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ABSTRACT
There have been a number of research proposals to use dis-
crete graphics processing units (GPUs) to accelerate data-
base operations. Although many of these works show up to
an order of magnitude performance improvement, discrete
GPUs are not commonly used in modern database systems.
However, there is now a proliferation of integrated GPUs
which are on the same silicon die as the conventional CPU.
With the advent of new programming models like heteroge-
neous system architecture, these integrated GPUs are con-
sidered first-class compute units, with transparent access to
CPU virtual addresses and very low overhead for computa-
tion offloading. We show that integrated GPUs significantly
reduce the overheads of using GPUs in a database environ-
ment. Specifically, an integrated GPU is 3× faster than a
discrete GPU even though the discrete GPU has 4× the
computational capability. Therefore, we develop high per-
formance scan and aggregate algorithms for the integrated
GPU. We show that the integrated GPU can outperform a
four-core CPU with SIMD extensions by an average of 30%
(up to 3.2×) and provides an average of 45% reduction in
energy on 16 TPC-H queries.

1. INTRODUCTION
To continue scaling performance at past rates, computer

architects are creating general-purpose commodity hardware
accelerators that work with the CPU. One such example is
general-purpose graphics processing units (GPGPUs). Fig-
ure 1 shows how GPU and CPU performance has scaled over
the past seven years. This figure shows that data-parallel
architectures, like the GPU, are scaling performance at a
faster rate than conventional CPUs. By leveraging data-
parallelism, GPUs and other data-parallel architectures have
less overhead per processing element, leading to increased
scalability.

Scans and aggregates are data-parallel operations that are
strong candidates for offloading to the GPU, and in this
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Figure 1: Comparison of CPU and discrete GPU perfor-
mance improvement over the last seven years. Data from
various sources and Rupp [25]

work we make our argument by focusing our attention on
scan-aggregate queries in in-memory settings. Scans are an
important primitive and the workhorse in high-performance
in-memory database systems like SAP HANA [6, 29], Oracle
Exalytics [8], IBM DB2 BLU [22] and Facebook’s Scuba [1].
A series of scan algorithms have been developed in the data-
base community to exploit this parallelism using hardware
artifacts such as the parallelism within regular ALU words
(e.g., [17, 23]), and SIMD (short vector units) to acceler-
ate scans (e.g., [4, 14, 17, 23, 28, 29, 31]). The GPU hard-
ware is designed for highly data-parallel workloads like scan-
aggregate queries and we show that it can provide higher
performance and higher energy efficiency than CPUs. As
more processors include integrated on-die GPUs, it will be-
come important for database systems to take advantage of
these devices.

Because of the GPU’s potential for increased performance,
there has been work accelerating database operations with
discrete GPUs (e.g., [9, 10, 15, 26]). However, mainstream
database systems still do not commonly use GPGPUs. Un-
fortunately there are many overheads associated with dis-
crete GPUs that negate many of their potential benefits.
Due to the limited memory capacity of discrete GPUs, when
accessing large data sets, the data must be copied across the
relatively low bandwidth (16 GB/s) PCIe interface. This
data copy time can be up to 98% of the total time to com-
plete a scan using the discrete GPU. Additionally, applica-
tions must frequently access the operating system-level de-
vice driver to coordinate between the CPU and the GPU,
which incurs significant overhead. Many previous works
have discounted the overhead of copying the data from the



CPU memory, which results in optimistic performance pre-
dictions. We find that by including these overheads, the
discrete GPU can be 3× slower than a multicore CPU. This
result shows that although discrete GPUs may seem a good
fit for performing scans, due to their limited memory ca-
pacity they are not practical today. Not surprisingly, GPUs
are not mainstream today in data analytics environments.
However, we argue that this situation is likely to change due
to recent GPU hardware trends.

Today, many systems are integrating the GPU onto the
same silicon die as the CPU, and these integrated GPUs
with new programming models reduce the overheads of us-
ing GPGPUs in database systems. These integrated GPUs
share both physical and virtual memory with the CPU. With
new GPGPU APIs like heterogeneous system architecture
(HSA) [24], integrated GPUs can transparently access all
of the CPUs’ memory, greatly simplifying application pro-
gramming (see Figure 3b and Section 2.1). HSA reduces
the programming overhead of using GPUs because the CPU
and GPU share a single copy of the application data, mak-
ing it possible to make run-time decisions to use the CPU or
the GPU for all or part of the query. As integrated GPUs
become more common, it will be important for database sys-
tems to take advantage of the computational capability of
the silicon devoted to GPUs. Furthermore, GPGPUs have
become far easier to program, making it more economical to
write and maintain specialized GPU routines.

We implement an in-memory GPU database system by
leveraging the fast-scan technique BitWeaving [17] and the
database denormalization technique WideTable [18], and a
new method to compute aggregates on GPUs efficiently. Us-
ing this implementation, we show the benefits of our ap-
proach for an important, but admittedly limited, class of
scan-aggregate queries. We find that the integrated GPU
can provide a speedup of as much as 2.3× on scans and up
to 3.8× on aggregates. We also evaluate our algorithms on
16 TPC-H queries (using the WideTable technique) and find
that by combining the aggregate and scan optimizations, the
integrated GPU can increase performance by an average of
30% (up to 3.2×) and decrease energy by 45% on average
over a four-core CPU. Thus, we conclude that it is now prac-
tical for database systems to actually deploy methods for
GPUs in production settings for in-memory scan-aggregate
queries. With the proliferation of integrated GPUs, ignoring
this computational engine may leave significant performance
on the table.

The remainder of this paper is organized as follows. Sec-
tion 2 presents a background on GPUs and a new program-
ming API, HSA. Section 3 details the implementation of our
scan and aggregate algorithms for the integrated GPU. Sec-
tion 4 presents our experimental methodology, and Section 5
describes the performance of our system on TPC-H queries
as well as scan and aggregate microbenchmarks. Finally, we
discuss the impact of future architectures on our work in
Section 6, and Section 8 concludes.

2. GPU BACKGROUND
Graphics processing units (GPUs) have recently become

more easily programmable, creating the general purpose GPU
(GPGPU) computing landscape. There are two key charac-
teristics that differentiate GPUs from CPUs. GPUs have
an order of magnitude more execution units (e.g., an AMD
A10-7850 has 4 CPU cores each with 5 execution units, and

an AMD HD7970 discrete GPU has 32 compute units each
with 64 execution units [3]), and GPUs provide much higher
memory bandwidth (e.g., an AMD A10-7850 has a memory
bandwidth up to 34 GB/s [2], and an AMD HD7970 has a
memory bandwidth of 264 GB/s [3]). In this paper, we in-
vestigate scan performance on three different architectures:
a multicore CPU, a high-end discrete GPU, and a modern
integrated GPU. Below we discuss three important details
of GPGPU microarchitecture.

First, GPGPUs employ very wide data-parallel hardware.
An AMD HD7970 can operate on 131,072 bits in parallel
(32 compute units (CUs) × 4 SIMD lanes × 16-word SIMD
× 64-bit words). Compare this to the data parallelism that
is available in CPUs or SIMD, which is many orders of mag-
nitude smaller (SIMD registers today are 256 bits wide).
Thus, there is a potentially higher level of data parallelism
that is available in each cycle with a GPU.

Second, GPGPUs are programmed with SIMT (single-
instruction multiple-thread) instead of SIMD (single-instruc-
tion multiple-data). The SIMT model significantly simpli-
fies programming in very wide data-parallel hardware of the
GPU. For instance, SIMT allows arbitrary control flow be-
tween individual SIMD lanes.

Finally, and importantly, GPU architecture can be more
energy-efficient than CPU architecture for certain workloads
(e.g., database scans). Since many SIMD lanes share a
single front-end (instruction fetch, decode, etc.), this per-
instruction energy overhead is amortized. On CPU architec-
tures, the execution front-end and data movement consumes
20–40× more energy than the actual instruction [16]. Addi-
tionally, all of the parallelism is explicit for GPUs through
the programming model, while CPUs require high energy
hardware (like the re-order buffer and parallel instruction is-
sue) to implicitly generate instruction-level parallelism, which
wastes energy for data-parallel workloads.

2.1 Integrated GPU APIs: HSA
New GPGPU APIs simplify programming and increase

performance of GPGPU computing. Until very recently,
GPGPU APIs were designed for discrete GPUs. Commu-
nication between the CPU and the GPU was high overhead,
and all data was explicitly declared and copied before it was
used on the GPU. However, while GPGPUs are becoming
more physically integrated with CPUs, they are also becom-
ing more logically integrated. For instance the runtime we
use in this work, heterogeneous system architecture (HSA),
provides a coherent and unified view of memory [24].

In HSA, programming the integrated GPU is greatly sim-
plified. For instance, after the memory is allocated and
initialized in the CPU memory space, the GPU kernel is
launched as if it were a CPU function. The pointers created
for the CPU can be referenced from the GPU. Thus, after
the kernel completes, there is no need to copy data back
to the CPU memory space. This unified view of memory
also enables the GPU to access complicated pointer-based
data structures, like hashtables. Section 3.1 discusses how
this support facilitates implementing group-by operations on
the integrated GPU.

In addition to simplifying programming, HSA allows the
database system to decide to use the CPU or GPU on-the-fly.
Since all of the data structures can be transparently shared
between the two devices, the decision to offload to the GPU
is easier. There is no need to translate data structures and
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Figure 2: Overview of BitWeaving’s memory layout assum-
ing an 8-bit word. The actual implementation uses 128-bit
word for the SIMD CPU and 16,384-bit word for the GPU.

high-overhead data copies are no longer required.
The HSA programming model shares some aspects with

other programming models that target discrete GPUs like
NVIDIA’s unified virtual addressing [19]. In both of these
programming models, the CPU and GPU shared the same
virtual addresses. However, HSA is designed specifically for
integrated accelerators. Two advantages of this design are
that HSA never needs to copy data from one physical address
space to another, and HSA does not require the program-
mer to explicitly allocate memory for use on the GPU. These
characteristics allows HSA to have higher performance and
a simpler programming interface than the discrete GPU pro-
gramming models.

3. IMPLEMENTATION
To study scan-aggregate query processing on GPUs, we

leverage previous work accelerating analytical scan query
processing on the CPU: i.e., we use the BitWeaving scan
algorithm [17]. BitWeaving uses a coded columnar layout,
packing multiple codes per word. The output of the scan is
a bitvector where each 1 bit corresponds to a matching row.

In this work, we use the BitWeaving/V scan algorithm.
This algorithm encodes columns using order-preserving dic-
tionaries and then stores the encoded values for a column
grouped by the bit position. At a high-level, BitWeaving/V
can be thought of as a column store at the bit-level with
algorithms that allow evaluating traditional SQL scan pred-
icates in the native bit-level columnar format using simple
bitwise operations, such as XOR, AND, and binary addi-
tion. (See [17] for details). Figure 2 shows an example of a
BitWeaving/V representation for a sample column.

The BitWeaving/V method needs small modifications to
execute efficiently on GPUs. The largest change to adapt
BitWeaving to the GPU is to increase the underlying word
size to the logical SIMD width of the GPU. Thus, instead of
packing coded values into one 64-bit word as in CPU algo-
rithms, or 128- or 256-bit words in SIMD scan implementa-
tions, the GPU scan implementation uses a logical 16,384-bit
word (256 consecutive 64-bit words).

For the discrete GPU, Figure 3a shows an overview of
how the CPU and the GPU interact using OpenCL—the
legacy GPU API. After the database is initialized, when a
query arrives, the columns which the query references must
be copied to the device, which is a DMA call. Next, the scan
is launched to the GPU, which requires a high-latency user-
mode to kernel-mode switch and high-latency PCIe commu-
nication (shown with bold arrow in Figure 3a). Then, the
scan is actually executed on the GPU, which may take sig-
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Figure 3: Flowchart showing the CPU-GPU interaction.

nificantly less time than the previous operations. Once the
(possibly many) scan operations have completed, the aggre-
gate operation is launched in a similar fashion incurring the
high OS kernel overheads. Finally, the result must be copied
back to the CPU memory again paying the OS kernel and
PCIe latencies.

Performing this scan on the discrete GPU requires many
calls to the operating system’s kernel display driver, shown
as bold arrows in Figure 3a. These driver calls incur signif-
icant overhead for short running GPU jobs such as column
scans. Additionally, since the GPU cannot hold the entire
database in its memory, each column must be copied to the
GPU before the scan kernel can begin. As most queries re-
quire scans over multiple columns, this scan loop is repeated
many times.

However, most of these overheads are eliminated on inte-
grated GPUs. Figure 3b shows an overview of how the CPU
and the GPU interact in our system using HSA. With HSA,
integrated GPUs do not interface through the OS kernel
driver. Instead, they use user-mode queues which provide
low-latency to offload work to the GPU [24]. Therefore, the
overhead to use the integrated GPU is simply a few writes to
coherent memory with no driver involvement. Additionally,
since the integrated GPU shares memory with the CPU,
the copies used in the OpenCL version are eliminated. As
Figure 3b shows, executing a query on the integrated GPU
with HSA only requires a few function calls similar to how
the CPU executes the query.

3.1 Aggregate computation
Scan queries generally tend to have aggregation operations

in analytic environments, and the aggregate component can
dominate the overall query execution time in some cases. In
the simplified, scan-based queries that we evaluate in this
paper, a significant percentage of the time is spent in aggre-
gates, an average of 80% across the queries that we use in
this paper. In fact, we find that some queries spend over



99% of their execution time in the aggregate phase.
Since aggregate performance can dominate the overall query

performance in some scan-aggregate queries, we investigate
offloading the aggregate computation to the GPU (in addi-
tion to offloading the scan computation). Tightly-integrated
programming models like HSA 2.1 significantly decrease the
complexity of offloading the aggregate computation to the
GPU. As discussed below, parts of the aggregate computa-
tion are more efficiently performed on the CPU and other
parts are more efficiently performed on the GPU. It is easier
to take advantage of this fine-grained offloading with current
integrated GPUs and the HSA programming model.

In many modern systems, the output of a selection op-
eration produces a result bitvector. In this bitvector, a bit
value of 1 indicates the the tuple at the corresponding in-
dex position was selected by that operation. To actually
fetch the data for the selected tuple, the index value must
be converted to an absolute offset that points to the actual
memory location of the selected tuple. Instead of evaluating
every valid bit sequentially, we batch many valid column
offsets and call the computational function only once, as
shown in Algorithm 1. We split each column into blocks
of 220 or about one million codes. This approach optimizes
the aggregate primitive in two ways. This algorithm gives
much better memory locality when searching for valid bits
in the bitvector, and by batching, we decrease the overhead
of function calls on the CPU and launching jobs to the GPU.

Algorithm 1 Aggregate algorithm

Require: bitvector that encodes matching tuples
split into 220-bit blocks

Require: reduce functor to compute the aggregate
offsets = [] // Indicies of matching tuples

2: for each bv block in bitvector do
for each word in bv block do

4: for each true bit in word do
offsets.append(word index ∗ 64 + bit index)

6: // call functor for group-by/agg.
reduce(offsets) // Offloaded to integrated GPU

8: clear(offsets)

This algorithm takes a bitvector with the selected tuples
and a functor (see Algorithm 2 and 3) that is the actual
aggregate computation. The bitvector is split into blocks
which are each operated on in serial. For each word (8-
bytes) of the bitvector block, we search for valid bits (lines
2–4). For each bit that is 1, which corresponds to a selected
tuple, we insert the absolute offset into the column into an
offsets array. Then, we execute the user-provided functor
which computes the aggregate given the computed offsets
for that column block.

We find that it is more efficient to use the CPU to compute
the offsets than the GPU. When creating the offsets array,
many threads may simultaneously try to add new offsets,
and it is inefficient for the GPU to coordinate between these
threads [5]. Therefore, when performing aggregates on the
GPU, we first compute the offsets on the CPU and only
perform the reduction operation on the GPU.

Many scan-aggregate queries include group-by operations
in their aggregate phase. The number of groups in the
group-by statements vary greatly, from a single group (i.e., a
simple reduction) to millions of different groups. For group-

by operations with multiple columns the number of groups
can be even larger.

We investigate two different algorithms to compute group-
by aggregate: direct storage (Algorithm 2) and hashed stor-
age (Algorithm 3). The direct storage algorithm allocates
space for every group and directly updates the correspond-
ing values. The hashed storage algorithm uses a hash of the
group ID instead and does not require a one-to-one map-
ping. The hash-based algorithm is required when there are
many groups or the groups are sparse as the direct storage
method would use too much memory.

Algorithm 2 Direct group-by (reduce with direct storage)

Require: offsets a list of tuple indicies
1: // array for storage of aggregate value for each group
2: static aggregates[num groups]
3: for each offset in offsets do
4: // Materialize the column data and calculate group id
5: // Perform aggregate based on op
6: aggregates[group id] (op) data

In the direct group-by algorithm, we store the aggregate
values of each group directly in an array (aggregates on line
2). These values are stored statically to persist across multi-
ple instances of this function. For each offset in the provided
offsets array, we look up the value contained in the tuple at
that offset, which may result in accessing multiple columns.
Then, we perform the aggregate operation (op on line 6) to
update the stored value of the aggregate. To perform av-
erages and other similar operations, we can also count the
number of matches in a similar fashion.

Algorithm 3 Hashed group-by (reduce with hashtable)

Require: offsets a list of tuple indicies
1: static hashtable(predicted size)
2: for each offset in offsets do
3: // Materialize the column data and calculate group id
4: entry = hashtable.get(group id) // get group entry
5: // Perform aggregate based on op
6: entry.value (op) data

In the hashed group-by algorithm, the values for each
group’s aggregate are stored in a hashtable instead of in
a simple array. We can use profiling to predict the size for
the hashtable (line 1). The hashed algorithm performs the
same steps as the above direct algorithm, except it acts on
values in the hash entries instead of the direct storage array.
The hash table is implemented with linear probing and uses
the MurmurHash function.

To use these algorithms in a parallel environment, we
use synchronization to guard the reduction variables. The
GPU does not have mature support for inter-thread com-
munication. Therefore, we use lock-free algorithms for the
hashtable in Algorithm 3 and a local reduction tree for the
direct storage algorithm (Algorithm 2).

4. METHODOLOGY
There is a large space of potential hardware to run a data-

base system. For a constant comparison point, we use AMD
CPU and GPU platforms in our evaluation. We use a four-
core CPU and two different GPUs, an integrated GPU that



is on the same die as the CPU, and a discrete GPU con-
nected to the CPU via the PCIe bus. Table 1 contains the
details of each architecture.

For power measurements, we use the full-system power
measured with a WattsUp meter. The WattsUp meter is
connected between the system under test and the power
supply (wall jack). Since all of our runs last for minutes,
we use the energy reported by the WattsUp meter as our
primary metric for energy usage.

All of the CPU results are using the BitWeaving algo-
rithm [17] with SIMD instructions. For the results presented
for multiple CPU cores, we used OpenMP to parallelize the
scan and the aggregate functions. Each function performs
a highly data-parallel computation on the entire column of
data. Thus, the fork-join parallelism model of OpenMP is
appropriate.

We use the HSA programming interface described in Sec-
tion 2.1 for the integrated GPU case. The GPU kernels
(scan, simple aggregate, direct- and hashed-group-by) are
written in OpenCL. For the integrated GPU, all of the data
is allocated and initialized by the CPU in the main physical
memory and directly referenced by the integrated GPU. The
discrete GPU uses similar OpenCL kernels, but the data is
explicitly copied from the CPU memory to the GPU, which
is not necessary when using the integrated GPU and HSA.

5. RESULTS
In this section, we first discuss the performance and energy

characteristics of scans on discrete and integrated GPUs.
Next, we evaluate our scan and aggregate algorithms on a
set of scan-aggregate TPC-H queries. Finally, we show the
tradeoffs between the two GPU aggregate algorithms dis-
cussed and compare their performance to the CPU.

5.1 Scans (Discrete vs. Integrated)
We first investigate the performance of the scan opera-

tor on the two GPU architectures. The scan microbench-
mark that we run performs a simple selection operation (e.g.,
SELECT count(*) from TABLE, omitting the actual count op-
eration) on a single column. The microbenchmark applies a
predicate which has a 10% selectivity. Thus, this benchmark
measures the raw cost associated with scanning a column
excluding the costs to process the result bitvector that is
produced.

Figure 5 shows the performance and energy of the scan
operation on a discrete GPU and an integrated GPU. This
figure shows the number of seconds to complete a scan of

Integrated Discrete
CPU GPU GPU

Part name A10-7850K R7 HD 7970
Cores / CUs 4 8 32
Clock speed 3700 MHz 720 MHz 1125 MHz

Mem. bandwidth 21 GB/s 21 GB/s 264 GB/s
Total memory 16 GB (shared) 3 GB

Rated TDP 95 W (combined) 225 W

Table 1: Details of hardware architectures evaluated. (Note:
TDP for the CPU and integrated GPU does not include the
memory power. TDP for the discrete GPU includes the
GDDR5 memory.)
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Figure 5: Performance and energy of scan microbenchmark.
Discrete GPU on broken axes.

1 billion 10-bit codes averaged over 1000 scans. The total
size of the column is about 1 GB. Performance is shown
on the x-axis (response time), and energy is shown on the
y-axis.

Figure 5 shows that performing a scan on the integrated
GPU is both 3× faster and 3× lower energy than performing
a scan on the discrete GPU. Although the discrete GPU has
many more compute units and much higher memory band-
width, the time to copy the data from the CPU memory to
the GPU memory dominates the performance (about 98%
of the execution time). This time can be decreased by over-
lapping the memory copy with computation; however, the
performance on the discrete GPU is fundamentally limited
by the low bandwidth and high latency of the PCIe bus.

The integrated GPU has a slightly faster response time
than the multicore CPU (17% speedup), but it’s energy con-
sumption is significantly lower (27% less energy consumed).
Since the integrated GPU and CPU share the same mem-
ory interface, the scan performance should be similar be-
cause scan is a bandwidth-bound computation. However,
the power consumption of the integrated GPU is lower than
the multicore CPU. The full-system power when using the
integrated GPU is about 90 W compared to 110 W for the
multicore CPU. Thus, in today’s systems, if energy con-
sumption is important, the integrated GPU provides a sig-
nificant benefit over the multicore CPU for simple scans.

In the rest of this paper we do not evaluate the discrete
GPU for two reasons. First, the integrated GPU outper-
forms the discrete GPU for the scan operation when the
copy and initialization overheads are included. Second, it is
difficult to implement the aggregate on the discrete GPU due
to the complex data structures used in our algorithms (e.g.,
a hashtable). It may be feasible to design optimal schedul-
ing strategies and new data structures for the discrete GPU.
However, we find that the integrated GPU provides signifi-
cant performance improvement and energy savings without
paying the high programming overhead of the discrete GPU.

5.2 TPC-H
For the workload, we used sixteen TPC-H queries on a

pre-joined dataset as was done in Li et al. and Sun et al. [18,
27]; i.e., we pre-joined the TPC-H dataset and ran queries
on the materialized dataset (WideTable) using scans and
aggregate operations. The queries not included have string-
match operators, which have not been implemented in our
system. The queries evaluated show a range of different be-
haviors: the percent of time in scan operations ranges from
about 0% to more than 99%; the number of scans performed
ranges from zero scans to 18 scans; and the columns vary
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in bit width from 3- to 32-bits. We run each query with a
scale-factor 10 data set.

Execution time of the TPC-H queries relative to the mul-
ticore CPU is shown in Figure 4. The execution time of
each query is broken into two sections: the time to perform
the scan (the darker bottom part in each graph), and the
time to execute the rest of the query. The non-scan parts of
the queries include aggregate, group-by, and sort operations.
Only the aggregate and group-by operations were ported to
the GPU; all sort operations execute on the CPU.

The two queries which see the most performance improve-
ment using the integrated GPU are query 6 and query 14.
For these two queries, the GPU is able to significantly in-
crease the performance of the aggregate computation. The
reason for this performance improvement is that these queries
perform a simple reduction (one group) and touch a large
amount of data. These two queries have a relatively high se-
lectivity (1–2%) and access large-width columns. For these
two queries, the increased parallelism of the GPU can take
advantage of the memory bandwidth in the system better
than the multi-core CPU platform.

For some queries, the integrated GPU significantly outper-
forms the multicore CPU in the scan operation (e.g., query
5 and query 12). The reason for this higher performance is
that these queries spend a large percentage of their execu-
tion time in single table multi-column (STMC) predicates.
STMC predicates scan through two columns comparing each
row (e.g., in query 12 l_commitdate < l_receiptdate). For
STMC scans there is an even smaller compute to memory
access ratio than for single-column predicate scans. Thus,
the integrated GPU can utilize the available memory band-
width more effectively than the multicore CPU.

Overall, the integrated GPU increases performance com-
pared to the multicore CPU of both the scan and aggregate
portion of the TPC-H queries evaluated as shown by the
geometric mean in Figure 4. The integrated GPU shows a
35% average reduction in response time for scans, a 28% re-
duction in response time on aggregates, and an overall 30%
average performance improvement.

The diamonds in Figure 4 show the the whole-system en-
ergy of the each TCH-H query evaluated relative to the mul-
ticore CPU (right axis, measured with a WattsUp meter).
This data includes both the scan and the aggregate portions
of each query. Surprisingly, the single-core CPU uses less
energy than the multicore CPU, on average. The reason for
this behavior is that the aggregate portion of the queries is

not energy-efficient to parallelize. Performing parallel ag-
gregates results in a performance increase, but not enough
to offset the extra power required to use all four CPU cores.

Figure 4 also show that the integrated GPU is more energy-
efficient when performing whole queries. The integrated
GPU uses 45% less energy than the multicore CPU and 30%
less energy than the single-core CPU.

We found that some aggregate queries perform poorly on
the integrated GPU (Q1, Q5, Q7, and Q8). Thus, we use a
mixed-mode algorithm for the aggregate computation (Sec-
tion 5.3 presents a more detailed analysis). Additionally, we
found that some aggregate queries (Q1, Q6, Q11, and Q14)
perform poorly when parallelized. The aggregate operations
in these queries do not parallelize efficiently due to overheads
from locks to keep the shared data structures coherent. For
the queries that aggregate operations perform poorly on the
multicore CPU or the integrated GPU, we use a single CPU
core to execute the aggregate operation.

5.3 Aggregates
In this section, we compare the aggregate algorithms dis-

cussed in Section 3.1. We use a microbenchmark which ap-
plies a selection predicate on a table with two (10-bit) integer
columns and then performs an aggregate operation return-
ing the sum of the values in the first column grouped by the
second column’s value. We vary the codes size of the two
columns and the selectivity of the query.

Figure 6 shows the performance of the two group-by algo-
rithms on the integrated GPU assuming a 0.1%, a 1.0%, and
a 10% selectivity in the scan portion of the query. We found
that selectivities above about 10% were dominated by the
time to materialize the codes, not the group-by algorithm.
Each graph sows the performance of the two algorithms dis-
cussed in Section 3.1, direct (Algorithm 2) and hashed (Al-
gorithm 3). Since Algorithm 2 is only appropriate when
there are a small number of groups and Algorithm 3 is only
appropriate when there are a large number of groups, each
algorithm was only evaluated on a subset of the evaluated
groups (x-axis).

Figure 6 shows that for the simple reduction and a large
numbers of groups, the GPU outperforms the CPU when
using the hashed group-by algorithm. However, there is a
range of groups for which neither the hashed nor the di-
rect group-by algorithm performs well on the GPU. For this
range, the CPU significantly outperforms the GPU (up to
about 1024 groups). Therefore, we advocate using a mixed-
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Figure 6: Performance of aggregates comparing number of
groups with three selectivities.

mode algorithm. Luckily, the HSA programming model
makes it possible to perform a simple run-time decision.

The reason the GPU performs poorly with a small number
of groups is two-fold. First, when using the direct algorithm,
the GPU must allocate memory to store the local results for
every single GPU thread, which can be more than 10,000.
This memory overhead means the direct algorithm can only
be used when there are 64 groups or fewer. Additionally, this
per-thread memory is not optimized on the GPU. Second,
when using the hashed storage algorithm, for small numbers
of groups (less than 1024), the hashed storage algorithm
performs poorly on the GPU because there is contention
for the data in the hash table. The contention causes the
lock-free algorithm we use to perform poorly.

We also find that selectivity affects the speedup of the
GPU over the CPU for the aggregate primitive for the sim-
ple reduction (group-by with one group) and hashed group-
by algorithm. For a simple reduction (one group), as the
selectivity increases and the total number of records that
are materialized grows, the GPU is able to achieve more
speedup over the CPU. When the selectivity is higher, there
is more memory parallelism available and the GPU performs
better. Additionally, we use the CPU to compute the off-
sets and the GPU only computes the reduction value. Thus,
with very low selectivity rates, the CPU time dominates the
aggregate and performing the entire aggregate on the CPU
has the highest performance.

6. DISCUSSION OF IMPLICATIONS FOR
FUTURE SYSTEMS

The advent of 3D die-stacking is a technical change on the
horizon that may have profound impacts on analytic data
processing [21]. 3D die-stacking allows multiple chips, possi-
bly from disparate manufacturing processes, to be combined
into a single package. These future systems will have two
features that may significantly impact the performance of
analytic database workloads, increased compute capability
and greatly increased bandwidth.

A possible future 3D-stacked system could have a multi-
core CPU, a GPU, and DRAM all packaged together. This
package would take a single socket in today’s motherboards.
Because it is on it’s own die, the GPU in a 3D-stacked sys-
tem can have all of the performance that discrete GPUs have
promised with the same integrated GPU programming in-
terface. Additionally, the main memory bandwidth in these
systems can be up to 1 TB/s, more than 10× current plat-
forms.

In these future very high-bandwidth systems, the inte-
grated GPU shows more benefit over the multicore CPU
than we see today. The GPU can more efficiently exploit
memory-level parallelism than the CPU, providing a signif-
icant performance and energy improvement. Using a 3D-
stacked GPU may provide a 16× performance improvement
over today’s multicore CPUs and 4× speedup over the a
3D-stacked CPU [21].

7. RELATED WORK
There is a rich body of work accelerating database appli-

cations on GPUs, but most of this prior work focuses on dis-
crete GPU systems [10, 11, 15]. Our work builds off of these
initial works. We argue that integrated GPUs will give these
algorithms new life since they eliminate the high-overhead
data movement costs of discrete GPUs.

However, some recent work has focused on integrated GPUs.
He et. al show that the fine-grained co-processing enabled
by integrated GPUs can provide significant performance im-
provements [12]. Additionally, He et. al show that inte-
grated GPUs can benefit from the CPU’s caches and show
that these systems can increase the performance of analyt-
ical data processing systems [13]. Our work differs from
these previous studies mainly because we use the emerging
programming model, HSA. Previous work used the legacy
OpenCL 1.X model, which still requires the programmer to
explicitly declare how data will be used by the GPU. By
using HSA, we are able to show the benefits of true virtual-
address sharing and very low overhead GPU functions.

There has also been work optimizing aggregates on multi-
core processors [30], SIMD processing units [20], and intra-
word parallelism [7]. Our work focuses on an initial aggre-
gate algorithm for integrated GPU architectures. Applying
the insights from these CPU-focused aggregate algorithms
is left for future work.

8. CONCLUSIONS AND FUTURE WORK
Previous works have shown the huge potential of using

GPUs for database operations. However, many of these
works have neglected to include the large overheads associ-
ated with discrete GPUs when operating on large in-memory
databases. We show that for scan-aggregate queries, cur-
rent physically and logically integrated GPUs mitigate the



problems associated with discrete GPUs showing a modest
speedup and energy reduction over multicore CPUs.

Looking forward, computer architects are pursuing many
interesting avenues to increase the memory bandwidth sig-
nificantly, such as 3D die-stacking. However, conventional
multicore CPU architecture is not well suited to efficiently
use this increased memory bandwidth. We believe that
GPUs pave the way for databases to take advantage of these
emerging architectures.
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