
An Experimental Comparison of Thirteen Relational
Equi-Joins in Main Memory

Stefan Schuh, Xiao Chen, Jens Dittrich
Information Systems Group

Saarland University
http://infosys.cs.uni-saarland.de

ABSTRACT
Relational equi-joins are at the heart of almost every query plan.
They have been studied, improved, and reexamined on a regular
basis since the existence of the database community. In the past
four years several new join algorithms have been proposed and ex-
perimentally evaluated. Some of those papers contradict each other
in their experimental findings. This makes it surprisingly hard to
answer a very simple question: what is the fastest join algorithm
in 2015? In this paper we will try to develop an answer. We start
with an end-to-end black box comparison of the most important
methods. Afterwards, we inspect the internals of these algorithms
in a white box comparison. We derive improved variants of state-
of-the-art join algorithms by applying optimizations like software-
write combine buffers, various hash table implementations, as well
as NUMA-awareness in terms of data placement and scheduling.
We also inspect various radix partitioning strategies. Eventually,
we are in the position to perform a comprehensive comparison of
thirteen different join algorithms. We factor in scaling effects in
terms of size of the input datasets, the number of threads, different
page sizes, and data distributions. Furthermore, we analyze the im-
pact of various joins on an (unchanged) TPC-H query. Finally, we
conclude with a list of major lessons learned from our study and
a guideline for practitioners implementing massive main-memory
joins. As is the case with almost all algorithms in databases, we
will learn that there is no single best join algorithm. Each algo-
rithm has its strength and weaknesses and shines in different areas
of the parameter space.

1. INTRODUCTION
Database research is full of traditions. One of our most promi-

nent traditions is to publish new join algorithms every year. And,
yes, we mean equi-joins, on relational data; not some fancy approx-
imate similarity join on probabilistic JSON data streams. Isn’t this
kind of magic that after 40 years of database research, there is still
progress in an area that is at the core of almost every query plan?
Shouldn’t relational equi-join algorithms be a solved problem any-
way? So, why should we care?

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’16, June 26-July 01, 2016, San Francisco, CA, USA
c© 2016 ACM. ISBN 978-1-4503-3531-7/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2882903.2882917

When taking a deep look at the abundant recent related work
on relational equi-joins from 2011 to 2015 [7, 6, 14, 3, 17, 4, 5],
it quickly turns out that based on that literature it is surprisingly
hard to decide which is the best join algorithm. For instance, it
seems clear from [4] that a hash-based approach outperforms sort
based approaches, at least on current hardware with the limited
SIMD register width available today. However, for the different
hash table-based join implementations it is unclear if hardware-
conscious partition-based algorithm (the PRB-family of join al-
gorithms) outperforms non-partitioning hardware-oblivious algo-
rithms (the NOP-family of join algorithms) anyway. For instance,
in 2011, the experiments in [7] show that NOP outperforms PRB.
However, in 2013, the experiments in [4] show exactly the oppo-
site: PRB outperforms NOP. In another work in 2013, [14] again,
NOP outperforms PRB. So which algorithm is better? In odd years
it is NOP? In even years it is PRB? The answer is: we do not know.
The more interesting question is: why do those experiments report
contradicting results? There are several reasons:

1. different implementations were used, e.g. in [7] a very ba-
sic NOP implementation was used where the concurrent chain-
ing hash table was implemented using linked lists and two
separate arrays were used for locks and head pointers. In
contrast, [5] provided a more cache-efficient chaining hash
table implementation which used a single array for both locks
and tuples and removed head pointers. NOP from [14] im-
plemented a lock free hash table by using linear probing
and Compare-and-Swap instructions. Another example is
PRB where [5] reimplemented the PRB algorithm from [7]
since the implementation from [7] had too many function
calls and pointer dereferencing in critical code paths.

2. different optimizations were applied to the different join al-
gorithms, e.g. in [4, 6] software-write combine buffers were
used for PRB, in [14, 7] they were not used, for [5] it is un-
clear wether software-write combine buffers were used for
the results presented in the paper. Moreover, [14] used a
linear probing hash-table as its hash-table implementation
whereas [5, 4, 6] used chained hashing. In addition, [7, 4]
did not consider NUMA-aware join processing at all, while
in [14, 4] at least the join relations as well as working mem-
ory is distributed over all NUMA nodes.

3. different performance metrics were used, e.g. different def-
initions of “join throughput”, e.g. in [4] it is defined as the
number of join results produced per second, i.e. T hroughput =
|R ./ S|

|total runtime| . Notice, that this definition focusses on the amount
of tuples output by the join algorithm. Hence, it is sensitive
to the join selectivity. In contrast, in [14] throughput is de-
fined as the ratio of the sum of the relation sizes and the total

http://dx.doi.org/10.1145/2882903.2882917

runtime, i.e. T hroughput = |R| + |S|
|total runtime| . This definition fo-

cusses on the input of the join algorithms. Hence, this defi-
nition is independent of the join selectivity. We will use the
latter definition in our study.

4. different machines, e.g. the machine used in [7] is a sin-
gle socket six-core Intel Xeon X5650 Nehalem. In contrast,
[5] reports the results for several architectures with the best
performance achieved on an eight-core Intel Xeon E5-2680
server. In [14] the authors used four eight-core Intel Xeon
X7560 Nehalem CPUs in their experiments. Similarly, [5] used
four eight-core Intel CPUs however with the Sandy Bridge
architecture.

5. difference of micro-benchmarks and real queries, e.g. [7,
6, 5, 14, 3, 17, 4, 13] did not consider total query execution
times of real world (or at least TPC-H) queries, that include
several attributes that have to be considered for predicate
evaluation after the join processing. However, simple tech-
niques like selection push-down may considerably reduce the
input sizes to a join algorithm (even though the unfiltered re-
lations are huge). In such a situation the choice of the join
algorithm may become less crucial. In addition, tuple recon-
struction has been shown to have a substantial effect on the
overall runtime of a query [2]. Whether a join is run with
or without tuple reconstruction makes a huge difference in
practice. However, none of these effects were evaluated in
those works.

Any of these differences alone may have a substantial effect on
the runtime of a join algorithm or its interpretation. Accumulating
multiple of those differences makes a comparison very hard and
comparing results from different papers becomes almost infeasible.

Therefore, we believe the time is ripe for a clean slate experimen-
tal comparison of relational equi-joins. This paper fills this gap. We
will focus on hash-based join algorithms as almost all recent works
suggest that these algorithms are the most promising ones. Still,
we will use a modern sort-based approach as one baseline [4]1. We
do not further explore sort-based joins as the evidence from recent
work suggests that sort-based joins cannot match the performance
of other joins. We will evaluate all algorithms in the context of a
modern NUMA (non-uniform memory access) architecture.

The algorithms we evaluate in our study are based on algorithms
published in four recent papers [17, 4, 14, 5]. Notice that those
papers in turn improve upon several other older papers [13, 7, 3].
We will introduce several variants of those algorithms. In total, in
our study, we evaluate thirteen different join algorithms.

In this paper we make the following contributions:

1. Black box Comparison. We start with the core join algo-
rithms from [14, 5, 17] which are already improved versions
of join algorithms proposed in [7, 13] or have been shown
to outperform join algorithms proposed in [3]. We will start
with a black box end-to-end comparison of these four princi-
pal join algorithms in Section 4.

2. White box Comparison. We proceed by performing a white
box comparison. We enable all optimizations mentioned in
prior work and explore their effects on the runtime perfor-
mance of the joins, see Section 5.1. We then proceed by
evaluating the effect of different hash-table implementations
in Section 5.2, for both NOP and PRB.

1We also wanted to use a second sort-based baseline [14]. How-
ever, that code was not available.

3. Optimizing Join Algorithms. In order to improve the join
performance on NUMA architectures, we optimize the dif-
ferent versions of the PRB join algorithm. First, We will
show how to make the partitioning phase NUMA-aware in
Section 6.1 and also see that we can improve over PRB by
20%. Second, we will show in Section 6.2 that a NUMA-
aware join task scheduling can also improve the performance
by roughly 20%. These improvements are not cumulative
as the NUMA-aware partitioning already makes use of all
NUMA nodes in the join phase and therefore does not profit
from a NUMA-aware scheduling.

4. Comprehensive Comparison of Joins. Finally, we will be
in the position to perform a comprehensive comparison of all
join algorithms, see Section 7. First, we define a common
workload for all methods. We also do a reality check and
use another meaningful baseline. For primary key columns
it is common sense to use automatically generated integer
IDs. This leads to a dense key domain of integers. For this
distribution a simple array rather than a hash table may be a
surprisingly good choice. Though the practicability of this
approach may be questioned if the join key domain is sparse,
it serves at least as a baseline on how good a join algorithm
may get anyway. Additionally, for non-dense distributions a
compressed array like the recently suggested [17] may be a
good choice to avoid using a full-blown hash table.

Second, we proceed by evaluating the page size of the vir-
tual memory management on all phases of the different joins.
This parameter has a surprising effect on runtime.

Third, we look at the scalability of the join methods in terms
of the input relation sizes. In this context we propose a strat-
egy for choosing the right number of bits for partitioning the
input relations in radix-based joins.

Fourth, we explore the behavior of the join algorithms under
moderately skewed and highly skewed data (Appendix A).

Fifth, we examine the scalability of the different joins in
terms of the number of threads and discuss possible reasons
for the different scalability characteristics (Appendix B).

Sixth, we evaluate the feasibility of using array joins in mod-
erately dense domains (Appendix C).

Seventh, we eveluate microarchitectural performance aspects
(Appendix D).

5. Effect on real queries. We will evaluate the effect of the
choice of the join algorithm in the context of a real TPC-H
query in Section 8. We will start with a simple single join
query, TPC-H Q19. We will analyze the portion of the query
time spent in the actual join. We also provide an additional
experiment changing the selectivity of Q19’s predicates (see
Appendix E). Additionally, see Appendices F and G.

6. Key Lessons Learned. Finally, we conclude by identify-
ing the key lessons learned from our experimental study, see
Section 9.

2. RELATED WORK
We focus on papers that discuss in-memory joins on multicore

systems; we are aware that there is also a lot of related work on sort-
ing, hashing or partitioning in memory, which is of course highly
related to join processing. That work will be cited in other sec-
tions whenever appropriate. In the following we will discuss re-
lated work in chronological order.

Kim et. al. [13] revisited the sort vs hash argument in the con-
text of main memory multi-core system by comparing a hash join
and a sort-merge join that are optimized for modern multi-core sys-
tems. The hash join algorithm they introduced is called parallel
radix hash join. Their experimental results showed that the parallel
radix hash join outperforms the sort-merge join by a factor of two.
They also developed an analytical model for the join performance
and predicted that the sort-merge joins will become faster with the
following two future hardware trends. First, Wider SIMD instruc-
tions: the sort-merge join algorithm scaled near-linearly with the
width of SIMD instructions in their models, while the hash join
algorithm hardly exploits the capability of SIMD instructions. Sec-
ond, Limited per-core bandwidth: the hash join algorithm needs
at least two pass partitioning for large data sets due to the limited
number of TLB cache entries, which result in at least three trips to
main memory, while the sort-merge join only needs two. With lim-
ited per-core bandwidth more memory trips would lead to worse
performance.

Blanas et. al. [7] extended the categories of main memory multi-
core join algorithms by introducing no-partitioning hash join. Un-
like partition-based algorithm like parallel radix hash join [13],
the no-partitioning hash join is a straightforward parallellised ver-
sion of canonical (simple) hash join without partitioning the data
at all. Blanas implemented the no-partitioning hash join with a
lock-based concurrent chaining hash table and compared it with
partition-based algorithms using three different partitioning algo-
rithms: shared partitioning, independent partitioning, and the radix
partitioning from Kim et. al. [13]. Their experimental results show
that the no-partitioning hash join outperforms all partition-based
hash joins for almost all data distributions and is only slightly slower
than parallel radix hash join with uniform datasets.

A later work by Albutiu et. al. [3] on sort-merge join further ex-
tended the design space of main memory join algorithms by giving
focus on optimizing for NUMA systems. The Massively Parallel
Sort-Merge join (MPSM) proposed in their paper uses a carefully
tuned memory access pattern and avoids inter-thread synchroniza-
tion as much as possible. Their experimental results show that
MPSM runs much faster than no-partitioning hash join [7] and
radix hash join [15] (the latter implemented in Vectorwise on a 32-
core, 4-socket machine). Unfortunately, the authors did not make
their code available to us. Hence, we will use the sort-based join
from Balkesen et. al. [4] as the sort-based baseline as it is freely
available and additionally was shown to be superior to MPSM.

Balkesen et. al. [5] investigated the parallel radix hash join and
no-partitioning hash join algorithms from Blanas et. al. [7] and pro-
posed better variants for both algorithms. They achieved higher
throughputs by improving the cache efficiency of the hash table
implementations for both algorithms and adopting a better skew
handling mechanism for parallel radix hash join. We discuss this
algorithm (called PRB in our paper) in more detail in Section 3.
In their experimental results, using their new implementations, the
parallel radix hash join outperforms the no-partitioning hash join
for almost all architectures and workloads — except on Niagara2,
which has 8 threads per core, for a workload using a very large
probe relation. This result is contradicting the conclusions made
by Blanas et. al. [7].

The picture changed again when Lang et. al. [14] published their
NUMA-aware no-partitioning hash join. In their results, their no-
partitioning hash join method outperforms the parallel radix hash
join from Balkesen et. al. [5] by a factor of more than two on a
4-socket machine with 64 hardware contexts. We discuss the no-
partition algorithm (called NOP in our paper) from Lang et. al. in
Section 3.

Another work by Balkesen et. al. [4] improved the sort-merge
join from Kim et. al. [13] and their own parallel radix join from [5].
Their sort-merge join uses wider SIMD instructions and uses range
partitioning to allow for efficient multithreading without heavy syn-
chronization. We discuss the proposed sort-merge join (called MWAY
in our paper) in more detail in Section 3. In their experimental
results, in contrast to the prediction from Kim et. al. [13], wider
SIMD instructions did not yet make sort-merge join superior to
parallel radix hash join. In fact, in their experiments, parallel radix
hash join still always outperforms sort-merge join.

While all the previous research focused on the runtime of join al-
gorithms, the work from Barber [17] studied the memory-efficiency
of hash join methods. They proposed a highly memory efficient
linear probing hash table called concise hash table (CHT). We also
discuss this algorithm (called CHTJ in our paper) in more detail in
Section 3. They compared their method with the no-partitioning
hash join and the parallel radix hash join from [5]. Their experi-
mental results show that they can reduce the memory usage by one
to three orders of magnitude with competitive performance.

Finally, there has been work optimizing joins for specialized
architectures including GPUs, e.g. [12], hybrid CPU-GPU archi-
tectures, e.g. [10], and coprocessors attached through PCI express
cards like Intel’s Xeon Phi, e.g. [11, 18]. Though these are all in-
teresting works they are way beyond the scope of this paper. We
will focus on modern server CPUs which are still abundant.

3. FUNDAMENTAL REPRESENTATIVES OF
MAIN-MEMORY JOIN ALGORITHMS

In summary, we can identify three fundamental classes of join
algorithms into which the most recently published join algorithms
fall. Namely: (1) partition-based hash joins, (2) no-partitioning
hash joins, and (3) sort-merge joins.

In the following we will discuss one or two modern variants of
each class in more detail. This discussion will serve as the starting
point of our study.

Join Class
Modern Variants

Introduced in
Paper

Partition-based
Hash Joins [13],[7],[5],[4]

No-partitioning
Hash Joins [7],[5],[14],[17]

Sort-merge
Joins [13],[3],[4]

Table 1: Join algorithms from Section 2 and their assignment to
classes

Table 1 shows this classification assigning the papers discussed
in Section 2 to their corresponding class. Notice that some of those
papers, e.g. [7], presented algorithms from multiple classes.

3.1 Partition-based Hash Joins
Core Idea: Partition-based Hash Joins partition the input rela-
tions into small pairs of partitions (co-partitions) where one of the
partitions typically fits into one of the caches. The overall goal of
this method is to minimize the number of cache misses when build-
ing and probing hash tables.
PRB is the two-pass parallel radix hash join described in [5]. A
problem with partitioning joins is that different partitions will most
likely reside on different memory pages. Thus, randomly writing
tuples to a large number of partitions may cause excessive TLB

Join Description Paper Code
Fundamental Classes of Join Algorithms (Section 3)
&Black box comparison (Section 4)

PRB

Basic two-pass parallel radix
join without software managed
buffer and non-temporal
streaming

[5] Original

NOP No-partitioning hash join [14] Original
CHTJ Concise hash table join [17] Own
MWAY Multi-way sort merge join [4] Original
White box comparison (Section 5)

NOPA Same as NOP except using an
array as the hash table This Modified

PRO
One-pass parallel radix join with
software managed buffer and
non-temporal streaming

[5] Original

PRL
Same as PRO except using linear
probing hashing instead of
bucket chaining

This Modified

PRA Same as PRO except using
arrays as hash tables This Modified

Optimizing Parallel Radix Join (Section 6)

CPRL
Chunked parallel radix join with
software managed buffer and
non-temporal streaming

This Own

CPRA Same as CPRL except using
arrays as hash tables This Own

PROiS PRO with improved scheduling This Modified

PRLiS
Same as PROiS except using
linear probing hashing instead of
bucket chaining

This Modified

PRAiS PRA with improved scheduling This Modified
Table 2: reference table for the algorithms evaluated in this paper

misses. In order to fix this problem, PRB uses two-pass partition-
ing to guarantee that the number of partitions does not exceed the
number of TLB entries. The first partitioning pass starts by as-
signing equal-sized regions (chunks) to each thread. The algorithm
precomputes the output memory ranges of each target partition by
building histograms. Hence, each thread knows where and how
much to write for each partition without the need for further syn-
chronization. After histograms have been built, each thread scans
the input relation and writes each tuple to its destination region.
The first partitioning pass already produces a considerable number
of partitions. Therefore, in order to perform the second partition-
ing pass, entire sub-partitions (rather than chunks of a partition as
done in the first partitioning pass) are assigned to worker threads
by using a task queue. If required, skew handling may be done
to break up larger partitions further by assigning multiple threads
to an individual partition. In the join phase, each thread takes one
co-partition at a time and runs a textbook hash join algorithm on it
using a chained hash table.

3.2 No-partitioning Hash Joins
Core Idea: No-partitioning hash joins concurrently build a single
global hash table. Simultaneous multi-threading and out-of-order
execution is used to hide cache miss penalties automatically. In
contrast to partition-based joins, no knowledge about the hardware
cache sizes or number of TLB entries is required for tuning.
NOP is the no-partitioning hash join described in [14]. It uses a
lock-free synchronization mechanism for a linear probing hash ta-
ble using compare-and-swap. The algorithm starts by assigning
equal-sized regions (chunks) to each thread. Each thread then in-
serts its chunk of the build relation into the global hash table. After
all threads are done inserting, each thread starts probing its chunk
of the probe relation against the global hash table.

For inserts into the global hash table, each thread uses an atomic
Compare-and-Swap (CAS) operation. This is a transactional and
conditional operation that is only executed if the slot contains the
empty key; in that case the empty key is overwritten by the key
to be inserted. Otherwise the operation returns false. As entries
are never removed or overwritten in a slot, the thread can copy the
payload to the bucket in an additional non-transactional operation.
In addition to the lock-free hash table, another optimization of NOP
is to interleave hash table allocation among all available NUMA
nodes for better memory bandwidth utilization.
CHTJ is the concise hash table join described in [17]. At its core
a Concise Hash Table (CHT) consists of four major components.
First, an array A of size n storing all n inserted tuples without
any additional empty slots. Second, a hash function hash : Key 7→
[8 · n]2, where Key denotes the domain of the join keys and [8 · n]
denotes the set of all integers in the range from 1 to 8 · n. Third, a
bitmap B of size 8 ·n. This bitmap marks if a certain hash bucket is
occupied. Fourth, a population count array PC of size n/4 with a
running sum of the population count of the bitmap, i.e. for for every
32 bits of the bitmap we count the number of elements stored up to
that point. A CHT is a static structure that is bulkloaded once and
then used for lookups only. Hence, this structure is very suitable
for join processing. Notice that Google sparse hash map [8] is very
similar to CHT, but additionally allows for inserts and deletes.

In a CHT, a lookup for a key works as follows: we first check
if the bit B(hash(key)) is set. If that is the case, this implies that
array slot hash(key) is occupied. In other words: there may be a
result. In that case, from the population count array PC we retrieve
the population count from position bhash(key)/32c− 1 and add it
to the number of bits set in B within the range[

bhash(key)/32c ·32; hash(key)−1
]
.

In order to speed up this process B and PC are physically inter-
leaved in the same structure.

CHTJ works as follows: first it radix-partitions the build input
into a small number of partitions very similar to PRB. Second, one
global CHT is allocated where each thread bulkloads its partition to
a disjoint region in that CHT. Hence, there is no need for additional
synchronization at this point. Fourth, the probe relation is handled
similarly to NOP: each thread probes one chunk of the probe rela-
tion against the global CHT. Again, as no inserts are performed in
the CHT at this point, there is no need for synchronization.

We classify CHTJ as a no-partition hash join even though the
algorithm uses partitioning on the build input. However, that parti-
tioning is only used to build the global CHT in parallel. Afterwards
the algorithms is equal to NOP as discussed above. Moreover, in
CHTJ the partitioning is not used to run independent joins on co-
groups like in PRB.

3.3 Sort-merge Joins
Core Idea: Sort-merge joins belong to the oldest join methods used
in databases. The idea is to first sort both input relations on their
join keys, if they are not yet sorted, and to use an efficient merge
step afterwards to find all matching tuples. Sort-merge join algo-
rithms can exploit and create so-called interesting orders. Even
if the performance of a single join in a complex multi-join query
would be suboptimal, the overall performance of the sort-merge
join plan could be superior.
MWAY is the m-way sort merge join described in [4]. It is also
very similar to the method described in [13]. MWAY partitions the
data very similar to PRB, however using only a single partition-
ing phase and creating only few partitions. In addition, software
2For simplicity we assume here that n is a power of 2.

write-combine buffers (see Section 5.1) are used. After partition-
ing, each partition will be merge-sorted independently by a sepa-
rate thread. The merge-sort is implemented with bitonic sorting-
and merge-networks. Both sort- and merge-networks are vector-
ized using SIMD instructions. In addition, multi-way merging is
used to save memory bandwidth.

4. BLACK BOX COMPARISONS
In this section we want to compare the representatives of the fun-

damental join algorithms that were also compared in prior work.
We want to identify some of the reasons for contradicting results
in previous works. Table 2 lists all evaluated join algorithms and
the abbreviations used. The paper column refers to papers where
the specific algorithm was published and “this” means that the al-
gorithm is proposed in this paper. The code column shows the
implementation we used for each algorithm. There are three val-
ues for this column: “Original” means we use the implementation
from authors of the paper, “Modified” means we modify the orig-
inal implementation to get the new variant and “Own” means we
implemented the algorithm from scratch.

For our experimental evaluations we use a setup that is simi-
lar to the one used throughout all mentioned previous join papers.
The tuples of the join relations consist of two four byte attributes,
namely the join key and the payload. Furthermore, the keys in the
smaller relation are dense and unique, like in a primary key col-
umn. Throughout this study we use the same 60 core machine, see
Section 7.1 for details. Unless stated differently, all algorithms use
at most 32 threads even though our machine has 60 cores available.
The reason is that the code of the MWAY algorithm only works
with a power of two number of threads. In Section B we will in-
crease the number of threads beyond 32 threads. We measure the
throughput of a join as (|R|+ |S|)/t join, i.e. the total number of in-
put tuples of both relations divided by the algorithm runtime.

 0

 200

 400

 600

 800

 1000

T
h
ro

u
g
h
p
u
t
[M

 t
u
p
le

s
/s

]

MWAY CHTJ PRB NOP

Figure 1: Black box comparison of the fundamental join repre-
sentatives using 32 threads and relation sizes |R| = 128M and
|S|= 1280M.

Figure 1 shows the performance of this black box comparison in
terms of throughput. We use inputs of size 128 million and 1280
million tuples respectively. These results are comparable to the
results found in [14] and [17], but do not match the findings in [4]
as for instance in that study the performance of PRB was found to
be much better than MWAY.

To understand this inconsistency between results from prior work,
we will take a closer look at the parallel radix partitioning join in
the next section.

5. WHITE BOX COMPARISONS
From the prior publications it is not always clear what optimiza-

tions were used for the parallel radix join. We therefore take a
closer look at different possible optimization for the different meth-
ods to make them more comparable.

Let’s start by taking a closer look at the code for PRB provided
by [1]. We see at least two optimizations that can be enabled.

5.1 Optimizing Radix Partitioning
NUMA-Awareness. The first option is the -basic-numa flag
that equally allocates the partition buffer on all NUMA nodes, as
otherwise the buffer will be allocated randomly over different NUMA
regions. This option was most likely enabled in all related work as
otherwise the performance of the join algorithm decreases consid-
erably on NUMA machines. Turning on this option has another
important effect:
Memory Allocation Locality. Before running the actual join, all
physical pages will be allocated locally and mapped in the virtual
memory table. Hence, we will not trigger page faults and conse-
quent allocations while running a join algorithm. As database sys-
tem always have a buffer manager anyways, we believe it is a fair
assumption that memory buffers were already physically allocated.
We already used this option in the previous section and we will also
keep this option turned on throughout all following experiments.
Software Write-Combine Buffers. The second option provided
by the code of [1] is the -enable-swwc-part flag3: this flag
enables the use of software write-combine buffers (SWWCB) and
non-temporal streaming instructions for the parallel partitioning
algorithm. SWWCBs, aka software managed buffers, have been
known for quite some time [20]. The idea is to allocate a small lo-
cal buffer for each partition and first put tuples into buffers instead
of directly flushing them to the output. This is similar to buffered
writes in disk-based partitioning, however, the size of each buffer is
only one cache line. SWWCB reduce the pressure on the TLB as

Algorithm 1 Partitioning with Software Write-Combine Buffers
1: for all tuple ∈ relation do
2: partition← hash(tuple.key);
3: pos← slots[partition] mod TuplePerCacheline;
4: slots[partition]++;
5: buffer[partition].data[pos] = tuple;
6: if pos == TuplePerCacheline - 1 then
7: dest← slots[partition] - TuplePerCacheline;
8: copy buffer[partition].data to output[dest];

the buffers are very likely to reside in cache and on very few pages
while only a full buffer is flushed to main memory. If a buffer can
hold N tuples, then the number of TLB misses will be reduced by a
factor of N. Algorithm 1 illustrates how SWWCB works. Turning
on this option has another important effect:
Non-temporal streaming. This is a technique allowing program-
mers to write half a cache line to DRAM bypassing all caches.
It prevents polluting the caches with data that will never be read
again. Recently, Schuhknecht et.al [21] performed an in-depth
study of the effects of using both software write-combine buffers
and non-temporal streaming on the single-threaded radix partition-
ing algorithm. We follow the guideline provided in that paper.

3To be fair with prior work that did not enable this feature in their
comparisons. It is marked as experimental and we applied some
fixes that removed minor race conditions that did not influence the
performance.

After enabling all those features we obtain a much more effi-
cient algorithm called PRO (Parallel Radix with Optimized parti-
tioning).
Single-pass Partitioning. The original PRO used two-pass radix-
partitioning. We ran micro-benchmarks on PRO comparing single-
pass and two-pass partitioning and also determined the optimal
number of partitions to use for partitioning. Figure 2 shows that a
single-pass partitioning using 14 bits leads to the highest through-
put. We will use this setting in the following for all variants of PRO.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 8 9 10 11 12 13 14 15 16

T
h
ro

u
g
h
p
u
t
[M

 t
u
p
le

s
/s

]

Total number of bits

numPasses = 1 numPasses = 2

Figure 2: Throughput of PRO for different partition sizes and num-
ber of radix bits for partitioning (total join including partitioning
and join phase); the two-pass algorithm divides the bits evenly over
the two passes.

5.2 Choice of Hash Method
Linear vs Chained vs CHT. Another dimension that makes the
available join algorithms harder to compare is the usage of different
hash table implementations in the algorithms. All presented hash
join methods use different hash table implementations. CHTJ of
course uses a concise hash table; PRO uses a variant of chained
hashing while the NOP algorithm uses linear probing to implement
the hash table. We therefore also implemented a version of PRO
that uses a linear probing hash table and call that method PRL. An
in-depth study for different hashing strategies can be found in [19].
Arrays. When using unique and dense domains of join keys we can
go one step further and use an even simpler hash table implementa-
tion — a simple array. Instead of storing key value pairs in a hash
table we can simply use the key as an index in the array and store
the value in that position. This assumption on the key domain may
sound unrealistic on first sight, however, often joins are performed
along 1:n or n:1 foreign key relationships using artificially created
IDs (ID Integer PRIMARY KEY AUTOINCREMENT), this situ-
ation may occur frequently in practice. It can also be identified
easily by the query optimizer through the available statistics. This
simple array implementation can also be used in the NOP-family
of joins and hence we get two new hash join variants called No
Partition Array join (NOPA) and the Parallel Radix partition Array
join (PRA). These joins are of course not as widely applicable as
the other hash joins. We will also investigate the usefulness of these
methods in the presence of holes in the key domain in Section C.
Performance Comparison. Considering the optimizations dis-
cussed in Sections 5.1 and 5.2, we take another look at the per-
formance of the join algorithms and show their throughput in Fig-
ure 3. We can see that PRO clearly outperforms NOP and now the
performance of PRO also resembles the results presented in [4].
However, surprisingly, there is almost no difference in runtime be-
tween PRA, PRO, and PRL. Therefore, we might conclude that the
choice of the hash method does not have an effect on the runtime;
however, later on we will learn that this conclusion would be wrong
(see Section 6.2).

 0

 200

 400

 600

 800

 1000

 1200

 1400

Figure 1

T
h
ro

u
g
h
p
u
t
[M

 t
u
p
le

s
/s

]

MWAY
CHTJ

PRB
NOP

NOPA
PRO

PRL
PRA

Figure 3: Join throughput including improved versions. We ob-
serve almost a twofold performance improvement over the black-
box versions shown in Figure 1.

6. OPTIMIZING PARALLEL RADIX JOIN
We have observed in Figure 3 that the parallel radix partition-

ing joins PR* are providing the highest throughput so far. We are
therefore looking for ways to further improve their performance. In
the following, we will look at the partition phase and the join phase
separately.

6.1 NUMA-aware Partitioning
First we investigate the partitioning phase. The Parallel Radix

Partitioning algorithm is illustrated in Figure 4(a). It works as fol-
lows: (1) every thread sequentially reads a horizontal chunk of the
input relation to create a local histogram. (2) a global thread merges
the local histograms into a global histogram4. The goal is to exploit
this global histogram later on as an index to the target partitions.
To merge the local histograms, we need a synchronization barrier,
as every thread has to complete the local histogram before the fi-
nal output positions can be computed. (3) each thread reads again
its horizontal local chunk of the input relation and partitions the
data into its corresponding SWWCB. Each thread keeps as many
SWWCB as it has target partitions. Whenever a SWWCB becomes
full, it is flushed to the final output position in its target partition
using non-temporal streaming. As the final output position of ev-
ery partition was already determined in phase (2), no further syn-
chronization is necessary. For the probe relation, phases (1)–(3)
are executed similarly using the same partitioning function. Once
both inputs have been partitioned, each pair of corresponding parti-
tions is joined independently. This is done by building a hash table
on the left input and probing the right input against that hash table.
Hence, from a high-level perspective this join algorithm is a variant
of Grace Hash Join applied to NUMA.

NUMA-partitioning is a task which triggers a considerable num-
ber of memory reads and writes, especially when writing out tu-
ples to their destinations. However, in NUMA systems, careless
memory access patterns can hurt the performance very badly as re-
mote memory accesses have higher latency and lower bandwidth
than local memory accesses. So we devoted our effort on analyz-
ing memory access patterns of PRO and we found out that there are
in particular random remote memory writes that we can avoid in
this algorithm.

Figure 4(b) depicts the NUMA access pattern in a simplified case
with four sockets, four threads, and four partitions when writing tu-
ples to their target partitions. We see that the partitioning algorithm
of PRO introduces many random remote writes when writing tu-
ples to their corresponding partitions. Based on this observation,

4Technically, this may also be implemented by letting the threads
merge their histogram independently as in phase (3) each thread
only requires a subset of the global histogram.

s
c
a
n h
is
t

h
is
t

h
is
t

h
is
t

build

h
is
t

h
is
t

s
c
a
n

s
c
a
n

s
c
a
n

s
c
a
n

s
c
a
n

s
c
a
n

s
c
a
n

(1) (2) (3)

SWWC

Buffers

(a) Schematic view on build relation
partitioning of PRO

t0

socket 0

p0

socket 1

p1

t2

socket 2

p2

socket 3

p3

t1

t3

(b) NUMA write pattern for PRO

h
is

t
h

is
t

h
is

t
h

is
t

union & build

s
c
a
n

s
c
a
n

s
c
a
n

s
c
a
n

s
c
a
n

s
c
a
n

s
c
a
n

s
c
a
n

SWWC

Buffers

(1) (3)

(c) Schematic view on build relation
partitioning of CPRL

t0

socket 0

p0 p1

t1

socket 1

p2 p3 p0 p1 p2 p3

t2

socket 2

p0 p1

t3

socket 3

p2 p3 p0 p1 p2 p3

(d) NUMA write pattern for CPRL

Figure 4: High-level schematic view and NUMA write pattern: PRO vs CPRL

we propose the Chunked Parallel Radix partition (CPRL) algo-
rithm that eliminates remote writes when flushing tuples to parti-
tions.

Figure 4(c) shows a high-level schematic view on our algorithm
CPRL. Notice, that the histogram phase (1) is the same as in PRO.
However in contrast to PRO, in CPRL we leave out phase (2),
i.e. we do not compute a global histogram. We proceed directly
with phase (3), i.e. each thread partitions its data locally within
its chunk only based on its local histogram. On a high-level this
can be viewed as running a single-threaded histogram-based radix-
partitioning inside a chunk. For the probe relation phases (1)–(3)
are executed similarly using the same partitioning function. Once
both inputs have been partitioned, each pair of corresponding par-
titions, i.e. each co-partition, is joined independently. In contrast to
PRO, at this point we neither have physically contiguous probe nor
build partitions available. Hence, we first have to read the differ-
ent chunks belonging to the build input from its (possibly NUMA-
remote) sources. In that process, we directly load that data into a
local hash table. Then we also read the different chunks belonging
to the probe input from its (possibly NUMA-remote) sources and
probe them directly against the hash table. Hence, from a high-level
perspective this join algorithm is also a variant of Grace Hash Join
applied to NUMA. However, in contrast to PRO, we do not require
the inputs to each join to be physically contiguous in main memory.
Therefore, CPRL trades small random writes to remote memory for
large sequential reads from remote memory. Notice that CPRL uses
the same linear probing hash table as PRL since it was easier to in-
tegrate our own linear hash table implementation. In addition, the
linear hash table also provided a slightly better performance com-
pared to the chained hash table implementation by Balkesen et. al.
When we use arrays rather than hash tables in the join phase of the
Chunked Parallel Radix join, we call it CPRA. Again, optimiza-
tions like software write-combine buffers and non-temporal store
instructions are also used in this algorithm. The write pattern of
CPRL is illustrated in Figure 4(d).

Let’s compare the performance of PRO, PRL, and PRA with our
proposed CPRL and CPRA. Figure 5 shows the end to end join
processing time broken down into partition and join phase. We
see that the CPR*-algorithms outperform the PR*-algorithms by
∼20%. We also observe that the partitioning times of the CPR*-
algorithms are indeed reduced as expected. However, surprisingly

 0

 200

 400

 600

 800

 1000

R
u
n
ti
m

e
 [
m

s
]

PRO PRL PRA CPRL CPRA

Figure 5: Runtime of PR* vs CPR*-algorithms. Relation sizes:
|R|= 128M, |S|= 1280M. Lighter colors denote the partition phase
and darker colors denote the join phase.

even the join time is reduced. This is counterintuitive to what we
expected as we traded remote writes in the partitioning phase with
remote reads from all sockets in the join phase. We will investigate
the reason for this in the next section.

6.2 NUMA-aware Scheduling
All PR*- and CPR*-algorithms build co-partitions which even-

tually have to be joined independently. How are those individual
joins scheduled? What effect does this schedule have on the over-
all performance of the join algorithms?

After partitioning, in both PR*- and CPR*-algorithms, all co-
partitions are put into a LIFO-task queue (which is actually a stack),
to be processed by different threads. Recall that the PR*-algorithms
partitions an input array into p partitions where for any two par-
titions i, j ∈ [0; p− 1], i < j it holds that the starting address of
partition j is greater than the starting address of partition i. In
other words, the partition indices correlate with their virtual ad-
dresses. We observed that in all PR*- and CPR*-algorithms, co-
partitions are inserted into the queue in ascending sequential in-
dices order, i.e. for p co-partitions the insert order into the queue
is 0, . . . , p− 1. However, recall, that before executing any join,
one quarter of each input relation is physically allocated on one of
the NUMA-regions. In addition, any additional memory required
for partititioning or building hash tables is also equally distributed
across NUMA-regions. This memory allocation strategy was al-
ready present in the code used by [5]. Assume that the number

of threads is considerably smaller than the number of partitions,
i.e. t << p, typically p = 16384 and for our machine t = 60. This
implies that the first d16384/60e = 274 partitions reside on the
same NUMA-region. Hence, all of the first 60 threads removing
tasks from the queue will have to read their input data from the
same NUMA-region. Moreover, for three quarters of those threads,
i.e. 45 threads, this is a remote NUMA-region. Similar bottlenecks
can be observed for all other blocks of 274 partitions.

P
R

O

Node 0 Node 1 Node 2 Node 3

P
R

O
iS

C
P

R
L

Figure 6: Bandwidth profiles for PRO, PROiS, and CPRL obtained
with Intel VTunes

Figure 6 shows the bandwidth profile of PRO. We observe that
most of the time PRO uses only a single NUMA-region.

We can improve this by carefully reordering the join tasks. We
fixed this by changing the task scheduling strategy used by all PR*-
algorithms as follows: we insert co-partitions into the task queue in
a round-robin manner. Specifically, we first put a partition from
the first NUMA region into the queue and then a partition from the
second NUMA region and so on. An alternative would be to use a
different queue for each NUMA-region. Like that it is very likely
that all memory controllers are utilized simultaneously.

Figure 6 shows a bandwidth plot of the original PRO, the vari-
ant of PRO using improved scheduling, coined PROiS, as well as
CPRL. In addition, we also introduce variants of PRL and PRA
using improved scheduling called PRLiS and PRAiS. We observe
that the improved scheduling of PROiS has a substantial effect on
the total bandwidth utilization, i.e. all NUMA nodes are used at the
same time. Even though the suboptimal scheduling is also used for
CPRL, it does not affect the bandwidth utilization, as every parti-
tion has to be read from all NUMA nodes anyhow.

The improved scheduling results in a speedup of the join phase of
PRL and PRA by more than a factor of 2, see Figure 7. As expected

 0

 200

 400

 600

 800

 1000

R
u
n
ti
m

e
 [
m

s
]

PRO
PROiS

PRL
PRLiS

PRA
PRAiS

CPRL
CPRA

Figure 7: Runtime of PR* and CPR*-algorithms vs their vari-
ants with improved scheduling (PR*iS-algorithms). Relation sizes:
|R|= 128M, |S|= 1280M. Lighter colors denote the partition phase
and darker colors denote the join phase.

in Section 6.1, we can now observe that the join phase of the CPR*-
algorithms is in fact slightly more expensive than the one of the
PR*iS-algorithms. However, still, in total the CPR*-algorithms are
slightly faster than the PR*iS-algorithms. Moreover, in contrast
to our results from in Figure 3, we can now clearly observe that
different hash table implementations have an effect on the runtime
of the algorithms.

7. PUTTING IT ALL TOGETHER
After our initial black box comparison (Section 4), after hav-

ing analyzed the effects of optimizing radix partitioning and using
different hash tables (Section 5), and after optimizing the NUMA
memory allocation and NUMA access pattern of the various radix
algorithms (Section 6), we are finally in the position to perform a
comprehensive comparison of all join algorithms.

In this section we will perform a large-scale experimental study
of all thirteen algorithms mentioned above. Recall that Table 2 lists
all algorithm abbreviations and their short descriptions. In the pdf
of this paper all occurrences of algorithm abbreviations are hyper-
links pointing to their description. We evaluate all algorithms in the
same benchmarking framework. Additional experiments including
skewed data and semi-dense key domains can be found in the Ap-
pendix.

7.1 Settings
All our experiments are performed on a server with half a ter-

abyte of main memory and four Intel Xeon E7-4870 v2 CPUs,
clocked at 2.30 GHz (published in Q1 2014). This CPU has 30
hardware contexts executed on 15 physical cores that share a 30 MB
L3 cache. Each core has one private 32 KB L1 data, one 32 KB in-
struction cache, and one 256 KB L2 data cache. Notice that the
number of TLB entries when using 4 KB page is 256. However, if
we use 2 MB pages, we only have 32 TLB-entries! The operating
system we used is a 64-bit Debian 7 server with the kernel ver-
sion of 3.2.0-4. The CPU supports AVX 1.0. Just like the original
studies [13, 4, 3, 14, 6], we also assume a column-oriented storage
model and adopt the configuration of using a <Key, Payload> pair
as a tuple. We use a 4-byte integer key and a 4-byte integer pay-
load to make a fair comparison between all methods, since some
available implementations only work for this key size. We assume
that the build relation follows a dense primary key distribution and
the keys of the probe relation have a foreign key relationship to the
keys of the build relation, if not mentioned otherwise. This setting
was also used in the mentioned previous studies.

In the following experiments, we use the implementations of
PRO, PRB, NOP from the original authors. PRA, PRL, PRAiS,
PROiS, NOPA are implemented based on the authors’ implemen-
tations. We implemented CPRL, CPRA, and CHTJ ourself from
scratch. Since the build relation has dense primary keys, we use
the identity hash function modulo the hash table size for all hash
joins as it is very effective and efficient in this setting and was also
used in the previous studies. Lang et. al. [14] additionally evalu-
ated different hash functions like Murmur, CRC, and multiplicative
hashing. We are not evaluating the effect of different hash functions
on the join performance in this paper. All software is implemented
in C/C++ and compiled by gcc/g++ version 4.7.2 with optimization
level -O3.

7.2 Varying Page Sizes
The first dimension we want to explore is the page size of the

virtual memory used for the join algorithms. As partitioning is
very sensitive to TLB misses, this is a very important aspect. In
the previous experiments we used huge page sizes for all alloca-

tions, i.e. 2 MB. To study the effect of the page size on the differ-
ent algorithms we evaluate pages of 4 KB and 2 MB by switching
the kernel setting transparent_hugepage/enabled between never
and always. We also ensured that all allocations use the default
malloc or posix_memalign methods.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

T
h
ro

u
g
h
p
u
t
[M

 t
u
p
le

s
/s

]

MWAY
CHTJ

PRB
NOP

NOPA
PRO

PRL
PRA

CPRL
CPRA

PROiS
PRLiS

PRAiS

Figure 8: Performance of all thirteen join algorithms when using
small (4 KB, dark color) and huge pages (2 MB, light color)

Figure 8 shows the performance of all thirteen join algorithms
when using small (4 KB) and huge pages (2 MB). We observe that
all algorithms except PRB improve by using huge pages. PRB is
the only algorithm that has a slightly worse performance when us-
ing huge pages. This is due to the naive partitioning that does not
use any software write-combine buffers for the different partitions.
In each of the two radix passes PRB partitions along 7 bits = 128
partitions. The entries for all those pages fit into the TLB-cache
when using small pages. However, when using huge pages, we
only have 32 TLB-entries available. Hence, many write operations
to partitions lead to TLB-misses. This effect is mitigated when us-
ing SWWCB as in PRO.

As some of the algorithms are clearly dominated by others, in
the following, we do not report for results for PRB, PRO, PRL, and
PRA anymore. In addition, for all following experiments we use
huge pages.

7.3 Scalability in Dataset Size
The next dimension we will explore is the scalability in the size

of the input data to the joins. We will explore two workloads:
(1) the probe relation is ten times the size of the build relation. The
factor ten is motivated by the typical ratio in the TPC-H benchmark
and the observation that in a star schema, often used in OLAP ap-
plications, the dimension tables are typically much smaller than
the fact table. (2) both relations have the same size. This is close
to a worst case for hash joins, as the typically more expensive build
phase is followed by a rather short probe phase. If the build relation
becomes smaller than the probe relation, the optimizer should ac-
tually have switched the roles of the relations in the first place. At
the same time, this case is close to a best case for sort-based meth-
ods, as sorting has super-linear costs and is therefore minimized if
both relations have the same size. Previous studies [4, 14] also used
similar workloads.

Fine-tuning the partition-based joins. When we started bench-
marking the effects of scaling the input datasets, we quickly noticed
that the radix-based algorithms are very sensitive to the number of
bits used for partitioning. Recall, that in Section 5.1 we already
explored this effect for a fixed-size input dataset. Following the re-
sults of our micro-benchmark in Figure 2 we assumed that when
doubling the data size, we take one additional bit for partitioning
and hence end up with the same partition size and obtain good per-
formance. But is that really true? Let’s take a second look:

Figure 11 shows the average partitioning time per tuple for a
varying number of partitions and corresponding data set sizes. On
the horizontal axis we use a log scale doubling the number of par-
titions at every tic. The number of partitions is chosen such that
a chained hash table that is built on a single partition fits into L2
cache.

We observe that the average partition time per tuple stays almost
constant up to including 215 partitions. Starting with 216 partitions
the performance deteriorates. This can be explained with the size of
the software write-combine buffers. Recall that we use 32 threads.
If we create 215 partitions using a single cache line per partition as
an SWWCB, all SWWCBs together including other working vari-
ables, e.g. histograms, still fit into the shared last level cache (LLC).
However, when using 216 partitions, this is no longer the case.

We conclude from this experiment that partitioning data into too
many partitions might overshadow the performance gains obtained
in the join phase. We therefore micro-benchmarked the perfor-
mance of all partition-based joins with a varying number of bits
used for partitioning and show these results in Figure 9. In Fig-
ures 9(a)&(b) we choose the number of radix bits such that the hash
table on a partition fits onto L2. In contrast, in Figures 9(c)&(d) we
depict the number of radix bits actually leading to the lowest over-
all runtime. We can see that choosing the number of bits such that
the partitions fit into L2 cache is close to the optimal choice as
long as the SWWCBs still fit into the shared LLC. However, for
larger datasets, we observe in Figure 9(b) that the partitioning costs
increase sharply. Hence, we conclude that for these input sizes it
is better to balance the partitioning cost with the join costs. The
sweet spot for the number of bits used in partitioning seems to be
the minimal number of bits such that the partitions still fit into the
shared LLC.

Predicting the optimal number of radix bits. This leads to the
following formula for the number of bits for partitioning np. Given
the size of R as |R|, the size of a tuple of R as st , the intended load
factor of the join hash tables l, the size of a partition buffer as sb,
the size of the L2 cache as L2, and the size per thread of the last
level cache as LLCt

5:

np(|R|) =

log2

(
|R|·st
l·L2

)
,

|R|·sb·st
L2·l < LLCt

log2

(
|R|·st
l·LLCt

)
, otherwise

(1)

Figure 12 shows the observed runtime for CPRL6 when vary-
ing the number of radix bits from 8 to 18 bits (black points) versus
the performance observed when setting the bits according to Equa-
tion (1) (red line). We can see that the number of bits computed by
Equation (1) leads in almost all cases to the lowest runtime.

Back to Figure 9, we can also make an additional observation:
we see that the different hash table implementations have an effect
on the optimal number of bits for partitioning. This is reasonable,
as the different hash table implementations differ in their space ef-
ficiency. For instance, array joins use a tight array that only keeps
the payload, the key however is implicitly represented through the
array index. In contrast, a linear probing hash table has to store the
key explicitly.

Based on these results, from now on, we will use Equation (1) to
set the bits of all PR*- and CPR*-algorithms and are in the position

5As the LLC is shared between cores, the available share per thread
is dependent on the number of concurrently running threads.
6Similar results for the other algorithms are not shown due to space
constraints.

 0

 0.5

 1

 1.5

(a)
H

T
 o

n
 p

a
rt

it
io

n
 f
it
s
 i
n
to

 L
2

PROiS PRAiS PRLiS CPRL CPRA

11 12
13 14

15

9 10 11
12

13
10 11 12

13 14
10 11 12

13 14
9

10 11 12
13

(b)

11 12
13 14 15

16

17

18

9 10 11
12 13 14 15

16

10
11

12
13 14 15

16

17

10
11 12

13 14 15

16

17

9

10 11
12

13 14 15

16

 0

 0.5

 1

 1.5

16M 32M 64M 128M 256M

(c)

o
p
t
p
a
rt

it
io

n
 s

iz
e

|R| = 10 * |S|

11 12
13 14

15

10 10 11
12

13
10 11 12

13 14
10 11 12

13 14
10 10 11 12

12

16M 32M 64M 128M 256M 512M 1024M 2048M

(d)

A
v
g
 T

o
ta

l
T

im
e
 p

e
r

p
ro

c
e
s
s
e
d
 t
u
p
le

 [
n
s
]

|R| [tuples] |R| = |S|

10
11 12

13 14 15

15
15

10 10 11
12 13 14 15

15

10
11

12
13 14 15

15
12

10
11 12

13 14 15
15

14

10
10 11

12 12 14 15
15

Figure 9: Average total time per tuple (partitioning and join) when varying the number of radix-bits used for partitioning. The dark color
marks the time for partitioning; the light color marks the time for joining. In (a) and (b) we choose the number of radix bits such that the
hash table on a partition fits onto L2. In contrast, in (c) and (d) we depict the number of radix bits leading to the lowest overall runtime.
In particular for |R| = |S| (right column) and |R| ≥ 512 M tuples we see that our assumption, (a) and (b) diverges heavily from the optimal
number of bits, (c) and (d). Notice that we can observe in (b) that the partitioning costs increase heavily whereas the join costs stay the same.

 0

 500

 1000

 1500

 2000

 2500

1 2 4 8 16 32 64 128 256

T
h
ro

u
g
h
p
u
t
[M

 t
u
p
le

s
/s

]

|R| [M tuples]
(a) |S| = 10 * |R|

MWAY CHTJ NOP NOPA CPRL CPRA PROiS PRLiS PRAiS

1 2 4 8 16 32 64 128 256 512 1024 2048

|R| [M tuples]
(b) |S| = |R|

Figure 10: Throughput of join algorithms when scaling input dataset sizes

 0

 0.5

 1

 1.5

 2

16M

2
11

32M

2
12

64M

2
13

128M

2
14

256M

2
15

512M

2
16

1024M

2
17

2048M

2
18

A
v
g
 p

a
rt

it
io

n
 t
im

e
 p

e
r

tu
p
le

 [
n
s
]

|R| and number of partitions

Chunked Partitioning
Partitioning

Figure 11: Scalability of the partition phase for chunked and non-
chunked partitioning

to evaluate the join performance when scaling the sizes of the input
datasets.

Scalability results. Finally, Figure 10 contains the performance
results for all join methods when scaling the input data size. For the
partitioning joins we observe that for very small input sizes, i.e. up
to 4M tuples, the various algorithms show similar performance.
However, if we scale the input data to larger sizes, we observe that
the PR*- and CPR*-algorithms outperform the NOP*-algorithms,
CHTJ, and MWAY. In particular, for the NOP*-algorithms we can

 0

 1

 2

 3

 4

 5

16M 32M 64M 128M 256M 512M 1024M 2048M

A
v
g
 T

o
ta

l
T

im
e
 p

e
r

 p
ro

c
e
s
s
e
d
 t
u
p
le

 [
n
s
]

|R| [tuples]

number of bits predicted by Equation (1)
number of bits in range [8;18]

Figure 12: Runtime of CPRL when setting the number of partition-
ing bits according to Equation (1)

see from Figure 10 that the throughput is very good up to 4M. How-
ever, for larger inputs the throughput decreases. This matches our
expectation since no-partitioning join methods need to build a big
global hash table. With growing data sizes the global hash table
won’t fit into the LLC anymore, which in our case is just 30 MB.
Hence, the bigger the build relation, the higher the probability for
an LLC miss as well a TLB-miss. This effect can be observed very
well in Figure 10(a): up to an input size for |R|=32 M tuples there
is a decrease in performance. Afterwards the performance does not
deteriorate (visibly) anymore as almost all hash table accesses trig-

ger LLC and TLB misses anyway (due to lacking spatial proximity
in the caches). In other words, the NOP*-algorithms are already
bound by this bottleneck.

The inverse argument to this holds for the PR*- and CPR*-al-
gorithms. These algorithms perform more memory operations than
the NOP*-algorithms. The underlying assumption of these algo-
rithms, however, is that memory accesses to individual tuples may
be very expensive, i.e. they may lead to a costly LLC miss. This
effect is similar to external memory algorithms trying to avoid in-
dividual seeks on disk by bundling operations into larger granules.
The PR*- and CPR*-algorithms try to access (and implicitly cache)
memory according to larger granules, i.e. partitions and/or memory
pages. This algorithmic pattern does not have much of an effect if
the input data fits into LLC anyways (then, the underlying assump-
tion of the algorithms simply does not hold). However, once the
underlying assumption holds, i.e. the input data exceeds the size
of the LLC, these algorithms can efficiently avoid costly DRAM
accesses to individual tuples.

Notice that among the NOP*-algorithms, CHTJ is very sensitive
to the data size as it needs at least two random accesses for every
operation on its CHT. MWAY sort-merge join is another very stable
algorithm, it even outperforms the CHTJ for large datasets.

8. EFFECTS ON REAL QUERIES
Up to now we focused on benchmarking raw performance of

multithreaded joins. Like that we followed the micro-benchmarking
philosophy of previous work [7, 6, 5, 14, 3, 17, 4, 13]. However,
micro-benchmarks always trigger the same (and important) ques-
tion: how big is the impact observed in micro-benchmarks in a
larger context, e.g. when joins are used inside a larger query?

The development of a full-fledged multithreaded NUMA-aware
query execution engine is beyond the scope of this paper. How-
ever, state-of-the-art main-memory databases use code compilation
anyways [16], i.e. at query time they translate incoming SQL to
machine code (a standalone program if you wish) and then execute
that program kind of independently from the remaining system (if
you do not require locking which is the case for us). Therefore we
decided to simply emulate a column store in C++. Similar to Mon-
etDB we represent every column as a separate array consisting of
<virtual oid,value> pairs, where the virtual oid is given implicit by
the position of the value in the array. More details can be found in
Appendix F. We choose TPC-H query 19 (Listing 1 in Appendix F)
as that query is the only query that contains a single join followed
by an aggregation without any subqueries. This query joins the
Lineitem table with the Part table.

Both tables are stored as a struct of arrays and additionally, we
dictionary-compress all string columns. We used float values in-
stead of arbitrary precision numeric values. All foreign and pri-
mary key columns are represented as <Key , Payload> pairs with
the row ID as the payload, this made it easier to use the join imple-
mentations with minimal modifications.

On a high-level we execute this query according to the query
execution plan depicted in Figure 13. We obtained this plan through
textbook query optimization. Notice that the same plan is also used
by HyperDB according to the explain functionality of their web
interface 7. In this plan, the selection, that was pushed down to
the scan of the Lineitem table, has a selectivity of 3.57%. This
means that for scale-factor 100 the build relation Part has 20 M
tuples and the probe relation Lineitem has 600 M tuples (600 M·
3.57% = 21.42 M tuples after filtering), i.e. in the join both relations
have roughly the same size.

7http://hyper-db.de/interface.html

Scan Scan

Hash

Join

σ

Aggregation

PART Lineitem

late
m
aterialization

la
te

m
at
er
ia
liz
at
io
n

latematerialization
σ

Figure 13: Optimized semi-physical query plan for TPC-H Q19
plus materialization strategy in the column store

For scale-factor=100 this corresponds to the results of our micro-
benchmark of Figure 10(b) for |R| ≈ 20 M tuples. Notice that the
plan in Figure 13 is actually only semi-physical as it does not spec-
ify when to reconstruct tuples. We used late materialization, i.e. all
attributes are only touched when required by an operation8.

Figure 14 shows the runtime of Q19 for TPC-H for scale-factors
100. This figure includes a cost breakdown where the colored bars
represent the time spent for the join. In contrast, the black bars
represent the time spent in other parts of the query. We obtained
the numbers for the colored bars by executing each join just like in
the micro-benchmarks above, i.e. each of the four join algorithms
receives a build input of 20 M tuples and a pre-filtered (and pre-
materialized) probe input of 21.42 M tuples. The difference of the
execution time of the query and the join smicro-benchmark yields
the black bars9.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

100

R
u
n
ti
m

e
 [
s
]

TPC-H Scalefactor

NOP NOPA CPRL CPRA

Figure 14: Runtime of TPC-H Query 19, colored bars mark the
fraction of the time spent in the actual join; the black bars mark the
time spent for the rest of the query.

We immediately observe that even for this relatively simple query
a major part of the runtime is spent in the non-join parts of the
query. The time spent in the actual join is only about 10%–15%
of the total runtime! In addition, for some methods more time is
spend outside the join than for others.

There are several reasons for this: First, the join key column is a
primary dense key and the Part table is even generated in sorted
order according to this key. This means that we have an ideal se-
quential access pattern for NOPA when building the join array (also
compare our discussion in Section 5.2 as well as additional experi-
mentation in Section C). Second, scanning and filtering 600 M tu-

8This strategy is also used by MonetDB.
9This method is not entirely fair as the join- and non-join parts of
a query may overlap. However, it gives a good indication on how
much of the total query time is actually due to the actual join.

http://hyper-db.de/interface.html

ples from Lineitem down 21.42 M tuples simply eats up some time.
Third, in contrast to the micro-benchmark experiments, for Q19 we
have to access several attributes other than the join key. This hap-
pens in multiple places: in order to evaluate the complex predicate
after the probe and to aggregate the final result, i.e. we have to
perform implicit positional joins (for tuple reconstruction). In par-
ticular, In NOPA neither the Lineitem table nor the Part table
have to be partitioned. Therefore, all other attributes stay aligned
with the join array and the probe relation. This is especially bene-
ficial for all attributes of the probe relation since they are accessed
sequentially when evaluating the complex join predicate. In con-
trast, for the CPR*-algorithms those benefits do not apply. If we
access attributes that are not the join key, we have to follow the
row ids contained in the narrow join tuples. Those row-ids point to
arbitrary locations after partitioning the data. This means that we
pollute our cache and TLB with data from other attributes and lose
locality in our accesses. Therefore, it would be beneficial to explore
tuple reconstruction strategies for CPR*-joins in more detail.

9. LESSONS LEARNED

(1.) Don’t use CPR* algorithms on small inputs. For input rela-
tions with less than 8 million tuples we do not observe a benefit of
partitioning local chunks instead of the global relation. On the con-
trary, we even observe a performance degradation. This is mainly
due to two things: (1) the overhead of creating all the threads does
not pay off for the small input data. This is also true for all other
presented algorithms. (2) the size of a chunk becomes smaller than
a page. This leads to a random allocation of the pages to different
NUMA nodes. Several threads will have to read from and write to
remote memory, even though the main advantage of the CPR* al-
gorithms over the PR* algorithms should be to avoid remote writes.
For very small inputs the NOP* algorithms become very interest-
ing, especially if the build relation starts to fit into the LLCs.
(2.) Clearly specify all options used in experiments. This sounds
like common sense for any experimental study. Still, we list it here
again as a gentle reminder since we ran into this problem when
we were trying to interpret results from different papers. As the
implementations provided by authors typically have multiple opti-
mization options, it is sometimes hard to understand which opti-
mizations were actually used in a paper. Rather over-specify than
under-specify your experiments.
(3.) If in doubt, use a partition-based algorithm for large scale
joins. In this paper, we have studied the performance of three vari-
ants of no-partitioning algorithm and eight variants of partition-
based algorithms with different workloads by varying ratio between
build and probe relations, data size, number of threads and skew-
ness. All Partition-based algorithms outperform all no-partitioning
algorithms in almost all except for only two cases. The first case is
when the size of input relations scales to 32 GB where the worst
partition-based algorithm is a little bit slower than the best no-
partitioning algorithm. The second case is when the probe relation
is highly skewed such that partition-base algorithms suffer from un-
balanced loads between threads while no-partitioning algorithms
have less cache misses. No-partitioning algorithms start outper-
forming partition-based algorithms only for a Zipf factor > 0.9.
(4.) Use huge pages. As we discussed in Section 7.2, all algo-
rithms except PRB benefit from using huge pages. Using huge
pages means less pages are needed for a certain amount of data,
thus reduces the pressure on TLB system.
(5.) Use Software-write combine buffer. Software-write com-
bine buffers are a very effective technique to reduce the number

of TLB misses. Hence, using SWWCBs allows us to use single
pass algorithm which accelerates partition-based algorithms.
(6.) Use the right number of partition bits for partition-based
algorithms. Partition-based algorithms are very sensitive to choos-
ing the right number of radix bits. For different data sizes, one has
to choose different number of partition bits to get the optimal per-
formance. As shown in Figure 9, choosing suboptimal number of
bits can lead to performance degradation by up to a factor of 2.5.
(7.) Use a simple algorithm when possible. In our study, simple
ideas turned out to be surprisingly efficient and effective. For in-
stance, array joins are very efficient in the case of dense primary
key distributions. They outperform other non-array variants un-
der all workloads by up to 44%. Chunking is another simple idea
we used to create faster join algorithms. Chunking eliminates re-
mote memory writes in partition phase and improves the join per-
formance by up to 26%.
(8.) Be sure to make your algorithm NUMA-aware. Back at the
time when PRO and PRB [5] were published, the authors ran exper-
iments on several single socket machines. These algorithms were
designed for multicore systems but not yet for NUMA systems. Di-
rectly running these algorithms on NUMA systems will yield sub-
optimal performance. We evaluated chunking to eliminate writes
to remote memory and explored NUMA-aware scheduling to avoid
bandwidth saturation on a single memory controller. These two op-
timizations improve the performance over non-NUMA-aware algo-
rithms by up to 26% and 20%, respectively.
(9.) Be aware that join runtime 6=query time. Our experiments
with a TPC-H query clearly indicated that the join time may ac-
tually only be a 10%–15% share of the total runtime of the query.
We identified multiple reasons that lead to interesting avenues for
future work. However, already at this point it again emphasizes
that micro-benchmarks alone may be misleading in case we want
to understand performance in a bigger context, e.g. an entire query.

10. CONCLUSIONS
In this paper, we evaluated thirteen main-memory join algorithms

in a common setting. We resolved some contradicting results and
showed that hardware-conscious partition-based approaches typi-
cally outperform hardware-oblivious no-partition based joins on
modern multi-core NUMA architectures. At least this is the case
if the probe relation is not highly skewed; for very skewed data the
unpartitioned hash table can match or even outperform the partition-
based approaches. We also presented new partition-based approaches,
called CPRL and CPRA that often outperform the PR*-algorithms
from prior work. Overall CPRL and CPRA achieve a remarkable
join throughput of up to 3.4 billion input tuples per second.

So should we finally consider relational joins a solved problem?
The bad news is, we will probably never be able to label it 100%
solved as there will always be some fancy new SIMD instruction or
whatever “new” hardware that may impact the relative performance
differences. The good news, with this study we believe we made
major steps forward in understanding the performance of state-of-
the-art join algorithms as of 2015. However, as stated above, almost
all previous works, e.g. [7, 6, 5, 14, 3, 17, 4, 13], evaluated micro-
benchmarks only. We departed from that and evaluated the runtime
of the most promising join algorithms when used in a simple TPC-
H query. This initial experimentation already reveals that only a
fraction of the query runtime may be spent in the actual join, a ma-
jority may be spent in other parts of the query including scanning,
filtering, and tuple reconstruction. Hence, as future work we would
like to evaluate the cross product of different join algorithms and
the large space of tuple reconstruction algorithms, in particular for
the very promising CPR*-family of join algorithms.

11. REFERENCES
[1] https://www.systems.ethz.ch/node/334.
[2] D.J. Abadi, D.S. Myers, D.J. DeWitt, and S.R. Madden.

Materialization Strategies in a Column-Oriented DBMS. ICDE,
pages 466–475, 2007.

[3] Martina-Cezara Albutiu, Alfons Kemper, and Thomas Neumann.
Massively Parallel Sort-Merge Joins in Main Memory Multi-Core
Database Systems. PVLDB, 5(10):1064–1075, 2012.

[4] Cagri Balkesen, Gustavo Alonso, Jens Teubner, and M Tamer Ozsu.
Multi-Core, Main-Memory Joins: Sort vs. Hash Revisited. PVLDB,
7(1):85–96, 2013.

[5] Cagri Balkesen, Jens Teubner, Gustavo Alonso, and M Tamer Ozsu.
Main-Memory Hash Joins on Multi-Core CPUs: Tuning to the
Underlying Hardware. ICDE, pages 362–373, 2013.

[6] Cagri Balkesen, Jens Teubner, Gustavo Alonso, and M Tamer Ozsu.
Main-Memory Hash Joins on Modern Processor Architectures.
TKDE, 27(7):1754–1766, 2015.

[7] Spyros Blanas, Yinan Li, and Jignesh M Patel. Design and
Evaluation of Main Memory Hash Join Algorithms for Multi-Core
CPUs. SIGMOD, pages 37–48, 2011.

[8] Google Inc. Google Sparse and Dense Hashes.
https://code.google.com/p/sparsehash/.

[9] Jim Gray, Prakash Sundaresan, Susanne Englert, Ken Baclawski, and
Peter J Weinberger. Quickly Generating Billion-Record Synthetic
Databases. SIGMOD, pages 243–252, 1994.

[10] Jiong He, Shuhao Zhang, and Bingsheng He. In-cache Query
Co-processing on Coupled CPU-GPU Architectures. PVLDB,
8(4):329–340, 2014.

[11] Saurabh Jha, Bingsheng He, Mian Lu, Xuntao Cheng, and
Huynh Phung Huynh. Improving Main Memory Hash Joins on Intel
Xeon Phi Processors: An Experimental Approach. PVLDB,
8(6):642–653, 2015.

[12] Tim Kaldewey, Guy Lohman, Rene Mueller, and Peter Volk. GPU
Join Processing Revisited. DaMoN, pages 55–62, 2012.

[13] Changkyu Kim, Tim Kaldewey, Victor W Lee, Eric Sedlar,
Anthony D Nguyen, Nadathur Satish, Jatin Chhugani, Andrea
Di Blas, and Pradeep Dubey. Sort vs. Hash Revisited: Fast Join
Implementation on Modern Multi-Core CPUs. PVLDB,
2(2):1378–1389, 2009.

[14] Harald Lang, Viktor Leis, Martina-Cezara Albutiu, Thomas
Neumann, and Alfons Kemper. Massively Parallel NUMA-aware
Hash Joins. IMDM, pages 3–14, 2013.

[15] Stefan Manegold, Peter Boncz, and Martin Kersten. Optimizing
Main-Memory Join on Modern Hardware. TKDE, 14(4):709–730,
2002.

[16] Thomas Neumann. Efficiently Compiling Efficient Query Plans for
Modern Hardware. PVLDB, 4(9):539–550, 2011.

[17] R Barber G Lohman I Pandis, V Raman R Sidle, G Attaluri N
Chainani S Lightstone, and D Sharpe. Memory-Efficient Hash Joins.
PVLDB, 8(4):353–364, 2014.

[18] Orestis Polychroniou, Arun Raghavan, and Kenneth A. Ross.
Rethinking SIMD Vectorization for In-Memory Databases.
SIGMOD, pages 1493–1508, 2015.

[19] Stefan Richter, Victor Alvarez, and Jens Dittrich. A
Seven-Dimensional Analysis of Hashing Methods and its
Implications on Query Processing. In PVLDB, 2016.

[20] Nadathur Satish, Changkyu Kim, Jatin Chhugani, Anthony D.
Nguyen, Victor W. Lee, Daehyun Kim, and Pradeep Dubey. Fast Sort
on CPUs and GPUs: A Case for Bandwidth Oblivious SIMD Sort.
SIGMOD, pages 351–362, 2010.

[21] Felix Martin Schuhknecht, Pankaj Khanchandani, and Jens Dittrich.
On the Surprising Difficulty of Simple Things: the Case of Radix
Partitioning. PVLDB, 8(9):934–937, 2015.

APPENDIX
A. SKEWED DATA DISTRIBUTIONS

Until now we only looked at uniformly distributed data sets. In
the next set of experiments we use different skew factors for the
probe relation. We used an algorithm proposed by Gray et. al. in [9]

to quickly generate large amounts of skewed join keys. To achieve a
more realistic distribution and to avoid that the key occurring most
often, i.e. the smallest keys, are all in a single partition, we map
the 10 smallest keys to random keys in the full domain. Figure 15
shows the performance of all algorithms with different zipf factors
θ ranging from zero to 0.99. For every method we choose the num-
ber of threads such that the throughput was the highest. This means
the no-partition algorithms make use of all hyper threads while the
partition based algorithms only use a single thread per core to not
pollute the private caches. We can see that lower levels of skew
have no real impact on the performance of the algorithms.

When the skew factor is high we observe a shift in the through-
put towards methods that do not partition the input. This has two
reasons. First, the partition based methods have to handle skewed
partition sizes, which is for now only handled automatically by a
task queue. This means that the threads responsible for larger par-
titions are processing less partitions. We do not exploit the pos-
sibility to use multiple threads to process the join on the largest
partitions in parallel. Second, a high skew factor makes the caches
more effective, as the keys that are accessed most often are likely to
be cached. For the partition based algorithms this effect is not help-
ing, as the partitioning already makes the caches effective. We can
see that the partition based approaches are still competitive with the
no partition joins for the presented data size.

B. SCALABILITY IN NUMBER OF THREADS
In this section we explore the scalability of the different join

methods in terms of multithreading. All previous experiments were
run using 32 threads. As the implementation of MWAY only works
with a power of two many threads, we cannot report numbers for
MWAY with more than 32 threads10.

We take as a starting point four threads where each thread is
assigned to one of the four NUMA regions. From that starting
point we increase the number of threads distributing threads evenly
across NUMA regions.

Figure 16 shows the results when scaling the number of threads
from 4 to 120. All methods achieve good performance when using
all physical cores, i.e. 60 threads. All partitioned-based approaches
perform worse when using hyper-threading. This is understand-
able, as then even the private caches have to be shared among
the hyper-threads. Even for the NOP*-joins the benefit of hyper-
threading is minimal. This is also understandable for our fast hash
function, as we do not have many computations that could hide the
memory latency. A more computationally intensive hash function
could also benefit more from hyper-threads.

Table 3(a) shows a summary of the relative speedup for the join
algorithms. We calculate the relative speedup as runtime(T > 4
threads)/runtime(4 threads) where T is the number of threads used.
Hence, the perfect speedup for T = 60 threads would be 15. Of
course no method scales to this theoretically achievable perfect
speedup, but CPRA and CPRL come close with a speedup of al-
most 12.

C. HOLES IN THE KEY RANGE
All previous experiments used a dense key range. In this section

we want to study the effect of holes in the key range on the per-
formance of the different join algorithms, especially on the array-
based methods. We generate the build relation with a domain k
times the size of |R| for increasing values of k. Figure 17 shows the

10We also evaluated MWAY using 64 threads, but the results are not
competitive and also not fair, as only four out of 60 cores have to
work on two threads.

https://www.systems.ethz.ch/node/334
https://code.google.com/p/sparsehash/

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0.51 0.9 0.99

T
h
ro

u
g
h
p
u
t
[M

 t
u
p
le

s
/s

]

Zipf factor
(a) |S| = 10 * |R|

MWAY CHTJ NOP NOPA CPRL CPRA PROiS PRLiS PRAiS

 0.51 0.9 0.99

Zipf factor
(b) |S| = |R|

Figure 15: Throughput of join algorithms on skewed data. Relation size: |R|= 128M.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4 8 16 32 60 120

T
h
ro

u
g
h
p
u
t
[M

 t
u
p
le

s
/s

]

Threads
(a) |S| = 10 * |R|

MWAY CHTJ NOP NOPA CPRL CPRA PROiS PRLiS PRAiS

 4 8 16 32 60 120

Threads
(b) |S| = |R|

Figure 16: Throughput of join algorithms when scaling the number of threads. Size of relation |R|= 128M tuples

 0

 500

 1000

 1500

 2000

 2500

 0 2 4 6 8 10 12 14 16 18 20

T
h
ro

u
g
h
p

u
t

[M
 t
u
p
le

s
/s

]

k
Domain size = k*|R|

NOP NOPA CPRL CPRA PROiS PRLiS PRAiS

Figure 17: Performance of join algorithms with increasing domain
size. |R| = 128 M and |S| = 1280 M. The dashed lines for CPRA
and PRAiS denote the throughput when adapting the number of
partitions to the domain size

performance of the different join algorithms for varying domain
sizes k · |R|. We can see that the performance of the NOPA join is
not influenced that much. This is expected, even without any holes
in the domain is it very unlikely that neighboring elements in the
array are probed in a short enough sequence for the second tuple to
still reside in the caches. This slight chance is simply eliminated in
the case of very large domains, as neighboring elements are very
unlikely to even be present at all. The size of the used array is of
course growing linear with the domain size and occupies a larger
and larger part of the available memory for the whole time of the
join processing. The partition-based array joins on the other hand
suffer greatly from large domains, as the array does no longer fit
into the caches for larger and larger domains. A possible remedy
for the partition-based methods is to use more fine grained parti-
tioning in the case of larger domains, such that the array again fits
into the cache. We applied this technique to PRAiS and CPRA and

depicted the performance as dashed lines in Figure 17. Please note,
that the main memory consumption of PRAiS and CPRA is much
lower compared to NOPA as we only construct temporary arrays on
small partitions, that can be freed after processing the co-partition
join. On another note, all our hash table implementations suffer
a small performance hit when increasing the domain, as now we
can observe some collisions in the hash table when inserting and
probing the join keys.

From the results it looks like NOPA stays very competitive for
arbitrary large domains, as long as you are willing and able to pay
the additional memory overhead. PRAiS and CPRA can also deal
with domains that are reasonably dense, especially when adapting
the partition strategy to the domain size.

D. MICRO-ARCHITECTURAL PERFOR-
MANCE ASPECTS

We also measured the performance of all presented join algo-
rithms with respect to the number of cache misses and the instruc-
tions per cycle (IPC) metric. Table 4 shows all measurements. The
number of cache misses are measured in millions while the in-
structions retired (IR) count is given in billions. We see that the
partition-based joins indeed lead to a dramatic reduction in cache
misses and reach a cache hit rate of up to 99% for the join phase.
Furthermore, the CHTJ suffers from roughly two times the number
of cache misses compared to NOP, due to the additional bitmap
lookup, as expected. We can also observe that the partition-based
algorithms need more instructions to perform the join but they also
have a much higher IPC rate, that allows them to perform the join
faster than the no-partitioning joins. Please note, that the different
amount of cache misses for PRA, PRL, PRO in the partition phase
stem from the fact that we use 12, 13, or 14 radix bits respectively
according to Equation (1).

Relative Speedup

Join
4

Threads
[M/s]

60
Threads

[M/s]
Total

Build or
Partition

Phase

Probe or
Join

Phase
CHTJ 87.3 945.7 10.8 8.4 10.9
NOP 122.1 1291.2 10.6 9.4 10.7
NOPA 176.2 1859.5 10.6 6.8 11.2
CPRL 264.3 3105.4 11.7 12.1 10.6
CPRA 300.1 3545.1 11.8 12.4 10.1
PROiS 212.0 2522.9 11.9 11.3 13.2
PRLiS 263.7 2944.0 11.2 11.3 10.8
PRAiS 302.3 3168.0 10.5 10.7 9.8

(a) With |R|= 128M and |S|= 1280M

Relative Speedup

Join
4

Threads
[M/s]

60
Threads

[M/s]
Total

Build or
Partition

Phase

Probe or
Join

Phase
CHTJ 96.6 751.6 7.8 8.5 7.7
NOP 109.8 1043.7 9.5 9.7 9.3
NOPA 173.0 1413.1 8.2 7.1 9.8
CPRL 260.2 2207.9 8.5 8.5 8.4
CPRA 304.9 2790.2 9.2 9.2 9.1
PROiS 234.2 1971.2 8.4 7.3 12.9
PRLiS 263.5 2046.0 7.8 7.3 10.4
PRAiS 312.3 2422.4 7.8 7.3 9.6

(b) With |R|= |S|= 128M
Table 3: Relative speedup when scaling from 4 to 60 threads.

Sort or Build or Partition Phase Probe or Join Phase

Join
L2

Misses
[M]

L3
Misses

[M]

L2
Hit

Rate

L3
Hit

Rate
IR [B] IPC

L2
Misses

[M]

L3
Misses

[M]

L2
Hit

Rate

L3
Hit

Rate
IR [B] IPC

MWAY 430 388 0.64 0.10 260 1.36 10 10 0.01 0.04 17 1.78
CHTJ 559 353 0.20 0.37 15 0.40 1911 1561 < 0.01 0.18 29 0.25
PRB 558 555 < 0.01 0.01 65 0.33 59 40 0.98 0.33 30 1.46
NOP 394 393 0.38 < 0.01 8 0.36 957 955 0.39 < 0.01 20 0.39
NOPA 409 391 < 0.01 0.04 6 0.27 335 320 < 0.01 0.05 5 0.28
PRO 981 209 0.51 0.79 42 0.87 60 45 0.98 0.26 30 1.34
PRL 791 209 0.45 0.74 41 0.90 86 52 0.93 0.40 24 1.08
PRA 396 110 0.61 0.72 41 1.05 88 52 0.92 0.42 17 0.83
CPRL 730 193 0.47 0.74 43 1.06 72 25 0.94 0.65 29 2.26
CPRA 341 85 0.65 0.75 44 1.24 64 24 0.94 0.62 22 1.94
PROiS 976 209 0.51 0.79 40 0.83 31 13 0.99 0.59 30 2.10
PRLiS 788 209 0.45 0.73 40 0.87 55 23 0.95 0.58 24 2.28
PRAiS 398 110 0.61 0.72 40 1.00 63 31 0.94 0.50 17 1.80

Table 4: Performance counter for the join with |R|= 128M and |S|= 1280M and 32 threads.

E. VARYING THE SELECTIVITY OF THE
SELECTION IN Q19

We also measure the query performance with a varying selectiv-
ity on the probe relation. Figure 18 shows that the partition based
joins indeed outperform the no partition based joins when the actual
probe relation in the join becomes large.

F. TPC-H QUERY USED
Listing 1 contains the full SQL code of TPC-H query 19.

Listing 1: TPC-H Query 19
select

sum(l_extendedprice* (1 - l_discount)) as revenue
from

lineitem,
part

where
(
p_partkey = l_partkey
and p_brand = ’Brand#12’
and p_container in (’SM CASE’, ’SM BOX’, ’SM PACK’, ’SM

PKG’)
and l_quantity >= 1 and l_quantity <= 1 + 10
and p_size between 1 and 5
and l_shipmode in (’AIR’, ’AIR REG’)
and l_shipinstruct = ’DELIVER IN PERSON’
)
or
(
p_partkey = l_partkey

and p_brand = ’Brand#23’
and p_container in (’MED BAG’, ’MED BOX’, ’MED PKG’, ’MED

PACK’)
and l_quantity >= 10 and l_quantity <= 10 + 10
and p_size between 1 and 10

and l_shipmode in (’AIR’, ’AIR REG’)
and l_shipinstruct = ’DELIVER IN PERSON’
)
or
(
p_partkey = l_partkey
and p_brand = ’Brand#34’
and p_container in (’LG CASE’, ’LG BOX’, ’LG PACK’, ’LG

PKG’)
and l_quantity >= 20 and l_quantity <= 20 + 10
and p_size between 1 and 15
and l_shipmode in (’AIR’, ’AIR REG’)
and l_shipinstruct = ’DELIVER IN PERSON’
)

Listing 2: Data-structures to represent the Lineitem and Parts tables
struct LineitemTable {

size_t numTuples;
float *l_extendedprice;
float *l_discount;
tuple_t *l_partkey;
unsigned int *l_quantity;
uint8_t *l_shipmode;
uint8_t *l_shipinstruct;

};
struct PartTable {

size_t numTuples;
tuple_t *p_partkey;
uint8_t *p_brand;
uint8_t *p_container;
unsigned int *p_size;

};

Our simulated column store represents the TPC-H tables as structs
of column pointers as depicted in Listing 2. Please note, that we
only represent the columns accessed in TPC-H Q19. The type

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

0.0 % 20.0 % 40.0 % 60.0 % 80.0 % 100.0 %

original selectivity of Q19=3.57%
T

im
e
 i
n
 [
s
]

Selectivity
 Build Phase or Partition Phase

NOP NOPA CPRL CPRA

20.0 % 40.0 % 60.0 % 80.0 % 100.0 %

original selectivity of Q19=3.57%

Selectivity
 Probe Phase or Join Phase

20.0 % 40.0 % 60.0 % 80.0 % 100.0 %

original selectivity of Q19=3.57%

Selectivity
 Total

Figure 18: Runtime of TPC-H Query 19 (sf=100) when varying the selectivity of the pushed-down selection predicate

tuple_t is a <key,payload> pair with the rowID as the payload.
We depict the filter predicate implementation in Listing 3.

Listing 3: Filter conditions
inline bool preJoin(LineitemTable *l, size_t rowID) {

return (l->l_shipinstruct[rowID] == DELIVER_IN_PERSON
&&

(l->l_shipmode[rowID] ==AIR||l->l_shipmode[
rowID] ==AIR_REG));

}
inline bool postJoin(LineitemTable *l, PartTable *p,

size_t rowIDL, size_t rowIDP) {
uint8_t p_brand = p->p_brand[rowIDP];
uint8_t p_container = p->p_container[rowIDP];
auto l_quantity = l->l_quantity[rowIDL];
auto p_size = p->p_size[rowIDP];
return (p_brand == BRAND12

&& (p_container == SM_CASE || p_container ==
SM_BOX || p_container == SM_PACK ||
p_container == SM_PKG)

&& l_quantity >= 1 && l_quantity <= 1 + 10
&& 1 <= p_size && p_size <= 5) ||
(p_brand == BRAND23 &&
(p_container == MED_BAG || p_container ==

MED_BOX || p_container == MED_PKG ||
p_container == MED_PACK)

&& l_quantity >= 10 && l_quantity <= 10 + 10
&& 1 <= p_size && p_size <= 10) ||
(p_brand == BRAND34 &&
(p_container == LG_CASE || p_container ==

LG_BOX || p_container == LG_PACK ||
p_container == LG_PKG)

&& l_quantity >= 20 && l_quantity <= 20 + 10
&& 1 <= p_size && p_size <= 15);

}

These predicates correspond one-to-one to the predicates in the
SQL query depicted in Listing 1.

Listing 4 shows the pseudo code for the Q19 implementation us-
ing the NOP join. All threads build a hash table on p_partkey
concurrently. Afterwards, every thread is responsible for a fixed
chunk of tuples of the probe relation and first accesses the neces-
sary attributes in LineitemTable to evaluate the preJoin pred-
icate. All passing tuples from the LineitemTable are probed
against the hash table and as soon as a join partner is found the
postJoin predicate is evaluated. If the matched tuples pass this pred-
icate, the l_extendedprice and l_discount attributes are
immediately accessed and added to the final aggregate. With this
execution strategy it is not necessary to materialize a join index for
further processing. This execution strategy also corresponds to the
strategy described for the HyperDB system [16].

Listing 4: Q19 Pseudo code for NOP
query_result_t
NOPQ19(LineitemTable *L, PartTable *P, int threadCount) {

parallelBuild(P,threadCount);
parallel for in chunks numTuples/threadCount
for (int i=0;i < L-> numTuples;++i) {
if (preJoin(L,i)) {
auto tuple=probe(L->l_partkey);
if (postJoin(L,P,i,tuple.rowID)) {
res+=L->l_extendedprice[i] * (1.0 - L->l_discount

[i]);
}}}}

G. FURTHER COST-BREAKDOWN OF Q19
We designed an additional experiment for NOP just to find out

how much individual components of that query contribute to the
overall runtime of that query. The core idea of this experiment is
to start with the “naked join”, i.e. the microbenchmark, and then
gradually morph the microbenchmark into TPCH-Q19. Like that
we see at each step the overhead introduced by that step.

 0

 50

 100

 150

 200

 250

 300

32 60

R
u
n
ti
m

e
 [
m

s
]

Threads

(1): Microbenchmark with pre-filtered input tables
(2): like (1), but filtering input tables dynamically
(3): like (2) plus materializing a join index
(4): like (3) plus post-filtering and aggregating
(5): like (2 and 4) without using a join index

Figure 19: Additional cost-breakdown morphing a microbench-
mark stepwise into Q19.

From the results in Figure 19, we can already learn many things:

(1.) Tuple reconstruction is not the main culprit for the overheads.
In fact, for this query filtering the input rows eats up most of the
additional time for both 32 and 60 threads.
(2.) Even writing out join results first into a join index and then
doing all additional work like post-filtering, tuple reconstruction (in
the same order as before!), and aggregating is faster than running
all of this in a pipeline! But only for 32 threads! For 60 threads
this does not hold anymore and the results turn upside down: here
the overheads for creating and using a join index do not pay off
anymore.
(3.) for 32 threads there is room for a tuple reconstruction algo-
rithm, i.e. at most ∼20% performance improvement seem possible
(for a tuple reconstruction running in zero time).

	Introduction
	Related work
	Fundamental Representatives of Main-Memory Join Algorithms
	Partition-based Hash Joins
	No-partitioning Hash Joins
	Sort-merge Joins

	Black Box Comparisons
	White Box Comparisons
	Optimizing Radix Partitioning
	Choice of Hash Method

	Optimizing Parallel Radix Join
	NUMA-aware Partitioning
	NUMA-aware Scheduling

	Putting it All Together
	Settings
	Varying Page Sizes
	Scalability in Dataset Size

	Effects on Real Queries
	Lessons Learned
	Conclusions
	References
	Skewed Data Distributions
	Scalability in number of threads
	Holes in the key range
	Micro-architectural perfor-mance aspects
	Varying the Selectivity of the Selection in Q19
	TPC-H Query used
	Further cost-breakdown of Q19

