[8] S. Bauman, C. F. Bolz, R. Hirschfeld, V. Kirilichev, T. Pape, J. G.
Siek, and S. Tobin-Hochstadt. Pycket: A Tracing JIT for a Functional
Language. ICFP 2015, pages 22–34. ACM, 2015.

[9] C. Beeri and Y. Kornatzky. Algebraic optimization of object-oriented
query languages. In ICDT ’90, volume 470, pages 72–88. 1990.

[10] C. Binnig, S. Hildenbrand, and F. Färber. Dictionary-based
order-preserving string compression for main memory column stores.
In SIGMOD ’09, pages 283–296. ACM, 2009.

[11] V. Breazu-Tannen, P. Buneman, and L. Wong. Naturally embedded
query languages. Springer, 1992.

[12] V. Breazu-Tannen and R. Subrahmanyam. Logical and computational
aspects of programming with sets/bags/lists. Springer, 1991.

[13] J. Carette, O. Kiselyov, and C.-C. Shan. Finally tagless, partially
evaluated: Tagless staged interpreters for simpler typed languages.
Journal of Functional Programming, 19(05):509–543, 2009.

[14] M. M. Chakravarty, G. Keller, and P. Zadarnowski. A functional
perspective on SSA optimisation algorithms. Electronic Notes in
Theoretical Computer Science, 82(2):347–361, 2004.

[15] D. D. Chamberlin, M. M. Astrahan, M. W. Blasgen, J. Gray, W. F.
King III, B. G. Lindsay, R. A. Lorie, J. W. Mehl, T. G. Price, G. R.
Putzolu, P. G. Selinger, M. Schkolnick, D. R. Slutz, I. L. Traiger,
B. W. Wade, and R. A. Yost. A history and evaluation of system R.
CACM, 24(10):632–646, 1981.

[16] J. Cieslewicz and K. A. Ross. Adaptive aggregation on chip
multiprocessors. VLDB ’07, pages 339–350. ACM, 2007.

[17] C. Click and K. D. Cooper. Combining analyses, combining
optimizations. TOPLAS, 17(2):181–196, Mar. 1995.

[18] D. Coutts, R. Leshchinskiy, and D. Stewart. Stream fusion. from lists
to streams to nothing at all. In ICFP ’07, 2007.

[19] A. Crotty, A. Galakatos, K. Dursun, T. Kraska, U. Çetintemel, and
S. B. Zdonik. Tupleware:" big" data, big analytics, small clusters. In
CIDR, 2015.

[20] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K.
Zadeck. Efficiently computing static single assignment form and the
control dependence graph. TOPLAS, 13(4):451–490, 1991.

[21] A. Darte. On the complexity of loop fusion. Parallel Computing,
26(9):1175 – 1193, 2000.

[22] L. Fegaras and D. Maier. Optimizing object queries using an effective
calculus. ACM Trans. Database Syst., 25(4):457–516, Dec. 2000.

[23] M. Felleisen. On the expressive power of programming languages. In
ESOP’90, pages 134–151. Springer, 1990.

[24] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program
dependence graph and its use in optimization. TOPLAS,
9(3):319–349, July 1987.

[25] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence of
compiling with continuations. In ACM Sigplan Notices, volume 28,
pages 237–247. ACM, 1993.

[26] F. Franchetti, Y. Voronenko, and M. Püschel. Formal loop merging
for signal transforms. PLDI ’05, pages 315–326.

[27] A. Gill, J. Launchbury, and S. L. Peyton Jones. A short cut to defore-
station. FPCA, pages 223–232. ACM, 1993.

[28] A. J. Gill. Cheap deforestation for non-strict functional languages.
PhD thesis, University of Glasgow, 1996.

[29] A. Goldberg and R. Paige. Stream processing. LFP ’84, pages 53–62,
New York, NY, USA, 1984. ACM.

[30] G. Graefe. Query evaluation techniques for large databases. CSUR,
25(2):73–169, June 1993.

[31] G. Graefe. Volcano-an extensible and parallel query evaluation
system. IEEE Transactions on Knowledge and Data Engineering,
6(1):120–135, 1994.

[32] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart,
M. Venkatrao, F. Pellow, and H. Pirahesh. Data cube: A relational
aggregation operator generalizing group-by, cross-tab, and sub-totals.
Data Min. Knowl. Discov., 1(1):29–53, Jan. 1997.

[33] T. Grust, M. Mayr, J. Rittinger, and T. Schreiber. FERRY:
database-supported program execution. SIGMOD 2009, pages
1063–1066. ACM.

[34] T. Grust, J. Rittinger, and T. Schreiber. Avalanche-safe LINQ
compilation. PVLDB, 3(1-2):162–172, Sept. 2010.

[35] T. Grust and M. Scholl. How to comprehend queries functionally.
Journal of Intelligent Information Systems, 12(2-3):191–218, 1999.

[36] P. Hudak. Building domain-specific embedded languages. ACM
Comput. Surv., 28(4es), Dec. 1996.

[37] S. Idreos, F. Groffen, N. Nes, S. Manegold, S. Mullender, M. Kersten,
et al. Monetdb: Two decades of research in column-oriented database
architectures. IEEE Data Eng. Bull., 35(1):40–45, 2012.

[38] N. D. Jones, C. K. Gomard, and P. Sestoft. Partial evaluation and
automatic program generation. Prentice Hall, 1993.

[39] S. Jones. Compiling haskell by program transformation: A report
from the trenches. In H. Nielson, editor, Programming Languages
and Systems - ESOP ’96, volume 1058 of Lecture Notes in Computer
Science, pages 18–44. Springer Berlin Heidelberg, 1996.

[40] M. Jonnalagedda and S. Stucki. Fold-based fusion as a library: A
generative programming pearl. In Proceedings of the 6th ACM
SIGPLAN Symposium on Scala, pages 41–50. ACM, 2015.

[41] V. Jovanovic, A. Shaikhha, S. Stucki, V. Nikolaev, C. Koch, and
M. Odersky. Yin-Yang: Concealing the deep embedding of DSLs.
GPCE 2014, pages 73–82. ACM, 2014.

[42] J. Kam and J. Ullman. Monotone data flow analysis frameworks.
Acta Informatica, 7(3):305–317, 1977.

[43] J. B. Kam and J. D. Ullman. Global data flow analysis and iterative
algorithms. J. ACM, 23(1):158–171, Jan. 1976.

[44] M. Karpathiotakis, I. Alagiannis, T. Heinis, M. Branco, and
A. Ailamaki. Just-in-time data virtualization: Lightweight data
management with vida. In CIDR, 2015.

[45] R. A. Kelsey. A correspondence between continuation passing style
and static single assignment form. In ACM SIGPLAN Notices,
volume 30, pages 13–22. ACM, 1995.

[46] A. Kennedy. Compiling with continuations, continued. In ACM
SIGPLAN Notices, volume 42, pages 177–190, 2007.

[47] K. Kennedy. A survey of data flow analysis techniques. IBM Thomas
J. Watson Research Division, 1979.

[48] K. Kennedy and K. McKinley. Maximizing loop parallelism and
improving data locality via loop fusion and distribution. In
Languages and Compilers for Parallel Computing, pages 301–320.
Springer Berlin Heidelberg, 1994.

[49] W. Kim. On Optimizing an SQL-like Nested Query. ACM Trans.
Database Syst., 7(3):443–469, Sept. 1982.

[50] Y. Klonatos, C. Koch, T. Rompf, and H. Chafi. Building efficient
query engines in a high-level language. PVLDB, 7(10):853–864,
2014.

[51] Y. Klonatos, A. Nötzli, A. Spielmann, C. Koch, and V. Kuncak.
Automatic Synthesis of Out-of-core Algorithms. In ACM SIGMOD,
pages 133–144, 2013.

[52] C. Koch. Incremental query evaluation in a ring of databases. PODS
2010, pages 87–98. ACM, 2010.

[53] C. Koch. Abstraction without regret in data management systems. In
CIDR, 2013.

[54] C. Koch. Abstraction without regret in database systems building: a
manifesto. IEEE Data Eng. Bull., 37(1):70–79, 2014.

[55] C. Koch, Y. Ahmad, O. Kennedy, M. Nikolic, A. Nötzli, D. Lupei,
and A. Shaikhha. DBToaster: higher-order delta processing for
dynamic, frequently fresh views. VLDBJ, 23(2):253–278, 2014.

[56] K. Krikellas, S. Viglas, and M. Cintra. Generating code for holistic
query evaluation. In ICDE, pages 613–624, 2010.

[57] V. Leis, P. Boncz, A. Kemper, and T. Neumann. Morsel-driven
Parallelism: A NUMA-aware Query Evaluation Framework for the
Many-core Age. SIGMOD ’14, pages 743–754, New York, NY,
USA, 2014. ACM.

[58] D. Leivant. Reasoning about functional programs and complexity
classes associated with type disciplines. In FOCS, pages 460–469,
Nov 1983.

[59] L. Libkin. Expressive Power of SQL. Theor. Comput. Sci.,
296(3):379–404, Mar. 2003.

[60] M. Mehta and D. J. DeWitt. Managing intra-operator parallelism in
parallel database systems. In VLDB, volume 95, pages 382–394,
1995.

[61] E. Meijer, B. Beckman, and G. Bierman. LINQ: Reconciling Object,
Relations and XML in the .NET Framework. SIGMOD ’06, pages
706–706. ACM, 2006.

[62] F. Nagel, G. Bierman, and S. D. Viglas. Code generation for efficient
query processing in managed runtimes. PVLDB, 7(12):1095–1106.

[63] S. Najd, S. Lindley, J. Svenningsson, and P. Wadler. Everything old is
new again: Quoted domain-specific languages. PEPM 2016, pages
25–36, New York, NY, USA, 2016. ACM.

[64] T. Neumann. Efficiently Compiling Efficient Query Plans for Modern
Hardware. PVLDB, 4(9):539–550, 2011.

[65] V. Pankratius, F. Schmidt, and G. Garreton. Combining functional
and imperative programming for multicore software: An empirical
study evaluating Scala and Java. In ICSE 2012, pages 123–133.

[66] B. C. Pierce. Types and programming languages. MIT press, 2002.
[67] M. Puschel, J. M. Moura, J. R. Johnson, D. Padua, M. M. Veloso,

B. W. Singer, J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko, et al.
SPIRAL: code generation for DSP transforms. Proceedings of the
IEEE, 93(2):232–275, 2005.

[68] R. Ramakrishnan and J. Gehrke. Database Management Systems.
Osborne/McGraw-Hill, 2nd edition, 2000.

[69] G. Ramalingam. The undecidability of aliasing. TOPLAS,
16(5):1467–1471, Sept. 1994.

[70] T. Rompf and M. Odersky. Lightweight Modular Staging: A
Pragmatic Approach to Runtime Code Generation and Compiled
DSLs. CACM, 55(6):121–130, June 2012.

[71] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global Value
Numbers and Redundant Computations. POPL ’88, pages 12–27.
ACM, 1988.

[72] O. Shivers and M. Might. Continuations and transducer composition.
PLDI ’06, pages 295–307. ACM, 2006.

[73] D. G. Spampinato and M. Püschel. A basic linear algebra compiler.
CGO ’14, pages 23:23–23:32. ACM, 2014.

[74] J. Stanier and D. Watson. Intermediate representations in imperative
compilers: A survey. CSUR, 45(3):26:1–26:27, July 2013.

[75] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack,
M. Ferreira, E. Lau, A. Lin, S. Madden, E. O’Neil, P. O’Neil,
A. Rasin, N. Tran, and S. Zdonik. C-store: A Column-oriented
DBMS. VLDB ’05, pages 553–564. VLDB Endowment, 2005.

[76] J. Svenningsson. Shortcut fusion for accumulating parameters &
zip-like functions. ICFP ’02, pages 124–132. ACM, 2002.

[77] W. Taha and T. Sheard. Multi-stage programming with explicit
annotations. PEPM ’97, pages 203–217, NY, USA, 1997. ACM.

[78] R. Tate, M. Stepp, Z. Tatlock, and S. Lerner. Equality saturation: A
new approach to optimization. POPL ’09, pages 264–276. ACM.

[79] L. Torczon and K. Cooper. Engineering A Compiler. Morgan
Kaufmann Publishers Inc., 2nd edition, 2011.

[80] S.-A.-A. Touati and D. Barthou. On the decidability of phase orde-
ring problem in optimizing compilation. In Proceedings of the 3rd
Conference on Computing Frontiers, CF ’06, pages 147–156, 2006.

[81] Transaction Processing Performance Council. TPC-H, a decision
support benchmark. http://www.tpc.org/tpch.

[82] P. Trinder. Comprehensions, a Query Notation for DBPLs. In Proc.
of the 3rd DBPL workshop, DBPL3, pages 55–68, San Francisco,
CA, USA, 1992. Morgan Kaufmann Publishers Inc.

[83] D. Turner. Total functional programming. Journal of Universal
Computer Science, 10(7):751–768, 2004.

[84] S. Viglas, G. M. Bierman, and F. Nagel. Processing Declarative
Queries Through Generating Imperative Code in Managed Runtimes.
IEEE Data Eng. Bull., 37(1):12–21, 2014.

[85] E. Visser, Z. Benaissa, and A. Tolmach. Building program optimizers
with rewriting strategies. ICFP ’98, pages 13–26, 1998.

[86] P. Wadler. Deforestation: Transforming programs to eliminate trees.
In ESOP’88, pages 344–358. Springer, 1988.

[87] P. Wadler. Comprehending monads. In Proceedings of the 1990 ACM
Conference on LISP and Functional Programming, LFP ’90, pages
61–78, New York, NY, USA, 1990. ACM.

[88] T. Würthinger, A. Wöß, L. Stadler, G. Duboscq, D. Simon, and
C. Wimmer. Self-optimizing AST Interpreters. DLS ’12, pages
73–82, New York, NY, USA, 2012. ACM.

[89] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica. Resilient Distributed
Datasets: A Fault-tolerant Abstraction for In-memory Cluster
Computing. NSDI’12. USENIX Association.

APPENDIX
In this section we provide more information in two areas. First,
we discuss about other IRs introduced in the PL community, and
compare those with the ANF IR used in DBLAB/LB. Second, we
present more optimizations supported by the DBLAB/LB stack for
a number of different database components.

A. MORE ON INTERMEDIATE REPRESEN-
TATIONS

There are several IRs proposed in the PL community which sim-
plify data-flow analysis, chief among them 1) SSA [71, 20], 2)
CPS [5, 46], and 3) ANF [25]. Although it has been proven that
these IRs are semantically equivalent [25, 4, 45], from a practical
point of view there are advantages and disadvantages for using each
one. Even in the PL community, there is no consensus on which IR
is the best [46, 25, 14]. It is, however, undisputed in the PL commu-
nity that a simple use of ASTs, the dominant choice in work by the
database community, creates the problems mentioned before and is
inferior to these three for many uses.

The reasons for using ANF can be summarized as follows: first,
ANF simplifies data-flow analysis by allowing a single definition
of variables [14], which has a great impact on simplifying opti-
mizations that use data-flow information, such as CSE – indeed,
it facilitates the mix of effectful and pure computations, and has
been shown to make optimizing transformations and analyses eas-
ier to write [8]; second, both ANF and SSA preserve the natu-
ral organization of programs (called “direct-style”), making them
more understandable than CPS (which uses “continuation-passing
style”, whereby functions call continuations instead of returning
values [25]); third, as ANF is a direct-style representation of λ-
calculus [25], there are very well-known frameworks for the anal-
ysis and verification of λ-calculus developed in the PL commu-
nity [58]. Hence, reasoning about compiler optimizations in ANF
is simpler [14]; finally, by converting many semantically equivalent
programs into a canonical representation, expressing optimizations
becomes simpler [49], as there is no more any need to express op-
timizations for all semantically equivalent cases: it suffices to only
express one for the canonical form.

There are other IRs proposed in the literature, which mainly tar-
get optimizations for parallel architectures (e.g. PDG [24]), or are
meant to help and combine compiler optimizations (e.g. a sea of IR
nodes [17] and E-PEG [78]). However, these IRs complicate the
debugging process of program compilation, and are seldom used in
real-world, mainstream compilers [74]. Although we did not con-
sider using these IRs, it would be an interesting direction for our
future work, particularly when targeting parallel architectures.

B. DATA-STRUCTURE SPECIALIZATION
Data-structure specialization is crucial for achieving high-perfo-

rmance query execution, as it eliminates the unnecessary abstrac-
tion overhead of generic data structures like hash tables. Next, we
present in more detail how our system performs such optimizations.

B.1 Indexing and Partitioning
The most important form of data-structure specialization con-

cerns optimizing the data structures that hold the data of the input
relations. This is true even for multi-way join-intensive queries.
To enable several DBLAB/LB optimizations for these structures,
developers must annotate the primary and foreign keys of their re-
lations, at schema definition time. DBLAB/LB then creates opti-
mized data structures for those relations, as follows.

First, for each input relation, DBLAB/LB creates a replicated
data structure which is accessed in constant time through the pri-
mary key specified for that relation. There are two possibilities:

• For single-attribute primary keys, the value of this attribute in
each tuple is used to place the tuple in a continuous 1D-array.
This is easy to do for the relations with integer primary keys in
the range of [1...#num_tuples]. However, even when the pri-
mary key is not in a continuous value range, DBLAB/LB cur-
rently makes an aggressive system memory trade-off to hold
a sparse array for that primary key.

• For composite primary keys, DBLAB/LB does not create a
1D array and instead uses the foreign key for this purpose.

Second, DBLAB/LB replicates and repartitions the data of the
input relations based on each specified foreign key. This basically
leads to the creation of a two-dimensional array, indexed by the
foreign key, where each bucket holds all the tuples having a partic-
ular value for that foreign key. We also apply the same partitioning
technique for relations that have primary composite keys, as we
mentioned above. We resolve the case where the foreign key is
not in a contiguous value range by trading-off system memory, in a
similar way to how we handled the primary keys.

This technique improves query performance, but trades-off mem-
ory consumption as a consequence. Observe that for relations that
have multiple foreign keys, not all corresponding partitioned input
relations need to be kept in memory at the same time, as an in-
coming SQL query may not use all of them. Thus, DBLAB/LB
loads the proper partitioned table based on select and join condi-
tions available in the given query only, and the attributes referenced
on those conditions.

In addition to the aforementioned partitioning mechanism, the
DBLAB/LB system re-uses this mechanism in order to create in-
dices on attributes of date types. These are used to significantly
speed up select predicates performed on such attributes.

These indices are automatically constructed at data loading time
when an SQL query is given to the DBLAB/LB query compiler.
These indices are created by repartitioning the data from the origi-
nal relation array into a two dimensional array, where each bucket
holds the tuples belonging to a specific year (or even a particular
year-month combination).

As a result of these indices, the corresponding predicates on
date attributes are converted into simple if conditions capturing
whether the tuples belonging to a bucket should be processed or
not. These indices are particularly important for scan operators that
process large input relations.

B.2 Hash-Table Specialization
One of the most important data structures in query processing

for handling different operators such as hash join and aggregation

is the hash-table data structure. By default, DBLAB/LB uses GLib
hash tables for generating C code out of the hash-table constructs
of the Scala programming language. Independent of the language
chosen, however, the overhead of using such generic data structures
is significant for at least three reasons: (a) there typically exists data
redundancy between the key and value stored in the map, (b) there
are numerous function calls occurring for processing a single tuple,
and, (c) resizing operations may be needed, so that the data struc-
ture remains efficient as more data is placed into it. DBLAB/LB
avoids these issues by lowering hash tables to native arrays and
linked lists and inlining the corresponding operations.

C. OPTIMIZING MEMORY HIERARCHY
ACCESSES

Unused Struct Field Removal: DBLAB/LB provides an opti-
mization for removing struct fields that are not accessed by a par-
ticular SQL query. DBLAB/LB optimizes data loading, so that it
avoids loading into memory the values for the unnecessary fields. It
does so, by analyzing the input code and removing the set of unused
fields from the record definitions. This reduces memory pressure
and improves cache locality.

The removal of unnecessary fields improves the performance of
row layout the most. This is because of two reasons. First, even
without field removal optimization the columnar layout is implic-
itly applying this optimization, as the unused columns are never
cached, thus not negatively affecting cache locality. Second, for
row layout the field removal optimization basically allows to store
the record attributes in a more compact way in memory and hence,
improves the cache locality for this layout.

Removing Unnecessary Let-Bindings: The SC DSL compiler
uses the ANF IR (cf. Section 3.3) for applying transformations
and while performing code generation. Although this IR simplifies
analysis, transformations, and code generation for the compiler, it
has the negative effect of introducing many unnecessary interme-
diate variables during code generation. We have observed that this
form of code generation not only affects code compactness, but also
significantly increases register pressure. To improve upon this situ-
ation, the SC DSL compiler removes any intermediate variable that
satisfies the following three conditions: it (a) is set only once, (b)
has no side effects, and, finally, (c) is initialized with a single value
(and thus its initialization does not correspond to executing possible
expensive computation). SC then replaces any appearance of this
variable later in the code with its initialization value. We have ob-
served that this optimization makes the generated code much more
compact, reduces register pressure, and results in significant per-
formance improvements. More importantly, we have observed that
the granularity at which this optimization is applied does not allow
this optimization to be detected by low-level compilers like LLVM.

Finally, the SC DSL compiler applies a technique known as Scalar
Replacement. This optimization removes structs whose fields can
be flattened to local variables. This optimization has the effect of
removing a memory access from the critical path, since the field of
a struct can be referenced immediately without requiring referenc-
ing the variable holding the struct itself. We have observed that this
optimization significantly improves cache locality.

D. DOMAIN-SPECIFIC CODE MOTION
Domain-Specific Code Motion subsumes optimizations that re-

move code segments that have negative impact on query execution
performance from the critical path, and instead execute the logic
of those code segments during data loading. Thus, the optimiza-

tions in this category trade-off increased loading time for improved
query execution performance. There are two main optimizations in
this category, described next.

D.1 Hoisting Memory Allocations
Memory allocations can cause significant performance degrada-

tion in query execution. By taking advantage of type information
available in each SQL query, we can completely eliminate such al-
locations from the critical path, as described next.

At query compilation time, information is gathered regarding the
data types used throughout an incoming SQL query. This is done
through an analysis phase, where the compiler collects all malloc
expressions in the program, once the latter has been lowered to the
C.Scala DSL (cf. Section 4.1). The obtained types may repre-
sent either the initial database relations or the intermediate results.
Based on this information, the DBLAB/LB query compiler initial-
izes memory pools during data loading, one for each type. For
example, for TPC-H queries, DBLAB/LB generates pools for allo-
cating the data types of all TPC-H relations, as well as supporting
pools for specific operators, e.g. a pool for allocating the aggregate
records.

Then, at query execution time, the corresponding malloc state-
ments are replaced with references to those memory pools. We
have observed that this optimization significantly reduces the num-
ber of CPU instructions executed, and significantly contributes to
improving cache locality. We note that it is not sufficient to naïvely
generate one pool per data-type in the order of their appearance, as
there may be dependencies between types. This is particularly true
for composite types, which need to reference the pools of the native
types (e.g. the pool for Strings). We resolve such dependencies by
first applying topological sorting on the obtained type information
and then generating the pools in the proper order.

Finally, the size of these pools is estimated by performing worst-
case cardinality analysis on a given query. Currently worst-case
estimation is driven by two factors: (a) the collection of statistical
metrics like cardinality estimation and attribute skew (e.g. number
of distinct values per attribute) as well as (b) the usage of annota-
tions that are specified by developers at schema definition time. As
an example of the former, DBLAB/LB gathers information about
how many distinct years exist in all attributes of date type (and uti-
lizes this information in the join indices presented in Section B.1),
while an example of the latter includes the definition by develop-
ers of 1-N relationships when joining two relations. Based on this
information, DBLAB/LB calculates the worst-case selectivity of
even multi-way join queries.

As the cardinality is estimated in a worst-case scenario, the trans-
former may lead to allocation of much more space than what is
actually needed. However, we have confirmed that our estimated
statistics are accurate enough so that they do not unnecessarily cre-
ate memory pressure, thus negatively affecting query execution per-
formance. Furthermore, our general framework is not tied to this
transformation. Hence, based on the workload we can use different
variants of this transformation. For example, one could completely
disable this transformation and leave the memory management to
the runtime. Alternatively, one could preallocate certain amount
of memory pools and in the case of overflowing the memory pool
increasing its capacity by a certain factor (e.g. a factor of two) to
amortize the runtime complexity.

D.2 Hoisting Data-Structure Initialization
Key-value stores are used in DBLAB/LB to calculate aggrega-

tions. During this evaluation, it is necessary to first check whether

the corresponding key for the aggregation already exists in the ag-
gregation data structure. If so, it would return the existing aggre-
gation, otherwise it would insert a new aggregation into the data
structure. This means, that at least one if condition must be eval-
uated for every tuple that is processed by the aggregate operator.
We have observed that such if conditions, that exist purely for the
purpose of data structure initialization, significantly affect branch
prediction and overall query execution performance.

DBLAB/LB provides a transformation to remove such initializa-
tion of data structures from the critical path by taking advantage of
domain-specific knowledge. For instance, if the key to the aggre-
gation is a relation primary key, we know from data loading time
the possible values this key can take. By doing so, we can initialize
possible aggregations for each key with the value zero. Then, at
query execution time, the corresponding if condition mentioned
above no longer needs to be evaluated, as the aggregation already
exists and can be accessed directly.

It is important to note that this optimization is not possible in its
full generality, as it directly depends on the ability to predict the
possible key values in advance, during data loading. Particularly
for TPC-H, we note two things. First, there is no key that is the
result of an intermediate join operator deeply nested in the query
plan. Instead, TPC-H uses attributes of the original relations to
access most data structures, attributes whose value range can be es-
timated accurately during data loading. Second, for TPC-H queries
the value range is very small, typically ranging up to a couple of
thousand sequential key values. These two properties combined al-
low to completely remove initialization overheads and the associ-
ated unnecessary computation for the TPC-H queries. As an exam-
ple, this optimization improves the performance of TPC-H query 1
by 10%. The workload-specific information is guided through an-
notations (cf. Section 3.3). These annotations are used for checking
the applicability of this optimization. If the given query does not
have these properties (e.g. a query without the properties of the
TPC-H queries mentioned above) the transformation is no longer
applied. In other words, this transformation is smart enough to be
applied only to queries which statisfy the mentioned properties.

E. FINE-GRAINED OPTIMIZATIONS
Finally, there is a category of fine-grained compiler optimiza-

tions that are applied last in the compilation process. These opti-
mizations target optimizing very small code segments (even indi-
vidual statements) under particular conditions. We briefly present
three such optimizations next.

DBLAB/LB can transform arrays to a set of local variables. This
lowering is possible only when (a) the array size is statically known
at compile time, (b) the array is relatively small and, finally, (c) the
index of every array access can be inferred at compile time (oth-
erwise, the compiler is not able to know to which local variable
this array access is mapped to). Second, the query compiler pro-
vides an optimization to change the boolean condition x && y to
x & y where x and y both evaluate to boolean, an optimization
which, according to our observations, improves branch prediction.
However, to make sure that this optimization is semantic preserv-
ing, the second operand must not have any side-effect. Finally,
the compiler can be instructed to apply tiling to for loops whose
range are known at compile time (or can be accurately estimated).
Based on our observations these fine-grained optimizations, which
can be typically written in less than a hundred lines of code, signif-
icantly improve query execution performance. More importantly,
since they have very fine-grained granularity, their application does
not introduce additional performance overheads.

