
The End of Slow Networks: It’s Time for a Redesign
Carsten Binnig Andrew Crotty Alex Galakatos Tim Kraska Erfan Zamanian

Department of Computer Science, Brown University
{firstname lastname}@brown.edu

ABSTRACT
The next generation of high-performance networks with re-
mote direct memory access (RDMA) capabilities requires
a fundamental rethinking of the design of distributed in-
memory DBMSs. These systems are commonly built under
the assumption that the network is the primary bottleneck
and should be avoided at all costs, but this assumption no
longer holds. For instance, with InfiniBand FDR 4×, the
bandwidth available to transfer data across the network is
in the same ballpark as the bandwidth of one memory chan-
nel. Moreover, RDMA transfer latencies continue to rapidly
improve as well. In this paper, we first argue that traditional
distributed DBMS architectures cannot take full advantage
of high-performance networks and suggest a new architec-
ture to address this problem. Then, we discuss initial results
from a prototype implementation of our proposed architec-
ture for OLTP and OLAP, showing remarkable performance
improvements over existing designs.

1. INTRODUCTION
We argue that the current trend towards high-performance

networks with remote direct memory access (RDMA) ca-
pabilities like InfiniBand will require a complete redesign
of modern distributed in-memory DBMSs. These systems
are built on the assumption that the network is the main
bottleneck [7] and consequently aim to avoid communica-
tion between nodes, using techniques such as locality-aware
partitioning schemes [49, 45, 17, 62], semi-reductions for
joins [51], and complicated preprocessing steps [47, 53]. Yet,
with the nascent modern network technologies, the assump-
tion that the network is the bottleneck no longer holds.

Even today, the bandwidth available to transfer data over
the network with InfiniBand FDR 4× [6] is in the same ball-
park as the bandwidth of one memory channel. DDR3 mem-
ory bandwidth currently ranges from 6.25GB/s (DDR3-800)
to 16.6GB/s (DDR3-2133) [1] per channel, whereas Infini-
Band has a specified bandwidth of 1.7GB/s (FDR 1×) to
37.5GB/s (EDR 12×) [6] per NIC port (see Figure 1(a)).

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 9, No. 7
Copyright 2016 VLDB Endowment 2150-8097/16/03.

0	
5	
10	
15	
20	
25	
30	
35	
40	

1x
	

4x
	

12
x	 1x
	

4x
	

12
x	 1x
	

4x
	

Du
al
	 4
x	

12
x	 1x
	

4x
	

12
x	

13
33
	

16
00
	

18
66
	

21
33
	

QDR	 FDR-‐10	 FDR	 EDR	 DDR3	

InfiniBand	 Memory	

Ba
nd

w
id
th
	 (G

B/
s)
	

(a) Specification (b) Experimental

Figure 1: Memory vs Network Bandwidth: (a) spec-
ification, (b) for a Dual-socket Xeon E5v2 server
with DD3-1600 and two FDR 4× NICs per socket

Moreover, future InfiniBand standards (e.g., HDR, NDR)
promise bandwidths that will dramatically exceed memory
channel bandwidth.

However, modern CPUs typically support four memory
channels per socket. For example, a machine with DDR3-
1600 memory has 12.8GB/s per channel, with a total aggre-
gate memory bandwidth of 51.2GB/s; four dual-port FDR
4× NICs could provide roughly the same bandwidth.1 Fur-
thermore, data transfer between the CPU and memory is
half-duplex, while InfiniBand and PCIe are full-duplex, such
that only two NICs could saturate the memory bandwidth
of a read/write workload. With the newer InfiniBand EDR
standard, only a single dual-port NIC is needed. Figure 1(b)
shows the theoretical (left) and measured (right) total mem-
ory and network throughput for a dual-socket machine with
DDR3-1600 memory and two FDR 4× NICs per socket (four
total). This microbenchmark shows that the network trans-
fer on our hardware is limited by the available memory band-
width. For measuring the local memory bandwidth, we used
a 1:1 read/write ratio, which best simulates a distributed
workload where two machines simultaneously write data to
each other. While these measurements are for InfiniBand,
we expect that Ethernet networks will become similarly ad-
vanced [57, 24].

Another important factor is that network latency is rapidly
improving with major advances in RDMA. For example, our
microbenchmarks show that the network transfer latency
with InfiniBand FDR 4× using RDMA to send 1KB of data
is ≈ 1µs, compared to ≈ 0.08µs for the CPU to read the
same amount of data from memory. With messages of only
256KB, there is virtually no difference between the access
times, since the bandwidth becomes the dominant factor.

1We do not assume that the PCIe bus is a bottleneck since
current Xeon E5 boards have 39.4GB/s of total bandwidth.

528

Yet, we do not argue that network latency will ever meet
or exceed memory latency; rather we believe that efficient
use of CPU caches and local memory will play an even more
important role for small data requests (e.g., a hash table
lookup) because performance is no longer dictated by net-
work transfers.

At the same time, InfiniBand is becoming increasingly
affordable for smaller deployments. For example, a small
cluster with eight servers, each with two Xeon E5v2 CPUs
and one 2-port InfiniBand FDR 4× NIC, and a total of 2TB
of DDR3-1600 memory costs under $80K, with the switch
and NICs representing roughly $20K of the total cost. In
this configuration, the bandwidth for sending data across
the network (13.6GB/s) is close to the bandwidth of one
memory channel (12.8GB/s). Furthermore, memory prices
continue to drop such that even large datasets can fit entirely
in memory on just a few machines, thereby removing disk
I/O and creating a more balanced system.

However, it is wrong to assume that a high-performance
network changes the cluster to a NUMA architecture be-
cause: (1) RDMA-based memory access patterns are very
different from local memory access patterns; (2) random ac-
cess latency for remote requests is still significantly higher;
and (3) hardware-embedded coherence mechanisms that en-
sure data consistency in a NUMA architecture do not exist
for RDMA. We therefore believe that clusters with RDMA
should be regarded as hybrid shared-memory and message-
passing architectures: they are neither a shared-memory
system (several address spaces exist) nor a pure message-
passing system (data can be directly accessed via RDMA).

Consequently, we argue that it is time for a complete re-
design of traditional distributed DBMS architectures in or-
der to fully leverage the next generation of network technolo-
gies. For example, given the fast network, it is no longer ob-
vious that avoiding distributed transactions is always bene-
ficial.Similarly, distributed algorithms (e.g., joins) should no
longer be designed to minimize network communication [47];
instead, they should carefully consider multi-core architec-
tures and CPU caching effects. While our proposal is not the
first attempt to leverage RDMA for distributed DBMSs [59,
54, 38], existing work does not fully recognize that next gen-
eration networks create an architectural inflection point.

In summary, this paper makes the following contributions:

• We present microbenchmarks to assess performance
characteristics of one of the latest InfiniBand stan-
dards, FDR 4× (Section 2).
• We present alternative architectures for a distributed

in-memory DBMS over fast networks and introduce a
novel Network-Attached Memory (NAM) architecture
(Section 3).
• We show why the common wisdom that says “2-phase-

commit does not scale” no longer holds for RDMA-
enabled networks and outline how OLTP workloads
can take advantage of the network by using the NAM
architecture (Section 4).
• We analyze the performance of distributed OLAP op-

erations (joins and aggregations) and propose new al-
gorithms for the NAM architecture (Section 5).

2. BACKGROUND
Before making a detailed case concerning why and how

distributed DBMS architectures need to fundamentally change
in order to take advantage of the next generation of network

technologies, we first provide some background information
and microbenchmarks that describe the characteristics of
InfiniBand and RDMA.

2.1 InfiniBand and RDMA
In the past, InfiniBand was a very expensive, high band-

width, low latency network found only in high-performance
computing settings. However, InfiniBand has recently be-
come cost-competitive with Ethernet and thus a viable al-
ternative for networking in small clusters.

Communication Stacks: InfiniBand offers two network
communication stacks: IP over InfiniBand (IPoIB) and re-
mote direct memory access (RDMA). IPoIB implements a
classic TCP/IP stack over InfiniBand, allowing existing
socket-based applications to run without modification. As
with Ethernet-based networks, data is copied by the applica-
tion into OS buffers that the kernel then processes by send-
ing packets over the network. While providing an easy mi-
gration path from Ethernet to InfiniBand, our experiments
show that IPoIB cannot fully leverage the network’s capa-
bilities. On the other hand, RDMA provides a verbs API,
which enables data transfer using the processing capabilities
of an RDMA NIC (RNIC). With verbs, most of the process-
ing is executed by the RNIC without OS involvement, which
is essential for achieving low latencies.

RDMA provides two verb communication models: one-
sided and two-sided. One-sided RDMA verbs (write, read,
and atomic operations) are executed without involving the
CPU of the remote machine. RDMA WRITE and READ
operations allow a machine to write (read) data into (from)
the remote memory of another machine. Atomic operations
(fetch-and-add and compare-and-swap) allow remote mem-
ory to be modified atomically. Two-sided verbs (SEND and
RECEIVE) enable applications to implement an RPC-based
communication pattern that resembles a socket-based ap-
proach. Unlike one-sided verbs, two-sided verbs involve the
CPU of the remote machine.

RDMA Details: RDMA connections are implemented
using queue pairs (i.e., send/receive queues). The applica-
tion creates queue pairs on both the client and the server,
and the RNICs handle the state of the queue pairs. To com-
municate, a client creates a Work Queue Element (WQE)
by specifying a verb and parameters (e.g., a remote memory
location). The client then puts the WQE into a send queue
and informs the local RNIC via Programmed IO (PIO) to
process the WQE. WQEs can be sent either signaled or
unsignaled. For a signaled WQE, the local RNIC pushes
a completion event into a client’s completion queue (CQ)
via a DMA WRITE once the WQE has been processed by
the remote side. With one-sided verbs, WQEs are handled
by the remote RNIC without interrupting the remote CPU
using a DMA operation on the remote side (called server).
However, one-sided operations require memory regions to be
registered to the local and remote RNIC a priori in order to
be accessible by DMA operations (i.e., the RNIC stores the
virtual to physical page mappings of the registered region).
For two-sided verbs, the server must additionally put a RE-
CEIVE request into its receive queue to handle a SEND
request from the client.

Since queue pairs process WQEs in FIFO order, a typical
pattern to reduce the overhead on the client side and mask
latency is to use selective signaling. That is, for send/re-
ceive queues of length n, the client can send n − 1 WQEs

529

 1

 10

 100

 1000

 10000

32B 1KB 32KB 1MB 32MB

T
h
ro

u
g
h
p
u
t
(i
n
 M

B
/s

)

Message Size

IPoEth
IPoIB

RDMA (All Verbs)

(a) Throughput

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

32B 1KB 32KB 1MB 32MB

L
a
te

n
cy

 (
in

 u
s)

Message Size

IPoEth
IPoIB

RDMA (WR,S/R)
RDMA (RD)

(b) Latency

Figure 2: Network Throughput and Latency

unsignaled and the n-th WQE signaled. Once the comple-
tion event (i.e., the acknowledgment message of the server)
for the n-th WQE arrives, the client implicitly knows that
the previous n − 1 WQEs have also been successfully pro-
cessed. In this scenario, computation and communication
on the client can be efficiently overlapped without expen-
sive synchronization mechanisms.

Another interesting aspect is how RDMA operations of
an RNIC interfere with CPU operations if data is concur-
rently accessed. Recent Intel CPUs (Intel Sandy-Bridge and
later) provide a feature called Data Direct I/O (DDIO) [5].
With DDIO the DMA executed by the RNIC to read (write)
data from (to) remote memory places the data directly in the
CPU L3 cache if the memory address is resident in the cache
to guarantee coherence. On other systems without DDIO,
the cache is flushed/invalidated by the DMA operation to
guarantee coherence. Finally, non-coherent systems leave
the coherency problem to the software. These effects must
be considered when designing distributed RDMA-based al-
gorithms. Note that this only concerns coherence between
the cache and memory, not the coherence between remote
and local memory, which is always left to the software.

2.2 Microbenchmarks
This section presents microbenchmarks that compare the

throughput and latency of: (1) a TCP/IP stack over 1Gb/s
Ethernet (IPoEth), (2) IPoIB, and (3) RDMA. These re-
sults form the basis of our proposals for the redesign of dis-
tributed DBMSs in order to fully leverage high-performance
networks.

Experimental Setup: Our microbenchmarks used two
machines, each with an Intel Xeon E5-2660 v2 processor and
256GB RAM, running Ubuntu 14.04 with the OFED 2.3.1
RNIC driver. Both machines were equipped with a Mel-
lanox Connect IB FDR 4× dualport RNIC, and each RNIC
port has a full-duplex bandwidth of 54.54Gb/s (6.8GB/s).
Additionally, each machine had a 1Gb/s Ethernet NIC (one
port) connected to the same Ethernet switch. We used only
one port on each RNIC to ensure a fair comparison be-
tween InfiniBand and Ethernet, and all microbenchmarks
used single-threaded execution in order to isolate low-level
network properties.

Throughput and Latency (Figure 2): For this ex-
periment, we varied the message size from 32B up to 32MB
to simulate the characteristics of different workloads (i.e.,
OLTP and OLAP), measuring the throughput and latency
for IPoEth, IPoIB, and RDMA send/receive and read/write.
Additionally, we measured the RDMA atomic operations
but omitted the results from the figure, since they only sup-
port a maximum message size of 8B and provide the same
throughput/latency as 8B READs.

While all RDMA verbs saturate the InfiniBand network
bandwidth (≈ 6.8GB/s) for message sizes greater than 2KB,
IPoIB only achieves a maximum throughput of 3.5GB/s de-

 0

 2

 4

 6

 8

 10

32B 1KB 32KB 1MB 32MB

C
P

U
 C

yc
le

s
(i
n
 1

0
^y

)

Message Size

IPoEth
IPoIB

RDMA (All Verbs)

(a) Client

 0

 2

 4

 6

 8

 10

32B 1KB 32KB 1MB 32MB

C
P

U
 C

yc
le

s
(i
n
 1

0
^y

)

Message Size

IPoEth
IPoIB

RDMA (RD,WR)
RDMA (S/R)

(b) Server

Figure 3: CPU Overhead for Network Operations

spite using the same network hardware. Moreover, the la-
tency of sending a message (i.e., 1/2 RTT) over IPoIB is
also higher than the latency of RDMA verbs. In fact, for
small message sizes, the latency of IPoIB is much closer to
the latency of the 1Gb/s Ethernet network (IPoEth). For
example, for a message size of 8B, the latency is 20µs for
IPoIB and 30µs for IPoEth, while an RDMA WRITE takes
only 1µs. This is because the TCP/IP stack for IPoIB has
a very high CPU overhead per message for small messages,
as discussed in following section. For larger message sizes
(≥ 1MB), the latency of IPoIB is closer to the latency of
RDMA but still a factor of 2.5× higher. For example, send-
ing a 1MB message has a latency of 393µs over IPoIB com-
pared to 161µs for RDMA.

An interesting observation is that RDMA WRITE/SEND
operations take only 1µs for message sizes less than 256B,
while RDMA READ operations take 2µs, since payloads
of less than 256B can be inlined into the PIO to avoid a
subsequent DMA read [40].

CPU Overhead (Figure 3): We also measured the
overhead in CPU cycles for messages over different com-
munication stacks on both the client and server, varying the
message sizes as in the previous experiment. RDMA has
a constant overhead on both the client and server that is
independent of message size because of the constant cost of
registering a WQE on the RNIC. The actual data transfer is
executed by the RNIC, which acts as a coprocessor to han-
dle a given WQE. On the client side, the overhead is ≈ 450
cycles regardless of the RDMA verb used, including atomic
operations. On the server side, only the RECEIVE verb in-
curs CPU overhead, as expected. All other one-sided verbs
(i.e., READ/WRITE and atomic operations) do not incur
any overhead on the server side.

The CPU overhead of IPoIB is very different from that
of RDMA and is in fact much closer to the Ethernet-based
TCP/IP stack (IPoEth). Unlike RDMA, the CPU overhead
per message grows linearly with the message size after ex-
ceeding the TCP window size for both IPoEth and IPoIB. In
our experiments, the default TCP window size was 1488B for
IPoEth and 21888B for IPoIB. For small message sizes, the
CPU overhead per message for IPoIB is even higher than for
IPoEth. For example, an 8B message requires 13264 cycles
for IPoIB compared to only 7544 cycles for IPoEth.

3. RETHINKING THE ARCHITECTURE
In this section, we discuss why the traditional shared-

nothing architecture for distributed in-memory DBMSs is
suboptimal for high-performance networks and present novel
alternatives that directly leverage RDMA. We then discuss
research challenges that arise for these new architectures.

3.1 Architecture Types
Distributed DBMSs face two primary challenges: (1) dis-

tributed control-flow (e.g., synchronization), and (2) dis-

530

tributed data-flow (e.g., data exchange between nodes). We
describe how three existing distributed DBMS architectures
handle these challenges and then propose a new architecture
designed specifically for fast networks.

3.1.1 Traditional Shared-Nothing
Figure 4(a) shows the shared-nothing (SN) architecture

for distributed in-memory DBMSs. Data is partitioned across
each of the nodes, and each node has direct access only to its
local partition. In order to implement distributed control-
flow and data-flow, nodes communicate with each other us-
ing socket-based send and receive operations.

Efficient distributed query and transaction processing aims
to maximize data-locality for a given workload by applying
locality-aware partitioning schemes or employing strategies
to avoid communication (e.g., semi-joins). In the extreme
case, no communication would need to occur between nodes.
For many real-world workloads, however, network commu-
nication cannot be entirely avoided, resulting in large per-
formance penalties for slow networks. For example, even
using the best techniques for co-partitioning tables [18, 45],
it is not always possible to avoid expensive distributed join
operations or distributed transactions, leading to high com-
munication costs [47]. Furthermore, workloads change over
time, making it difficult to find a good static partitioning
scheme [21], while dynamic strategies often require moving
huge amounts of data, further restricting the bandwidth for
the actual work. As a result, the network limits the through-
put of the system as well its scalability; that is, the more
machines that are added, the more of a bottleneck the net-
work becomes.

3.1.2 Shared-Nothing for IPoIB
An easy way to migrate a traditional shared-nothing ar-

chitecture to a high-performance network is to simply use
IPoIB as shown in Figure 4(b). A big advantage of this ar-
chitecture is that almost no change to the DBMS is required,
but the system can still benefit from the higher bandwidth.
In particular, data-flow operations that send large messages
(e.g., data re-partitioning) will benefit tremendously from
this change. However, as shown in Section 2, IPoIB cannot
fully leverage the network. Perhaps surprisingly, for some
types of operations, upgrading the network and using IPoIB
can actually decrease performance, particularly for control-
flow operations which send many small messages. Figure 3
shows that the CPU overhead of IPoIB is greater than the
CPU overhead of IPoEth for small messages. In fact, as we
will show in Section 4, these small differences can have a
negative impact on the overall performance of distributed
transaction processing.

3.1.3 Distributed Shared-Memory
Obviously, to better leverage the network we have to take

advantage of RDMA. RDMA not only allows the system to
fully utilize the bandwidth (see Figure 2(a)), but also re-
duces network latency and CPU overhead (see Figures 2(b)
and 3). Unfortunately, changing an application from a socket-
based message passing interface to RDMA verbs is not triv-
ial. One possibility is to treat the cluster as a shared-
memory system (shown in Figure 4(c)) with two types of
communication patterns: (1) message passing using RDMA-
based SEND/RECEIVE verbs, and (2) remote direct mem-
ory access through one-sided RDMA READ/WRITE verbs.

Socket Send / Receive

RAM
(DB1)

DBMS 1

RAM
(DB2)

DBMS 2

RAM
(DB3)

DBMS 3

RAM
(DB4)

DBMS 4

R
/W

R
/W

R
/W

R
/W

C
o

m
p

u
te

 +
 S

to
ra

g
e

S
e

rv
e

rs

(a) SN (IPoEth)

Socket Send/Rcv

R
/W

R
/W

R
/W

R
/W

CPU CPU CPU CPU

RAM
(DB 1)

RAM
(DB 2)

RAM
(DB 3)

RAM
(DB 4)

C
o

m
p

u
te

 +
 S

to
ra

g
e

S
e

rv
e

rs

(b) SN (IPoIB)

RDMA Send/Rcv

R/
W

R/
W

R/
W

R/
W

CPU CPU CPU CPU

C
o

m
p

u
te

 +
 S

to
ra

g
e

S
e

rv
e

rs

RAM
(DB 1)

RAM
(DB 2)

RAM
(DB 3)

RAM
(DB 4)

RDMA R/W

(c) SM (RDMA)

C
o

m
p

u
te

S

e
rv

e
rs

S
to

ra
g

e
S

e
rv

e
rs

RAM
(Buffer)

RAM
(Buffer)

RAM
(Buffer)

RDMA R/W+Atomics

RDMA Send/Rcv

CPU CPU CPU CPU

RAM
(Buffer)

RDMA Send/Rcv

RAM
(DB 1)

RAM
(DB 2)

RAM
(DB 3)

RAM
(DB 4)

CPU CPUCPU CPU

R
/W

R
/W

R
/W R
/W

R
/W

R
/W

R
/W R
/W

(d) NAM (RDMA)

Figure 4: In-Memory Distributed Architectures

However, as previously mentioned, there is no mechanism
for cache-coherence. Moreover, machines need to carefully
declare the shareable memory regions a priori and connect
via queue pairs. The latter, if not used carefully, can also
have a negative effect on the performance [29]. In addi-
tion, a memory access via RDMA is very different than that
of a shared-memory system. While a local memory access
only keeps one copy of the data around (i.e., conceptually it
moves the data from main memory to the cache of a CPU),
a remote memory access creates a fully independent copy.
This has a range of implications including garbage collec-
tion, cache/buffer management, and consistency protocols.

Thus, in order to achieve the appearance of a shared-
memory system, the software stack has to hide the dif-
ferences and provide a distributed shared-memory space.
There have been recent attempts to create a distributed
shared-memory architecture over RDMA [19]. However, we
believe that a single abstraction for local and remote mem-
ory is the wrong approach. Since DBMSs prefer to have
full control over memory management (e.g., virtual memory
can interfere with a DBMS), we believe the same is true for
shared-memory over RDMA. While we had the ambitions
to validate this assumption through our experiments, we
only found one commercial offering for IBM mainframes [4].
Instead, for our OLTP comparison, we implemented a sim-
plified version of this architecture by essentially using a SN
architecture and replacing socket communication with two-
sided RDMA verbs (send and receive). We omit this archi-
tecture entirely from our OLAP comparison since two-sided
RDMA verbs would have added additional synchronization
overhead (i.e., an RDMA RECEIVE must be issued strictly
before the RDMA SEND arrives at the RNIC).

3.1.4 Network-Attached Memory
Based on the previous considerations, we envision a new

type of architecture, referred to as network-attached mem-
ory (NAM) and shown in Figure 4(d). In a NAM archi-
tecture, compute and storage are logically decoupled. The
storage servers provide a shared distributed memory pool,
which can be accessed from any compute node. However,
the storage nodes are not aware of any DBMS specific op-
erations (e.g., joins or consistency protocols). These are
implemented by the compute nodes.

This logical separation helps to control the complexity

531

and makes the system aware of the different types of main
memory. Moreover, storage nodes can take care of issues like
garbage collection, data-reorganization, and metadata man-
agement (e.g., remote-memory address to data page map-
ping). Note, that it is possible to physically co-locate storage
nodes and compute nodes on the same machine to further
improve performance. However, in contrast to previous ar-
chitectures, the system gains more control over what data
is copied and how copies are synchronized.

The NAM architecture also has several other advantages
compared to the previously mentioned architectures. Most
importantly, storage nodes can be scaled independently of
compute nodes. Furthermore, the NAM architecture can ef-
ficiently handle data imbalance since any node can access
any remote partition without the need to re-distribute the
data. Although the separation of compute and storage is
not new, existing systems either use an extended key/value
like interface for the storage nodes [13, 35, 38] or are focused
on the cloud [14, 2], instead of being built from scratch to
leverage high-performance networks. Instead, we argue that
the storage servers in the NAM architecture should expose
an interface that supports fine-grained byte-level memory
access that preserves features of the underlying hardware.
For example, in Section 4, we show how fine-grained ad-
dressability allows us to efficiently implement concurrency
control. In the future, we plan to take advantage of the fact
that messages of connected queues are ordered.

3.2 Challenges and Opportunities
Unfortunately, moving from a shared-nothing or shared-

memory system to a NAM architecture requires a redesign
of the entire distributed DBMS architecture from storage
management to query processing and transaction manage-
ment up to query compilation and metadata management.

Query Processing & Transactions: Distributed query
processing is typically implemented using a data-parallel ex-
ecution scheme that leverages repartitioning operators that
shuffle data over the network. However, repartitioning oper-
ators do not typically consider efficiently leveraging the CPU
caches of individual machines in the cluster. Thus, we be-
lieve that there is a need for parallel cache-aware algorithms
for query operators over RDMA.

Similarly, new query optimization techniques for distributed
in-memory DBMSs will be required for high-bandwidth net-
works. As previously mentioned, existing distributed DBMSs
assume that the network is the dominant bottleneck. There-
fore existing cost-models for distributed query optimization
often only consider network cost [43]. With fast networks
and more balanced system, the optimizer needs to consider
more factors since bottlenecks can shift from one component
(e.g., CPU) to another (e.g., memory-bandwidth) [16].

Additionally, we believe that a NAM architecture requires
new load-balancing schemes that implement ideas suggested
for work-stealing on single-node machines [34]. For example,
query operators could access a central data structure (i.e.,
a work queue) via one-sided RDMA verbs, which contains
pointers to small portions of data to be processed by a given
query. When a node is idle, it could pull data from the work
queue. In this scenario, distributed load balancing schemes
can be efficiently implemented in a decentralized manner.
Compared to existing distributed load balancing schemes,
this alleviates single bottlenecks and would allow greater
scalability while also avoiding stragglers.

Storage Management: Since the latency of one-sided
RDMA verbs (i.e., read and write) to access remote data
partitions is still much higher than for local memory ac-
cesses, we need to optimize the storage layer of a distributed
DBMS to minimize this latency.

One idea in this direction is to develop complex storage ac-
cess operations that combine different storage primitives in
order to effectively minimize the number of network round-
trips between compute and storage nodes. This approach
is in contrast to existing storage managers which offer only
simple read/write operations. For example, in Section 4,
we present a complex storage operation for a distributed
SI protocol that combines the locking and validation of the
2PC commit phase using a single RDMA atomic operation.
However, for such complex operations, the memory layout
must be carefully developed. Our current prototype there-
fore combines the lock information and the value into a sin-
gle memory location.

Modern RNICs, such as the Connect X4 Pro, provide a
programmable device (e.g., an FPGA) on the RNIC. Thus,
another idea to reduce storage access latencies is to im-
plement complex storage operations that cannot easily be
mapped to existing RDMA verbs in hardware. For example,
writing data directly into a remote hash table of a storage
node could be implemented completely on the RNICs in a
single round-trip without involving the CPUs of the storage
nodes, allowing for new distributed join operations.

Finally, we believe that novel techniques must be devel-
oped that allow efficient prefetching using RDMA. The idea
is that the storage manager issues RDMA requests (e.g.,
RDMA READs) for memory regions that are likely to be ac-
cessed next and the RNIC processes them asynchronously in
the background. In this scenario, the RDMA storage man-
ager would need to first poll the completion queue when a
request for a remote memory address arrives to check if the
remote memory has already been prefetched. While this is
straightforward for sequentially scanning a table partition,
index structures require a more careful design since they
often rely on random access.

Centralized Master: Typically, a distributed DBMS
has one central master node responsible for tasks such as
metadata management and query deployment. In a tra-
ditional architecture, this central node can become a bot-
tleneck under heavy loads and is a single point of failure.
However, in a NAM architecture, any node can read and
update the metadata or deploy queries, since all nodes can
access central data structures using RDMA.

4. THE CASE FOR OLTP
The traditional wisdom is that distributed transactions,

particularly when using two-phase commit (2PC), do not
scale [58, 30, 56, 17, 44, 52]. In this section, we show that
this is the case on a shared-nothing architecture over slow
networks and then present a novel protocol for the NAM
architecture that can take full advantage of the network and,
theoretically, removes the scalability limit.

4.1 Why 2PC Does Not Scale
In this section, we discuss factors that hinder the scala-

bility of distributed transactions over slow networks. Many
modern DBMSs employ Snapshot Isolation (SI) to imple-
ment concurrency control and isolation because it promises
superior performance compared to lock-based alternatives.

532

The discussion in this section is based on a 2PC protocol
for generalized SI [36, 22]. However, the findings can also
be generalized to more traditional 2PC protocols [41].

4.1.1 Dissecting 2PC
Figure 5(a) shows a simplified traditional 2PC protocol

with generalized SI guarantees [36, 22], assuming a shared-
nothing architecture and no read-phase (see [13, 15, 48]).That
is, we assume that the client (e.g., application server) has
read all necessary records to issue the full transaction using
a potentially older read timestamp (RID), which guarantees
a consistent view of the data.After the client finishes reading
the records, it sends the commit request to the transaction
manager (TM) [one-way message 1]. Note that there can be
more than one TM to distribute the load across nodes.

As a next step, the TM requests a commit timestamp
(CID) [round-trip message 2]. In this paper, we assume that
an external service provides globally ordered timestamps,
as suggested in [13] or [15]. Since the implementation of
the timestamp service is orthogonal, we assume that it is
not a bottleneck when using approaches like Spanner [15] or
epoch-based SI [61].

After receiving the CID, the TM sends prepare messages
to the resource managers (RMs) of the other nodes involved
in the transaction [round-trip message 3]. Each RM (1)
checks if any records in its partition have been modified since
being read by the transaction and (2) locks each tuple to pre-
vent updates by other transactions after the validation [33],
which normally requires checking if any of the records of the
write-sets has a higher CID than the RID. The TM can then
send commit messages to all involved RMs if the prepare
phase was successful [round-trip message 4], which installs
the new version (value and CID) and releases the locks. In
order to make the new value readable by other transactions,
the TM needs to wait until the second phase of 2PC com-
pletes [message 4], and then inform the timestamp service
that a new version was installed [one-way message 5]. For
the remainder, we assume that the timestamp service im-
plements a logic similar to [13] or Oracle RAC [48] in order
to ensure the SI properties. That is, if a client requests an
RID, the timestamp service returns the largest committed
timestamp. Finally, the TM notifies the client about the
outcome of the transaction [one-way message 6].

Overall the protocol requires nine one-way message delays
if sent in the previously outlined sequential order. However,
some messages can be sent in parallel; in particular, the
CID [message 2] can be requested in parallel to preparing
the RM [message 3], since the CID is not required until
the second phase of 2PC [message 4]. This simplification
is possible because we assume blind writes are not allowed,
such that a transaction must read all data items (and their
corresponding RIDs) in its working set before attempting
to commit. Similarly, the client can be informed [message
6] in parallel with the second phase of 2PC [message 4].
This reduces the number of message delays to four until the
client can be informed about the outcome (one-way message
1, round-trip 3, one-way message 5), and to at least six
until the transaction becomes visible (one-way message 1,
round-trips 3 and 4, one-way message 6). Compared to a
centralized DBMS, the six message delays required for 2PC
substantially increases the execution time for a transaction.

Unlike the described 2PC protocol, a traditional 2PC pro-
tocol [41] does not use a timestamp service but still requires

Client

Timestamp
Service

TM

TC
P/IP

Locks

Data

RM

TC
P/IP

Locks

Data

RM

Locks

Data

TC
P/IP

(1)

(2)

(3)

(3)

(4)

(4)

(6)

(5)

(a) Traditional SI

Timestamp
Service

Client
(TM)

0 t2 pl t1 pl
1 t3 pl t2 pl t1 pl
0 t9 pl t7 pl t3 pl
0 t1 pl
1 t2 pl t1 pl

0 t2 pl t1 pl
1 t3 pl t2 pl t1 pl
0 t9 pl t7 pl t3 pl
0 t1 pl
1 t2 pl t1 pl

0 t2 pl t1 pl
1 t3 pl t2 pl t1 pl
0 t9 pl t7 pl t3 pl
0 t1 pl
1 t2 pl t1 pl....

....

....

....

....

....

....

....

....

(1)

(2)

(2)

(3)

(3)

(2)

(3)

(4)

(b) RSI Protocol

Figure 5: Distributed 2PC Commit Protocols for SI

a total delay of six messages (including client notification).
Thus, our analysis is not specific to SI and can be general-
ized to other 2PC protocols.

4.1.2 Increased Contention Likelihood
The increased transaction latencies due to message delays

increase the chance of contention and aborts. As outlined in
Section 2, the average latency for small one-way messages
over Ethernet is roughly 35µs, whereas the actual work of
a transaction ranges from 10-60µs if no disk or network is
involved [30, 23].2 That is, for short-running transactions,
the dominant factor for latency is the network, and 2PC
amplifies this bottleneck.

In order to model the contention rate effect, we assume
an M/M/1 queue X to estimate the number of waiting (i.e.,
conflicting) transactions for a given record r with some ar-
rival rate λ. With this model, a 6× increase in transaction
processing time, referred to as service time t, yields a service
capacity decrease of µ = 1/6t and an increased conflict likeli-
hood of P (X >= 0) = 1−P (X = 0) = 1− (1−λ/µ) = 6λt.
However, a transaction rarely consists of a single record.
With n records, the likelihood of a conflict increases to
1−

∏
n P (X = 0) = 1−(1−6λt)n, if we employ the simplify-

ing assumption that the access rate to all records is similar
and independent. Thus, the intuition that the likelihood of
conflicts with 2PC increases is true.

However, we did not consider the read-phase, and it is
easy to show that the relative difference is less severe as
more records are read (it adds a fixed cost to both).In addi-
tion, a redesign of the commit protocol to use RDMA verbs
can significantly decrease the conflict likelihood, since the
latency is much lower for small messages (see Figure 2(b)).
Other recent work has shown that most of these conflicts
can even be avoided by leveraging the properties of com-
mutative updates [8]. In fact, newer consistency protocols
that take advantage of non-blocking commutative updates
can provide high availability without centralized coordina-
tion [32]. We therefore believe that the argument against
distributed transactions on the grounds of increased conflict
likelihood is no longer valid.

4.1.3 CPU Overhead
In addition to the higher likelihood of conflicts, distributed

transactions also require additional network messages that

2For instance, [27] reported 64µs for a single partition trans-
action on an ancient 2008 Xeon processor.

533

increase with the number of server nodes. For example,
the distributed protocol shown in Figure 5(a) with one TM
server and n involved RMs (n = 2 in the figure) requires
2 + 4 · n send messages and 3 + 4 · n receive messages, with
a total of 5 + 8 ·n messages if sends and receives are equally
expensive.

Let us assume that a transaction always has to access all
n nodes. If each node has c cores able to execute cyclesc
per second and a message costs cyclesm, then an optimistic
upper bound on the number of transactions per second is
trxu = (c · cyclesc · (n+ 1))/(5 + 8 ·n) · cyclesm. On a mod-
ern cluster of three nodes, each with 2.2GHz 8-core CPUs,
and assuming 3, 750 cycles per message (see Figure 3), this
leads to ≈ 647, 000 trx/seconds. More interestingly, though,
if we increase the cluster to four nodes with the same hard-
ware configuration, the maximum throughput goes down
to 634,000. These back-of-the-envelope calculations sug-
gest that message overhead consumes almost all the added
CPU power, making the system inherently unscalable if the
workload cannot be partitioned. Without fundamentally re-
designing the protocols and data structures, the CPU over-
head will remain as the primary bottleneck. For instance,
Figure 2 and Figure 3 show that IPoIB on our FDR 4× net-
work increases bandwidth and reduces latency compared to
IPoEth but does nothing to reduce CPU overhead.

4.1.4 Discussion
The traditional wisdom that distributed transactions, es-

pecially 2PC, do not scale on slow networks is true.First, dis-
tributed transactions increase the contention rate. Second,
the protocol itself (not considering the message overhead)
is rather simple and has no significant impact on the per-
formance, since 2PC simply checks if a message arrived and
what it contained. The increased CPU-load and network
bandwidth for handling the messages remain the dominant
factors. Assuming three servers connected by a 10Gb Ether-
net network, an average record size of 1KB, and transactions
updating three records on average, at least 3KB have to be
read and written per transaction. In this scenario, the total
throughput is limited to ≈ 218, 500 transactions per second.

As a result, complicated partitioning schemes have been
proposed to avoid distributed transactions as much as pos-
sible [17, 56, 62]. However, these approaches impose a new
set of challenges for the developer and do not work for some
workloads (e.g., social graphs are notoriously difficult to par-
tition).

4.2 RSI: An RDMA-based SI Protocol
Fast high-bandwidth networks such as InfiniBand are able

to resolve the two most important limiting factors: CPU
overhead and network bandwidth. However, as our experi-
ments show, the scalability is severely limited without chang-
ing the techniques themselves. Therefore, we need to re-
design distributed DBMSs for RDMA-based architectures.

In this section, we present a novel RDMA-based SI pro-
tocol, RSI, that is designed for the NAM architecture. We
have also implemented the traditional SI protocol discussed
before using two-sided RDMA verbs instead of TCP/IP sock-
ets as a simplified shared-memory architecture. Both imple-
mentations are included in our experimental evaluation in
Section 4.3.

At its core, RSI moves the transaction processing logic
to the client (i.e., compute nodes) and makes each of the

Look CIDN RecordN CIDN−1 RecordN−1 ...

1 Bit 63 Bits m Bits 64 Bits m Bits

0 20003 (“A1”,“B1”)

0 23401 (“C1”,“D2”) 22112 (“C1”,“D1”)

1 24401 (“E2”,“F2”) 22112 (“E1”,“F1”)

Table 1: Potential Data Structure for RSI

servers (i.e., storage nodes) “dumb” as their main purpose is
to share their memory with the clients. Moreover, clients im-
plement the transaction processing logic through one-sided
RDMA operations (i.e., the client is the transaction man-
ager) allowing any compute node to act as a client that can
access data on any storage node (i.e., a server). This design
is similar to [13], but optimized for direct memory access
rather than cloud services. Moving the logic to the client has
several advantages. Most importantly, scale-out becomes
much easier since all CPU-intensive operations are done by
the clients, which are easy to add. The throughput of the
system is only limited by the number of RDMA requests
that the server’s RNICs (and InfiniBand switches) can han-
dle. Since several RNICs can be added to one machine, the
architecture is highly scalable (see also Section 4.3). In ad-
dition, (1) load-balancing is easier since transactions can be
executed on any node independent of any data-locality, and
(2) latencies are reduced as clients can fetch data directly
from the servers without involving the TM.

As before, we assume that reads already have happened
and that the transaction has an assigned read timestamp,
RID. First, the client (acting as the TM) contacts the times-
tamp service to receive a new commit timestamp CID. In
our implementation, we pre-assign timestamps to clients us-
ing a bit vector with 60k bits. The first bit in the vector
belongs to client 1 and represents timestamp 1, up to client
n representing timestamp n. Afterwards, position n + 1
again belongs to client 1 and so on. Whenever a timestamp
is used by a client, it “switches” the bit from 0 to 1. With
this scheme, the highest committed timestamp can be deter-
mined by finding the highest consecutive bit in the vector.
If all bits are set by a client, we allow clients to “wrap” and
start from the beginning. Note, that wrapping requires some
additional bookkeeping to avoid that bits are overwritten.

This simple scheme allows clients to use timestamps with
no synchronization bottleneck but implicitly assumes that
all clients make progress at roughly the same rate. If this
assumption does not hold (e.g., because of stragglers or long
running transactions), additional techniques are required to
skip bits, which go beyond the scope of this paper.

Next, the client has to execute the first phase of 2PC
and check if the version has not changed since it was read
(i.e., validation phase of 2PC). As before, this operation
requires a lock on the record to prevent other transactions
from changing the value after the validation and before the
transaction is fully committed.

In a traditional design, the server would be responsible of
locking and validating the version. In order to make this
operation more efficient and “CPU-less”, we propose a new
storage layout to allow direct validation and locking with
a single RDMA-operation shown in Table 1. The key idea
is to store up to n versions of a fixed-size record of m-bits
length in a fixed-size slotted memory record, called a record
block, and have a global dictionary (e.g., using a DHT) to
exactly determine the memory location of any record within
the cluster. We will explain the global dictionary and how
we handle inserts in the next subsections and assume for

534

0.0

200.0 k

400.0 k

600.0 k

800.0 k

1.0 M

1.2 M

1.4 M

1.6 M

1.8 M

 10 20 30 40 50 60 70

T
rx

s/
se

c

Clients

RSI (RDMA)
Trad-SI (IPoIB)
Trad-SI (IPoEth)

(a) Linear-Scale

1 k

10 k

100 k

1 M

10 M

 10 20 30 40 50 60 70

T
rx

s/
se

c

Clients

RSI (RDMA)
Trad-SI (IPoIB)
Trad-SI (IPoEth)

(b) Log-Scale

Figure 6: RSI vs 2PC (Throughput)

the moment, that after the read phase all memory loca-
tions are already known. How many slots (i.e., versions) a
record block should hold depends on the update and read
patterns as it can heavily influence the performance. For
the moment, assume that every record has n = max(16KB
/ record-size, 2) slots for different record versions and that
every read retrieves all n slots. From Figure 2(b) we know
that transferring 1KB to roughly 16KB makes no difference
in the latency therefore making n any smaller has essentially
no benefit. Still, for simplicity, our current implementation
uses n = 1 and aborts all transactions which require an older
snapshot.

The structure of a slot in memory is organized as follows:
the first bit is used as a lock (0=no-lock, 1=locked) while
the next 63 bits contain the latest commit-id (CID) of the
most recent committed record, followed by the payload of
the record, followed by the second latest CID and payload
and so on, up to n records. Using this data structure, the
TM (i.e., the client) is directly able to validate and lock
a record for a write using a compare-and-swap operation on
the first 64 bits [round-trip message 2]. For example, assume
that the client has used the RID 20003 to read the record
at memory address 1F (e.g., the first row in Table 1) and
wants to install a new version with CID 30000. A simple
RDMA compare-and-swap operation on the first 64 Bits of
the record at address 1F with test-value 20003, setting it to
1 << 63|20003), would only acquire the lock if the record
has not changed since it was read by the transaction, and
fails otherwise. Thus, the operation validates and prepares
the resource for the new update in a single round-trip. The
TM uses the same technique to prepare all involved records
(with SI inserts always succeeding).

If the compare-and-swap succeeds for all intended updates
of the transaction, the transaction is guaranteed to be suc-
cessful and the TM can install a new version. The TM
therefore checks if the record block has a free slot, and, if
yes, inserts its new version at the head of the block and shifts
the other versions to the left. Afterwards, the TM writes the
entire record block with a signaled WRITE to the memory
location of the server [message 3].

Finally, when all the writes have been successful, the TM
informs the timestamp service about the outcome [message
3] as in the traditional protocol. This message can be sent
unsignaled. Overall, our RDMA-enable SI protocol and
storage layout requires 3 round-trip messages and one un-
signaled message, and does not involve the CPU in the nor-
mal operational case. As our experiments in the next section
will show, this design enables new dimensions of scalability.

4.3 Experimental Evaluation
To evaluate these algorithms, we implemented the tra-

ditional SI protocol (Figure 5(a)) on the shared-nothing

architecture with IPoETH (Figure 4(a)) and IPoIB (Fig-
ure 4(b)). We also implemented a simplified variant of
the shared-memory architecture (Figure 4(c)) by replacing
TCP/IP sockets with two-sided RDMA verbs (requiring sig-
nificant modifications to memory management). We slightly
adjusted the traditional SI implementation by using a local
timestamp server instead of a remote service, thereby giving
the traditional implementation an advantage. Finally, our
RSI protocol utilizes the NAM architecture (Figure 4(d))
and used an external timestamp service.

We evaluated all protocols on the cluster described in Sec-
tion 2.2. We use four machines to execute the clients, three
as the NAM storage-servers, and one as the TM in the tra-
ditional case or the timestamp server in the RSI case. We
measured both protocols with a simple and extremely write-
heavy workload, similar to the checkout transaction of the
TPC-W benchmark. Every transaction reads three prod-
ucts, creates one order and three orderline records, and up-
dates the corresponding product stocks. Our dataset con-
sisted of one million products, where each record is roughly
1KB, and all data was evenly distributed across the nodes.
Clients waited until a transaction was completed before is-
suing the next transaction.

Figure 6 shows the scalability of the traditional SI-protocol
and our new RSI protocol with a variable number of client
threads. The traditional SI-protocol over IPoIB has the
worst scalability, with ≈ 22, 000 transactions per second,
whereas IPoEth achieves ≈ 32, 000 transactions per second.
The IPoIB implementation performs worse because of the
less efficient TCP/IP implementation for IPoIB, which plays
an important role for small messages. In contrast, our RSI
protocol achieved ≈ 1.8 million distributed transactions per
second. The shared-memory architecture using two-sided
RDMA verbs (not shown) achieved a throughput of 1.1 mil-
lion transactions per second, or only 66% of our RSI pro-
tocol. However, we also noticed that the two-sided RDMA
verb implementation not only stops scaling after 40 clients,
but that the throughput also decreases to only ≈ 320, 000
transaction per second with 70 clients, while our RSI imple-
mentation scales almost linearly up to 60 clients. One rea-
son for the decrease in performance is that the TMs become
a major bottleneck. However, our RSI implementation no
longer scaled linearly after 60 clients, since we only had one
dual-port FDR 4× RNIC per machine, with a bandwidth of
13.8GB/s. With the three 1KB records per transactions, we
can achieve a theoretical maximum throughput of ≈ 2.4M
transactions per second (every transaction reads/writes at
least 3KB). For greater than 60 clients, the network is sat-
urated.

We therefore speculate that distributed transactions no
longer have to be a scalability limit when the network band-
width matches the memory bandwidth. Furthermore, com-
plex partitioning schemes might become obsolete in many
scenarios, although they can still reduce latency and help to
manage frequently accessed items.

5. THE CASE FOR OLAP
In order to motivate the redesign of distributed DBMSs

for OLAP workloads, we first discuss why existing distributed
algorithms, which were designed for a shared-nothing ar-
chitecture over slow networks, are not optimal for high-
performance networks the RDMA capabilities. Then, we
present novel RDMA-optimized operators for the NAM ar-

535

chitecture, which require fundamental redesigns of core com-
ponents (e.g., memory management, query optimization), as
discussed in Section 3.2. This paper focuses on distributed
joins and aggregates, which are the predominant operators
in most OLAP workload.

5.1 Existing Distributed OLAP Operators
The most network-intensive OLAP operation is the dis-

tributed join [53]. Most distributed join algorithms have
three components that can be combined in different ways:
(1) a local join algorithm, (2) a partitioning scheme, and (3)
an optional reduction technique. For example, either a hash
or sort-merge join could be used as the local join algorithm,
whereas partitioning schemes range from static to dynamic
hash partitioning [18]. Also, several techniques to reduce the
partitioning cost have been proposed, the most prominent
being the semi-join reduction using a Bloom filter [51].

The following section explains the most common parti-
tioning technique for distributed join algorithms over shared-
nothing architectures: the grace hash join (GHJ). Later, we
expand the distributed join algorithm with an additional
semi-join reduction using Bloom filters to further reduce
communication. For both, we develop a simple cost model
and argue why these algorithms are, in most cases, no longer
optimal for distributed DBMSs over RDMA-capable net-
works. Throughout the rest of this section, we assume that
no skew exists in the data (i.e., all nodes hold roughly the
same amount of data before and after partitioning).

5.1.1 An Optimized Grace Hash Join
The GHJ executes a distributed join in two phases. In the

first phase (partitioning phase), the GHJ scans the input
relations and hash-partitions them on their join key such
that the resulting sub-relations can be joined in the second
phase locally per node (local join phase). The cost of the
GHJ TGHJ is therefore given by the sum of the runtime of
the partitioning phase Tpart and the local join phase Tjoin.

We do not consider any static pre-partitioning, so the cost
for repartitioning can be split into the cost of partitioning
the two join relations R and S. The cost of repartitioning R
can now further be split into the cost of (1) reading the data
on the sender, (2) transferring the data over the network,
and (3) materializing the data on the receiver. Assuming
that the cost of sending R over the network is Tnet(R) =
wr · |R| · cnet and scanning R in-memory is Tmem(R) = wr ·
|R| · cmem, with |R| being the number of tuples, wR being
the width of a tuple r ∈ R in bytes, and cnet (cmem) the
cost of accessing a byte over the network (memory), the
repartitioning cost of R can be expressed as:

Tpart(R) = Tmem(R)︸ ︷︷ ︸
Reading (sender)

+ Tnet(R)︸ ︷︷ ︸
Shuffling (net)

+ Tmem(R)︸ ︷︷ ︸
Writing (receiver)

= wr · |R| · cmem + wr · |R| · cnet + wr · |R| · cmem

= 2 · wr(·cmem · |R|+ cnet · |S|)
The partition cost for S is similar. Note that we disre-

gard CPU costs because we assume that the limiting factors
are memory and network accesses, which is reasonable for a
simple hash-based partitioning scheme.

For the local join algorithm of the GHJ, we use the fastest
local in-memory join algorithm, the parallel radix join [9],
which includes two phases. In the first phase, the algo-
rithm scans each input relation, partitioning them locally
into cache-sized blocks using multiple passes over the data.

As shown in [9], most relations can be efficiently partitioned
in a single pass with software managed buffers. After par-
titioning the data, the algorithm then scans the relations
again to join the cache-sized blocks. Existing work [46, 9]
has shown that both phases of the radix join are bound by
the memory bandwidth. Thus, we can estimate the total
cost for the local radix join as:

Tjoin(R,S) = (Tmem(R) + Tmem(S))︸ ︷︷ ︸
Radix Phase 1

+(Tmem(R) + Tmem(S))︸ ︷︷ ︸
Radix Phase 2

= 2 · cmem · (wr · |R|+ ws · |S|)
The total runtime of the GHJ TGHJ is therefore:

TGHJ = Tpart(R) + Tpart(S) + Tjoin(R,S)

= (wr|R|+ ws|S|) · (4 · cmem + cnet)

5.1.2 Adding Semi-Reduction using Bloom Filters
As shown in the final cost equation from the previous sec-

tion, the GHJ requires roughly 4× more memory accesses
than network transfers. However, in distributed DBMSs,
the network cost typically comprises up to 90% of the total
runtime of a join [53]. Thus, state-of-the-art join algorithms
(e.g., track join [47], Neo-Join [53]) attempt to reduce the
amount of data sent over the network through expensive
computations (e.g., Neo-Join uses a linear solver) or mul-
tiple communication round-trips to perform complex data
partitioning.

Here, we focus on the most traditional approach: a semi-
join reduction using a Bloom filter. The core idea of the
semi-join reduction is to send only tuples in the input rela-
tions R and S that have a join partner in the other relation.
Therefore, the algorithm first creates Bloom filters bR and
bS over the join keys of R and S, respectively. Then, bR and
bS are copied across all nodes that hold a partition of S and
R, and each node uses its Bloom filter to remove tuples that
are guaranteed to have no join partner (i.e., if the Bloom
filter matches a join key, it must be sent).

The cost of creating bR includes both a scan over the data
Tmem(R) and transmission over the network Tnet(bR):

Tbloom(R) = Tmem(R)︸ ︷︷ ︸
Create Reducer

+ Tnet(bR)︸ ︷︷ ︸
Ship Reducer

However, the size of the Bloom filter br is normally very
small, so that Tbloom(R) can be disregarded. Assuming that
selS(bR) is the selectivity of the Bloom filter bR over relation
S (including the error rate of the Bloom filter), the total cost
for a GHJ with a semi-join reduction using Bloom filters is:

Tghj+bloom =Tbloom(R) + Tbloom(S)︸ ︷︷ ︸
Create Bloom-Filter

+

Tpart(selR(bS) ·R) + Tpart(selS(bR) · S)︸ ︷︷ ︸
Reduced Partitioning Cost

+

Tjoin(selR(bS) ·R, selR(bR) · S)︸ ︷︷ ︸
Reduced Join Cost

This equation models the cost of creating the Bloom filter
plus the reduced partitioning and join costs. Assuming that
the selectivity between both relations is the same, sel =
selR(bS) = selS(bR) leads to this simplified total cost:

Tjoin+bloom =(wr|R|+ ws|S|)·
(cmem + 4 · sel · cmem + sel · cnet)

536

 0

 5000

 10000

 15000

 20000

 25000

 0 0.2 0.4 0.6 0.8 1

T
o
ta

l C
o
st

s

Selectivity of Join

GHJ
GHJ+Red

(a) IPoEth

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 0.2 0.4 0.6 0.8 1

T
o
ta

l C
o
st

s

Selectivity of Join

GHJ
GHJ+Red

RDMA GHJ
RRJ

(b) IPoIB and RDMA

Figure 7: Join Cost Analysis

5.1.3 Discussion
Figure 7 plots all the previously mentioned costs of tra-

ditional distributed joins for various join selectivities. For
the network cost cnet per byte, we used the idealized la-
tency per byte from Section 2 for messages of size 2KB. For
the Bloom filters, we assume a 10% error of false positives
(i.e., 50% selectivity still selects 60% of the data). We use
|R| = |S| = 1M as table sizes and wr = ws = 8 as tuple
width. For memory, we assume a cost of cmem = 10−9s for
accessing a single byte. However, the relative relationships
of the different constants ccpu, cmem, and cnet are more im-
portant than the absolute cost of accessing a single byte
from memory.

For an IPoEth network, the results demonstrate that a
semi-join reduction (GHJ+Red) almost always pays off (Fig-
ure 7(a)). However, the tradeoffs change and thus, the
optimization, for existing distributed join algorithms (Fig-
ure 7(b)).For example, the network cost is no longer the
dominant factor.Only if the Bloom filter selectivity is below
sel < 0.8 (0.7 in Figure 7(b) due to the 10% Bloom filter
error rate), a semi-join reduction pays off due to reduction
in join and shipping cost. Yet, both GHJ and GHJ+Red for
IPoIB still do not take full advantage of the network capa-
bilities. In the next section, we outline a new join algorithm
that directly fully leverages InfiniBand using RDMA.

We now describe two new join algorithms that leverage
the RDMA-based NAM architecture presented in Section 3.
First, we redesign the GHJ to use one-sided RDMA verbs
to write directly into remote memory of storage nodes for
partitioning. We call this join the RDMA GHJ. The main
goal of the partitioning phase of the RDMA GHJ for the
NAM architecture is to enable data parallel execution of
the join phase by the compute nodes.

The input tables for the partitioning phase are pre-fetched
from the storage nodes to the compute nodes. Moreover, for
writing the output partitions back to the storage nodes, the
RDMA GHJ leverages selective signaling to overlap com-
putation and communication. Thus, only the CPU of the
sender is active during the partitioning phase, and the cost
of partitioning reduces to Tpart = Tmem(R) + Tmem(S) be-
cause the remote data transfer for writing is executed in the
background by the RNICs when using selective signaling.
Finally, the join phase also uses pre-fetching of the parti-
tioned tables. This leads to reduced overall join costs which
renders a semi-join reduction even less beneficial when com-
pared to the classical GHJ as shown in Figure 7(b).

While this optimization may sound trivial, however, it re-
quires a significant redesign of the join algorithm’s buffer
management to work efficiently on the NAM architecture.
Each server needs to reserve a buffer for every output par-
tition on the storage servers to ensure that data is not over-
written during the shuffling phase. Moreover, the partition-
ing phase must be designed such that the compute nodes
which execute the partitioning phase can be scaled-out in-

 1

 10

 100

1.0 0.75 0.5 0.25

R
u
n
tim

e
 (

in
 s

)

Selectivity Bloom-Filter

GHJ (IPoEth)
GHJ+Red (IPoEth)

GHJ (IPoIB)
GHJ+Red (IPoIB)

RDMA GHJ
RRJ

(a) Join

 5

 10

 15

 20

 25

 30

 35

 40

1 16M 32M 64M

R
u

n
tim

e
 (

in
 s

)

Distinct Groups

Dist. AGG (IPoEth)
Dist. AGG (IPoIB)

RDMA AGG

(b) Aggregation

Figure 8: Traditional vs RDMA-optimized

dependently from the storage nodes. Describing these tech-
niques in more detail goes beyond the scope of this paper.

However, we can go a step further than just optimizing the
partitioning phase of the GHJ to leverage RDMA. The pre-
viously described partitioning phase of the radix join used to
optimize block sizes for cache-locality is very similar to the
partitioning phase of the GHJ. Therefore, instead of trying
to adjust distributed join algorithms like GHJ, we propose
extending the in-memory radix join [9] to leverage RDMA
directly. We refer to this new algorithm as RRJ (RDMA
Radix Join). A similar algorithm was recently presented
in [11]. However, unlike our algorithm, their join has been
optimized for a shared-nothing architecture while our RRJ
algorithm is optimized for the NAM architecture, enabling
an efficient scale-out by adding additional compute servers.

5.2 RDMA Join Algorithms
Our new RRJ algorithm uses remote software managed

buffers for the partition phase. Software managed buffers
for the single-node radix join are presented in [9] to achieve
a high fan-out of the radix-partitioning phase and avoid mul-
tiple passes. RRJ adopts this idea to work optimally in the
NAM architecture with RDMA by applying the following
changes: (1) buffers are copied in the background to storage
nodes using selective signaled WRITEs; and (2) buffer sizes
are optimized to leverage the full bandwidth of RDMA. Our
micro-benchmarks in Section 2.2 show that 2KB messages
saturate the InfiniBand bandwidth. Moreover, the fan-out
of the remote radix-partitioning phase is selected such that
all buffers fit into the L3 cache of the CPU.

Note that the resulting RRJ algorithm is not simply a
straightforward extension of the radix join. For example,
our current implementation uses manually allocated RDMA-
enabled memory on the buffer and storage nodes.In a re-
designed distributed DBMS, a major challenge is to man-
age global memory allocation efficiently without imposing
a performance penalty on the critical path of distributed
algorithms.

Assuming that the network cost is similar to the memory
cost and that one partitioning pass is sufficient when using
software managed buffers, the RRJ algorithm has a total
expected cost of:

TRRJ = 2 · cmem · (wr · |R|+ ws · |S|)

The results of the cost analysis of both algorithms, the
RDMA GHJ and the RRJ, is shown in Figure 7(b) and
demonstrates that the popular semi-join reduction for dis-
tributed joins only pays off in corner cases (i.e., for very,
very low join selectivities).

5.3 RDMA Aggregation Algorithms
Since the primary concern for distributed aggregation in

a shared-nothing architecture over slow networks is to avoid

537

network communication [43], traditional approaches typi-
cally use a hierarchical scheme. In a first phase, all nodes
individually execute an aggregation over their local data par-
tition. In a second phase, the intermediate aggregates are
merged using a global union, and a post-aggregation is exe-
cuted over that union. However, this scheme suffers from
two problems: (1) data-skew can cause individual nodes
in the first phase to take much longer to finish than other
nodes; and (2) a large number of distinct group-by keys leads
to a high execution cost for second phase.

In order to tackle these issues, we present a novel RDMA-
optimized aggregation operator, which implements a dis-
tributed version of a modern in-memory aggregation opera-
tor [50, 34] for our NAM architecture. In a first phase, this
operator uses cache-sized hash tables to pre-aggregate data
that is local to a core (thread). Moreover, if the hash tables
are full it flushes them to overflow partitions. In our RDMA-
variant of this operator we directly copy the data in the
background to remote partitions while the pre-aggregation
is still active. In a second phase, individual partitions are
then post-aggregated in parallel to compute the final ag-
gregate. Since this operator uses fine-grained parallelism in
the first phase and there are more partitions than worker
threads in the second phase, it is more robust towards data-
skew and a varying number of distinct group-by keys.

5.4 Experimental Evaluation
We implemented all the discussed distributed join and

aggregation variants and executed them using four servers
(10 threads per node). Each node in hosted compute and a
storage node using the previously described configuration.

For the join workload, we used a variant of [9] adopted
for the distributed setting: for each node we generated a
partition that has the size |R| = |S| = 128 Million and a
tuple width wr = ws = 8B. We generated different datasets
such that the selectivity of the Bloom filter covers 0.25, 0.5,
0.75, and 1.0 to show the effect of reduced network costs.

Figure 8(a) shows the total runtime of the GHJ and
GHJ+Red over Ethernet (IPoEth) and IP over InfiniBand
(IPoIB) as well as our two RDMA variants, RDMA GHJ
and RRJ, over InfiniBand (RDMA) when using 8 threads
per node. As shown, the new RRJ algorithm significantly
outperforms the other state-of-the-art join algorithms for
different semi-join selectivities. These results are in line
with our cost analysis, though the results vary slightly as
caching and CPU effects play a more crucial role for the
RDMA variants.

In a second experiment, we analyze the performance of
our RDMA Aggregation (RDMA AGG) and compare it to
a classical hierarchical distributed aggregation (Dist. AGG).
For the classical aggregation, we used the algorithm as de-
scribed in [50, 34] as local aggregation operations. For the
workload, we used one table with the size |R| = 128 Million
per partition. Each tuple of R has two attributes (one group-
by key and one aggregation attribute) of 4B each resulting in
a tuple width of wr = 8B. Moreover, we generated data sets
with a different number of distinct values for the group-by
keys ranging from 1 to 64M using a uniform distribution.

Figure 8(b) shows the results. For the traditional hierar-
chical aggregation (Dist. AGG), the runtime increases with
the number of distinct group-by keys due to the cost of the
global union and post-aggregation (i.e., the post-aggregation
has to be executed over a global union that produces an out-

put with a size of #nodes ·#groupkeys). While showing a
similar performance for a small number of distinct group-by
keys (i.e., 0.17ms), our RDMA Aggregation (RDMA AGG)
is more robust for a larger number of distinct group-by keys
and shows major performance gains in that case.

Our experiments shown in Figure 8(a) and Figure 8(b)
demonstrate that a redesign of distributed DBMS opera-
tors for the NAM architecture provides major benefits not
only in terms of performance but also other aspects (e.g.,
robustness). Unlike traditional distributed operators for the
shared-nothing and shared-memory architecture, our opera-
tors are optimized for the NAM architecture, thus enabling
an efficient scale-out by adding additional compute nodes.
Moreover, the NAM architecture also enables more efficient
schemes to handle data-skew using fine-grained parallelism
and work-stealing algorithms.

6. RELATED WORK
A major focus in the HPC community has been the devel-

opment of techniques that take advantage of modern hard-
ware, particularly network technologies like InfiniBand [39,
26, 28]. While the vast majority of this work is limited to
specific applications, the results and gained experiences are
highly relevant for developing general-purpose DBMSs for
high-performance networks.

In this paper, we made the case that networks with RDMA
capabilities should directly influence the architecture and
algorithms of distributed DBMSs. Many projects in both
academia and industry have attempted to add RDMA as
an afterthought to an existing DBMS [54, 3]. For example,
Oracle RAC [3] has RDMA support, including the use of
RDMA atomic primitives. However, RAC does not directly
take advantage of the network for transaction processing and
is essentially a workaround for a legacy system.

Some recent work has investigated building RDMA-aware
DBMSs [60, 59] on top of RDMA-enabled key/value stores [29,
42], but transactions and query processing are an afterthought
instead of first-class design considerations. Other systems
that separate storage from compute nodes [13, 35, 38, 14, 2]
also treat RDMA as an afterthought. IBM pureScale [10],
for instance, uses RDMA to provide active-active scaleout
for DB2 but relies on a centralized manager to coordinate
distributed transactions. Conversely, our NAM architecture
natively leverages RDMA primitives to build a shared dis-
tributed memory pool without a centralized coordinator.

The proposed ideas for RDMA build upon the huge amount
of work on distributed transaction protocols (e.g., [61, 22,
12, 37]) and join processing (see [31] for an overview). Other
work [11, 55] also presents distributed join algorithms for
RDMA but focuses only on the redesign of the traditional
shared-nothing architecture using two-sided verbs. Spin-
ningJoins [25] also make use of RDMA, but this work as-
sumes severely limited network bandwidth (only 1.25GB/s)
and therefore streams one relation across all the nodes (sim-
ilar to a block-nested loop join).

Most related to our transaction protocol is FaRM [20,
19]. However, FaRM uses a more traditional message-based
approach and focuses on serializability, whereas we imple-
mented snapshot isolation, which is more common in prac-
tice because of its low-overhead consistent reads. More im-
portantly, in this work we made the case that distributed
transactions can now scale, whereas FaRM tries to explic-
itly leverage locality as much as possible.

538

7. CONCLUSION
We argued that emerging high-performance network tech-

nologies necessitate a fundamental rethinking of the way we
build distributed DBMSs. Our experiments for OLTP and
OLAP workloads indicate the potential of fully leveraging
the network. This opens up a wide research area with many
interesting research challenges, such as the trade-off between
local and remote processing or creating simple abstractions
to hide the complexity of RDMA verbs.

8. ACKNOWLEDGMENTS
This research is funded in part by the Intel Science and

Technology Center for Big Data, the NSF CAREER Award
IIS-1453171, the Air Force YIP AWARD FA9550-15-1-0144,
NSF IIS-1514491, and gifts from SAP, Oracle, Google, Mel-
lanox, and Amazon.

9. REFERENCES
[1] www.jedec.org/standards-documents/docs/jesd-79-3d.

[2] http://snowflake.net/product/architecture.

[3] Delivering Application Performance with Oracles InfiniBand
Tech. http://www.oracle.com/technetwork/server-storage/
networking/documentation/o12-020-1653901.pdf, 2012.

[4] Shared Memory Communications over RDMA.
http://ibm.com/software/network/commserver/SMCR/, 2013.

[5] Intel Data Direct I/O Technology. http://www.intel.com/
content/www/us/en/io/direct-data-i-o.html, 2014.

[6] I. T. Association. InfiniBand Roadmap.
http://www.infinibandta.org/, 2013.

[7] S. Babu et al. Massively parallel databases and mapreduce
systems. Foundations and Trends in Databases, 2013.

[8] P. Bailis et al. Eventual consistency today: limitations,
extensions, and beyond. Comm. of ACM, 2013.

[9] C. Balkesen et al. Multi-core, main-memory joins: Sort vs. hash
revisited. In VLDB, 2013.

[10] V. Barshai et al. Delivering Continuity and Extreme Capacity
with the IBM DB2 pureScale Feature. IBM Redbooks, 2012.

[11] C. Barthels et al. Rack-scale in-memory join processing using
RDMA. In SIGMOD, 2015.

[12] C. Binnig et al. Distributed snapshot isolation: Global
transactions pay globally, local transactions pay locally. VLDB
Journal, 2014.

[13] M. Brantner et al. Building a database on S3. In SIGMOD,
2008.

[14] D. G. Campbell et al. Extreme scale with full sql language
support in microsoft sql azure. In SIGMOD, 2010.

[15] J. C. Corbett et al. Spanner: Googles globally distributed
database. ACM TOCS, 2013.

[16] A. Crotty et al. An Architecture for Compiling UDF-centric
Workflows. In VLDB, 2015.

[17] C. Curino et al. Schism: a Workload-Driven Approach to
Database Replication and Partitioning. In VLDB, 2010.

[18] D. J. DeWitt et al. The Gamma Database Machine Project.
IEEE Trans. Knowl. Data Eng., 1990.

[19] A. Dragojevic et al. FaRM: Fast Remote Memory. In NSDI,
2014.

[20] A. Dragojevic et al. No compromises: distributed transactions
with consistency, availability, and performance. In SOSP, 2015.

[21] A. J. Elmore et al. Squall: Fine-Grained Live Reconfiguration
for Partitioned Main Memory Databases. In SIGMOD, 2015.

[22] S. Elnikety et al. Database replication using generalized
snapshot isolation. In SRDS, 2005.

[23] F. Färber et al. The SAP HANA Database – An Architecture
Overview. IEEE Data Engineering Bulletin, 2012.

[24] M. Feldman. RoCE: An Ethernet-InfiniBand Love Story. HPC
wire, 2010.

[25] P. Frey et al. A spinning join that does not get dizzy. In
ICDCS, 2010.

[26] N. S. Islam et al. High performance RDMA-based design of
HDFS over InfiniBand. In SC, 2012.

[27] E. P. C. Jones et al. Low overhead concurrency control for
partitioned main memory databases. In SIGMOD, 2010.

[28] J. Jose et al. Memcached design on high performance RDMA
capable interconnects. In ICPP, 2011.

[29] A. Kalia et al. Using RDMA efficiently for key-value services.
In SIGCOMM, 2014.

[30] R. Kallman et al. H-store: a high-performance, distributed
main memory transaction processing system. In VLDB, 2008.

[31] D. Kossmann. The state of the art in distributed query
processing. ACM Comput. Surv., 2000.

[32] T. Kraska et al. MDCC: multi-data center consistency. In
EuroSys, 2013.

[33] J. Lee et al. SAP HANA distributed in-memory database
system: Transaction, session and metadata management. In
ICDE, 2013.

[34] V. Leis et al. Morsel-driven parallelism: a NUMA-aware query
evaluation framework for the many-core age. In SIGMOD,
2014.

[35] J. J. Levandoski et al. High Performance Transactions in
Deuteronomy. In CIDR, 2015.

[36] Y. Lin et al. Middleware based data replication providing
snapshot isolation. In SIGMOD, 2005.

[37] Y. Lin et al. Snapshot isolation and integrity constraints in
replicated databases. ACM Trans. Database Syst., 2009.

[38] S. Loesing et al. On the Design and Scalability of Distributed
Shared-Data Databases. In SIGMOD, 2015.

[39] X. Lu et al. High-performance design of Hadoop RPC with
RDMA over InfiniBand. In ICPP, 2013.

[40] P. MacArthur et al. A performance study to guide RDMA
programming decisions. In HPCC, 2012.

[41] C. Mohan et al. Transaction Management in the R*
Distributed Database Management System. In TODS, 1986.

[42] J. K. Ousterhout et al. The case for ramcloud. Commun.
ACM, 2011.

[43] M. T. Ozsu. Principles of Distributed Database Systems.
Prentice Hall Press, 3rd edition, 2007.

[44] A. Pavlo. On Scalable Transaction Execution in Partitioned
Main Memory Database Management Systems. PhD thesis,
Brown University, 2014.

[45] A. Pavlo et al. Skew-aware automatic database partitioning in
shared-nothing, parallel OLTP systems. In SIGMOD, 2012.

[46] O. Polychroniou et al. A comprehensive study of main-memory
partitioning and its application to large-scale comparison- and
radix-sort. In SIGMOD, 2014.

[47] O. Polychroniou et al. Track join: distributed joins with
minimal network traffic. In SIGMOD, 2014.

[48] A. Pruscino. Oracle RAC: Architecture and performance. In
SIGMOD, 2003.

[49] A. Quamar et al. SWORD: scalable workload-aware data
placement for transactional workloads. In EDBT, 2013.

[50] V. Raman et al. DB2 with BLU acceleration: So much more
than just a column store. In VLDB, 2013.

[51] S. Ramesh et al. Optimizing Distributed Joins with Bloom
Filters. In ICDCIT, 2008.

[52] K. Ren, A. Thomson, and D. J. Abadi. Lightweight locking for
main memory database systems. In VLDB, 2012.

[53] W. Rödiger et al. Locality-sensitive operators for parallel
main-memory database clusters. In ICDE, 2014.

[54] W. Rödiger et al. High-speed query processing over high-speed
networks. In VLDB, 2015.

[55] W. Rödiger et al. Flow-join: Adaptive skew handling for
distributed joins over high-speed networks. In ICDE, 2016.

[56] M. Stonebraker et al. “One Size Fits All”: An Idea Whose
Time Has Come and Gone. In ICDE, 2005.

[57] H. Subramoni et al. RDMA over Ethernet - A preliminary
study. In CLUSTER, 2009.

[58] A. Thomson et al. The case for determinism in database
systems. In VLDB, 2010.

[59] C. Tinnefeld et al. Elastic online analytical processing on
RAMCloud. In EDBT, 2013.

[60] C. Tinnefeld et al. Parallel join executions in RAMCloud. In
Workshops ICDE, 2014.

[61] S. Tu et al. Speedy transactions in multicore in-memory
databases. In SOSP, 2013.

[62] E. Zamanian et al. Locality-aware partitioning in parallel
database systems. In SIGMOD, 2015.

539

