
Index Locking & Latching

@Andy_Pavlo // 15-721 // Spring 2018

ADVANCED
DATABASE 
SYSTEMS

L
e

c
tu

re
 #

0
7

https://twitter.com/andy_pavlo
http://15721.courses.cs.cmu.edu/spring2018/
http://db.cs.cmu.edu/


CMU 15-721 (Spring 2018)

TODAY'S  AGENDA

Index Locks vs. Latches

Latch Implementations

Index Latching (Logical)

Index Locking (Physical)

2

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

DATABASE INDEX

A data structure that improves the speed of data 
retrieval operations on a table at the cost of 
additional writes and storage space.

Indexes are used to quickly locate data without 
having to search every row in a table every time a 
table is accessed.

3

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

DATA STRUCTURES

Order Preserving Indexes
→ A tree-like structure that maintains keys in some sorted 

order.
→ Supports all possible predicates with O(log n) searches.

Hashing Indexes
→ An associative array that maps a hash of the key to a 

particular record.
→ Only supports equality predicates with O(1) searches.

4

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

B-TREE VS.  B+TREE

The original B-tree from 1972 stored keys + 
values in all nodes in the tree.
→ More memory efficient since each key only appears once 

in the tree.

A B+tree only stores values in leaf nodes. Inner 
nodes only guide the search process.
→ Easier to manage concurrent index access when the 

values are only in the leaf nodes.

5

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

OBSERVATION

We already know how to use locks to protect 
objects in the database.

But we have to treat indexes differently because 
the physical structure can change as long as the 
logical contents are consistent.

6

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

SIMPLE EXAMPLE

7

A20 22

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

SIMPLE EXAMPLE

7

A20 22

Txn #1: Read ‘22’

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

SIMPLE EXAMPLE

7

A20 22 Txn #2: Insert ‘21’

Txn #1: Read ‘22’

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

SIMPLE EXAMPLE

7

A20 22

B20 22 C

Txn #2: Insert ‘21’

Txn #1: Read ‘22’

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

SIMPLE EXAMPLE

7

A20 22

B20 22 C

Txn #2: Insert ‘21’21

21 22

Txn #1: Read ‘22’

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

SIMPLE EXAMPLE

7

A20 22

B20 22 C

Txn #2: Insert ‘21’21

Txn #1: Read  ‘22’

21 22

Txn #1: Read ‘22’

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

LOCKS VS.  L ATCHES

Locks
→ Protects the index’s logical contents from other txns.
→ Held for txn duration.
→ Need to be able to rollback changes.

Latches
→ Protects the critical sections of the index’s internal data 

structure from other threads.
→ Held for operation duration.
→ Do not need to be able to rollback changes.

8

A SURVEY OF B-TREE LOCKING TECHNIQUES
TODS 2010

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2018/papers/07-latching/a16-graefe.pdf
http://15721.courses.cs.cmu.edu/spring2018/papers/07-latching/a16-graefe.pdf


CMU 15-721 (Spring 2018)

LOCK-FREE INDEXES

Possibility #1: No Locks
→ Txns don’t acquire locks to access/modify database.
→ Still have to use latches to install updates.

Possibility #2: No Latches
→ Swap pointers using atomic updates to install changes.
→ Still have to use locks to validate txns.

10

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

L ATCH IMPLEMENTATIONS

Blocking OS Mutex

Test-and-Set Spinlock

Queue-based Spinlock

Reader-Writer Locks

11

Source: Anastasia Ailamaki

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://pandis.net/resources/shoremt-tutorial-vldb13.pptx


CMU 15-721 (Spring 2018)

COMPARE-AND-SWAP

Atomic instruction that compares contents of a 
memory location M to a given value V
→ If values are equal, installs new given value V’ in M
→ Otherwise operation fails

12

M
__sync_bool_compare_and_swap(&M, 20, 30)20

Compare 
Value

Address
New

Value

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

COMPARE-AND-SWAP

Atomic instruction that compares contents of a 
memory location M to a given value V
→ If values are equal, installs new given value V’ in M
→ Otherwise operation fails

12

M
__sync_bool_compare_and_swap(&M, 20, 30)30

Compare 
Value

Address
New

Value

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

L ATCH IMPLEMENTATIONS

Choice #1: Blocking OS Mutex
→ Simple to use
→ Non-scalable (about 25ns per lock/unlock invocation)
→ Example: std::mutex

13

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

L ATCH IMPLEMENTATIONS

Choice #1: Blocking OS Mutex
→ Simple to use
→ Non-scalable (about 25ns per lock/unlock invocation)
→ Example: std::mutex

13

pthread_mutex_t

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

L ATCH IMPLEMENTATIONS

Choice #1: Blocking OS Mutex
→ Simple to use
→ Non-scalable (about 25ns per lock/unlock invocation)
→ Example: std::mutex

13

std::mutex m;
⋮

m.lock();
// Do something special...
m.unlock();

pthread_mutex_t

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

L ATCH IMPLEMENTATIONS

Choice #2: Test-and-Set Spinlock (TAS)
→ Very efficient (single instruction to lock/unlock)
→ Non-scalable, not cache friendly
→ Example: std::atomic<T>

14

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

L ATCH IMPLEMENTATIONS

Choice #2: Test-and-Set Spinlock (TAS)
→ Very efficient (single instruction to lock/unlock)
→ Non-scalable, not cache friendly
→ Example: std::atomic<T>

14

std::atomic_flag latch;
⋮

while (latch.test_and_set(…)) {
// Yield? Abort? Retry?

}

std::atomic<bool>

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

L ATCH IMPLEMENTATIONS

Choice #2: Test-and-Set Spinlock (TAS)
→ Very efficient (single instruction to lock/unlock)
→ Non-scalable, not cache friendly
→ Example: std::atomic<T>

14

std::atomic_flag latch;
⋮

while (latch.test_and_set(…)) {
// Yield? Abort? Retry?

}

std::atomic<bool>

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

L ATCH IMPLEMENTATIONS

Choice #3: Queue-based Spinlock (MCS)
→ More efficient than mutex, better cache locality
→ Non-trivial memory management
→ Example: std::atomic<Latch*>

15

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

L ATCH IMPLEMENTATIONS

Choice #3: Queue-based Spinlock (MCS)
→ More efficient than mutex, better cache locality
→ Non-trivial memory management
→ Example: std::atomic<Latch*>

15

next

Base Latch

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

L ATCH IMPLEMENTATIONS

Choice #3: Queue-based Spinlock (MCS)
→ More efficient than mutex, better cache locality
→ Non-trivial memory management
→ Example: std::atomic<Latch*>

15

next

Base Latch

CPU1

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

L ATCH IMPLEMENTATIONS

Choice #3: Queue-based Spinlock (MCS)
→ More efficient than mutex, better cache locality
→ Non-trivial memory management
→ Example: std::atomic<Latch*>

15

next

Base Latch

next

CPU1 Latch

CPU1

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

L ATCH IMPLEMENTATIONS

Choice #3: Queue-based Spinlock (MCS)
→ More efficient than mutex, better cache locality
→ Non-trivial memory management
→ Example: std::atomic<Latch*>

15

next

Base Latch

next

CPU1 Latch

CPU1 CPU2

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

L ATCH IMPLEMENTATIONS

Choice #3: Queue-based Spinlock (MCS)
→ More efficient than mutex, better cache locality
→ Non-trivial memory management
→ Example: std::atomic<Latch*>

15

next

Base Latch

next

CPU1 Latch

CPU1 CPU2

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

L ATCH IMPLEMENTATIONS

Choice #3: Queue-based Spinlock (MCS)
→ More efficient than mutex, better cache locality
→ Non-trivial memory management
→ Example: std::atomic<Latch*>

15

next

Base Latch

next

CPU1 Latch

next

CPU2 Latch

CPU1 CPU2

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

L ATCH IMPLEMENTATIONS

Choice #3: Queue-based Spinlock (MCS)
→ More efficient than mutex, better cache locality
→ Non-trivial memory management
→ Example: std::atomic<Latch*>

15

next

Base Latch

next

CPU1 Latch

next

CPU2 Latch

CPU1 CPU2 CPU3

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

L ATCH IMPLEMENTATIONS

Choice #3: Queue-based Spinlock (MCS)
→ More efficient than mutex, better cache locality
→ Non-trivial memory management
→ Example: std::atomic<Latch*>

15

next

Base Latch

next

CPU1 Latch

next

CPU2 Latch

CPU1 CPU2 CPU3

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

L ATCH IMPLEMENTATIONS

Choice #3: Queue-based Spinlock (MCS)
→ More efficient than mutex, better cache locality
→ Non-trivial memory management
→ Example: std::atomic<Latch*>

15

next

Base Latch

next

CPU1 Latch

next

CPU2 Latch

CPU1 CPU2 CPU3

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

L ATCH IMPLEMENTATIONS

Choice #4: Reader-Writer Locks
→ Allows for concurrent readers
→ Have to manage read/write queues to avoid starvation
→ Can be implemented on top of spinlocks

16

read write

Latch

=0

=0

=0

=0

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

L ATCH IMPLEMENTATIONS

Choice #4: Reader-Writer Locks
→ Allows for concurrent readers
→ Have to manage read/write queues to avoid starvation
→ Can be implemented on top of spinlocks

16

read write

Latch

=0

=0

=0

=0

=1

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

L ATCH IMPLEMENTATIONS

Choice #4: Reader-Writer Locks
→ Allows for concurrent readers
→ Have to manage read/write queues to avoid starvation
→ Can be implemented on top of spinlocks

16

read write

Latch

=0

=0

=0

=0

=1=2

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

L ATCH IMPLEMENTATIONS

Choice #4: Reader-Writer Locks
→ Allows for concurrent readers
→ Have to manage read/write queues to avoid starvation
→ Can be implemented on top of spinlocks

16

read write

Latch

=0

=0

=0

=0

=1=2

=1

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

L ATCH IMPLEMENTATIONS

Choice #4: Reader-Writer Locks
→ Allows for concurrent readers
→ Have to manage read/write queues to avoid starvation
→ Can be implemented on top of spinlocks

16

read write

Latch

=0

=0

=0

=0

=1=2

=1=1

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

L ATCH CRABBING

Acquire and release latches on B+Tree nodes when 
traversing the data structure.

A thread can release latch on a parent node if its 
child node considered safe.
→ Any node that won’t split or merge when updated.
→ Not full (on insertion)
→ More than half-full (on deletion)

17

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

L ATCH CRABBING

Search: Start at root and go down; repeatedly,
→ Acquire read (R) latch on child
→ Then unlock the parent node.

Insert/Delete: Start at root and go down, 
obtaining write (W) latches as needed.
Once child is locked, check if it is safe:
→ If child is safe, release all locks on ancestors.

18

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

EXAMPLE #1:  SEARCH 23

19

A

B

D G

20

10 35

6 12 23 38 44

C

E F

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

EXAMPLE #1:  SEARCH 23

19

A

B

D G

20

10 35

6 12 23 38 44

C

E F

R

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

EXAMPLE #1:  SEARCH 23

19

A

B

D G

20

10 35

6 12 23 38 44

C

E F

R

R

We can release the latch on A as 
soon as we acquire the latch for C.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

EXAMPLE #1:  SEARCH 23

19

A

B

D G

20

10 35

6 12 23 38 44

C

E F

R

We can release the latch on A as 
soon as we acquire the latch for C.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

EXAMPLE #1:  SEARCH 23

19

A

B

D G

20

10 35

6 12 23 38 44

C

E F
R

We can release the latch on A as 
soon as we acquire the latch for C.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

EXAMPLE #2:  DELETE 44

20

A

B

D G

20

10 35

6 12 23 38 44

C

E F

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

EXAMPLE #2:  DELETE 44

20

A

B

D G

20

10 35

6 12 23 38 44

C

E F

W

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

EXAMPLE #2:  DELETE 44

20

A

B

D G

20

10 35

6 12 23 38 44

C

E F

W

W

We may need to coalesce C, so we 
can’t release the latch on A.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

EXAMPLE #2:  DELETE 44

20

A

B

D G

20

10 35

6 12 23 38 44

C

E F

W

W

W

We may need to coalesce C, so we 
can’t release the latch on A.

G will not merge with F, so we can 
release latches on A and C.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

EXAMPLE #2:  DELETE 44

20

A

B

D G

20

10 35

6 12 23 38 44

C

E F
W

We may need to coalesce C, so we 
can’t release the latch on A.

G will not merge with F, so we can 
release latches on A and C.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

EXAMPLE #2:  DELETE 44

20

A

B

D G

20

10 35

6 12 23 38 44

C

E F
W

We may need to coalesce C, so we 
can’t release the latch on A.

G will not merge with F, so we can 
release latches on A and C.

X

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

EXAMPLE #3:  INSERT 40

21

A

B

D G

20

10 35

6 12 23 38 44

C

E F

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

EXAMPLE #3:  INSERT 40

21

A

B

D G

20

10 35

6 12 23 38 44

C

E F

W

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

EXAMPLE #3:  INSERT 40

21

A

B

D G

20

10 35

6 12 23 38 44

C

E F

W

W

C has room if its child has to split, 
so we can release the latch on A.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

EXAMPLE #3:  INSERT 40

21

A

B

D G

20

10 35

6 12 23 38 44

C

E F

W

C has room if its child has to split, 
so we can release the latch on A.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

EXAMPLE #3:  INSERT 40

21

A

B

D G

20

10 35

6 12 23 38 44

C

E F

W

W

C has room if its child has to split, 
so we can release the latch on A.

G has to split, so we can’t release 
the latch on C.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

EXAMPLE #3:  INSERT 40

21

A

B

D G

20

10 35

6 12 23 38 44

C

E F

W

W

C has room if its child has to split, 
so we can release the latch on A.

G has to split, so we can’t release 
the latch on C.

H44

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

EXAMPLE #3:  INSERT 40

21

A

B

D G

20

10 35

6 12 23 38 44

C

E F

W

W

C has room if its child has to split, 
so we can release the latch on A.

G has to split, so we can’t release 
the latch on C.

H4440

44

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

EXAMPLE #3:  INSERT 40

21

A

B

D G

20

10 35

6 12 23 38 44

C

E F

C has room if its child has to split, 
so we can release the latch on A.

G has to split, so we can’t release 
the latch on C.

H4440

44

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

OBSERVATION

What was the first step that the DBMS took in the 
two examples that updated the index?

22

Delete 44

A20

W

Insert 40

A20

W

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

BET TER L ATCH CRABBING

Optimistically assume that the leaf is safe.
→ Take R latches as you traverse the tree to reach it and 

verify.
→ If leaf is not safe, then do previous algorithm.

Also called optimistic lock coupling.

23

CONCURRENCY OF OPERATIONS ON B-TREES
Acta Informatica 9: 1-21 1977

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=2699553
http://dl.acm.org/citation.cfm?id=2699553


CMU 15-721 (Spring 2018)

EXAMPLE #4:  DELETE 44

24

A

B

D G

20

10 35

6 12 23 38 44

C

E F

R

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

EXAMPLE #4:  DELETE 44

24

A

B

D G

20

10 35

6 12 23 38 44

C

E F

R

R

We assume that C is safe, so we 
can release the latch on A.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

EXAMPLE #4:  DELETE 44

24

A

B

D G

20

10 35

6 12 23 38 44

C

E F

R

We assume that C is safe, so we 
can release the latch on A.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

EXAMPLE #4:  DELETE 44

24

A

B

D G

20

10 35

6 12 23 38 44

C

E F

R

We assume that C is safe, so we 
can release the latch on A.

Acquire an exclusive latch on G.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

EXAMPLE #4:  DELETE 44

24

A

B

D G

20

10 35

6 12 23 38 44

C

E F
W

We assume that C is safe, so we 
can release the latch on A.

Acquire an exclusive latch on G.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

EXAMPLE #4:  DELETE 44

24

A

B

D G

20

10 35

6 12 23 38 44

C

E F
W

We assume that C is safe, so we 
can release the latch on A.

Acquire an exclusive latch on G.

X

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

OBSERVATION

Crabbing ensures that txns do not corrupt the 
internal data structure during modifications.

But because txns release latches on each node as 
soon as they are finished their operations, we 
cannot guarantee that phantoms do not occur…

25

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

PROBLEM SCENARIO #1

26

A

B

D G

20

10 35

6 12 23 38 44

C

E F

Txn #1: Check if 25 existsR

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

PROBLEM SCENARIO #1

26

A

B

D G

20

10 35

6 12 23 38 44

C

E F

Txn #1: Check if 25 existsR

R

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

PROBLEM SCENARIO #1

26

A

B

D G

20

10 35

6 12 23 38 44

C

E F

Txn #1: Check if 25 exists

R

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

PROBLEM SCENARIO #1

26

A

B

D G

20

10 35

6 12 23 38 44

C

E F

Txn #1: Check if 25 exists

R
!

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

PROBLEM SCENARIO #1

26

A

B

D G

20

10 35

6 12 23 38 44

C

E F

Txn #1: Check if 25 exists
Txn #2: Insert 25

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

PROBLEM SCENARIO #1

26

A

B

D G

20

10 35

6 12 23 38 44

C

E F

Txn #1: Check if 25 exists
Txn #2: Insert 25

W

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

PROBLEM SCENARIO #1

26

A

B

D G

20

10 35

6 12 23 38 44

C

E F

Txn #1: Check if 25 exists
Txn #2: Insert 25

25

W

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

PROBLEM SCENARIO #1

26

A

B

D G

20

10 35

6 12 23 38 44

C

E F

Txn #1: Check if 25 exists
Txn #2: Insert 25

Txn #1: Insert 25

25

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

PROBLEM SCENARIO #1

26

A

B

D G

20

10 35

6 12 23 38 44

C

E F

Txn #1: Check if 25 exists
Txn #2: Insert 25

Txn #1: Insert 25

25

W

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

PROBLEM SCENARIO #2

27

A

B

D G

20

10 35

6 12 23 38 44

C

E F

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

PROBLEM SCENARIO #2

27

A

B

D G

20

10 35

6 12 23 38 44

C

E F

Txn #1: Scan [12, 23]

R

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

PROBLEM SCENARIO #2

27

A

B

D G

20

10 35

6 12 23 38 44

C

E F

Txn #1: Scan [12, 23]

R R

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

PROBLEM SCENARIO #2

27

A

B

D G

20

10 35

6 12 23 38 44

C

E F

Txn #1: Scan [12, 23]
Txn #2: Insert 21

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

PROBLEM SCENARIO #2

27

A

B

D G

20

10 35

6 12 23 38 44

C

E F

Txn #1: Scan [12, 23]
Txn #2: Insert 21

W

W

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

PROBLEM SCENARIO #2

27

A

B

D G

20

10 35

6 12 23 38 44

C

E F

Txn #1: Scan [12, 23]
Txn #2: Insert 21

2321

W

W

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

PROBLEM SCENARIO #2

27

A

B

D G

20

10 35

6 12 23 38 44

C

E F

Txn #1: Scan [12, 23]
Txn #2: Insert 21

2321

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

PROBLEM SCENARIO #2

27

A

B

D G

20

10 35

6 12 23 38 44

C

E F

Txn #1: Scan [12, 23]
Txn #2: Insert 21

2321

Txn #1: Scan [12, 23]

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

PROBLEM SCENARIO #2

27

A

B

D G

20

10 35

6 12 23 38 44

C

E F

Txn #1: Scan [12, 23]
Txn #2: Insert 21

2321

Txn #1: Scan [12, 23]

R R

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

INDEX LOCKS

Need a way to protect the index’s logical contents 
from other txns to avoid phantoms.

Difference with index latches:
→ Locks are held for the entire duration of a txn.
→ Only acquired at the leaf nodes.
→ Not physically stored in index data structure.

28

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

INDEX LOCKS

29

Lock Table

txn1

X
txn2

S
txn3

S • • •

txn3

S
txn2

S
txn4

S • • •

txn4

IX
txn6

X
txn5

S • • •

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

INDEX LOCKING SCHEMES

Predicate Locks

Key-Value Locks

Gap Locks

Key-Range Locks

Hierarchical Locking

30

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

PREDICATE LOCKS

Proposed locking scheme from System R.
→ Shared lock on the predicate in a WHERE clause of a 

SELECT query.
→ Exclusive lock on the predicate in a WHERE clause of any 

UPDATE, INSERT, or DELETE query.

Never implemented in any system.

31

THE NOTIONS OF CONSISTENCY AND 
PREDICATE LOCKS IN A DATABASE SYSTEM
CACM 1976

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=360369
http://dl.acm.org/citation.cfm?id=360369


CMU 15-721 (Spring 2018)

PREDICATE LOCKS

32

SELECT SUM(balance)
FROM account
WHERE name = 'Biggie'

INSERT INTO account
(name, balance)
VALUES ('Biggie', 100);

Records in Table "account"

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

PREDICATE LOCKS

32

SELECT SUM(balance)
FROM account
WHERE name = 'Biggie'

INSERT INTO account
(name, balance)
VALUES ('Biggie', 100);

name='Biggie'

Records in Table "account"

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

PREDICATE LOCKS

32

SELECT SUM(balance)
FROM account
WHERE name = 'Biggie'

INSERT INTO account
(name, balance)
VALUES ('Biggie', 100);

name='Biggie'

name='Biggie'∧
balance=100

Records in Table "account"

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

KEY-VALUE LOCKS

Locks that cover a single key value.

Need “virtual keys” for non-existent values.

33

10 12 14 16

B+Tree Leaf Node
Key

[14, 14]

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

GAP LOCKS

Each txn acquires a key-value lock on the single 
key that it wants to access. Then get a gap lock on 
the next key gap.

34

10 12 14 16{Gap}{Gap} {Gap}

B+Tree Leaf Node

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

GAP LOCKS

Each txn acquires a key-value lock on the single 
key that it wants to access. Then get a gap lock on 
the next key gap.

34

10 12 14 16{Gap}{Gap} {Gap}

B+Tree Leaf Node

Gap
(14, 16)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

KEY-RANGE LOCKS

A txn takes locks on ranges in the key space.
→ Each range is from one key that appears in the relation, 

to the next that appears.
→ Define lock modes so conflict table will capture 

commutativity of the operations available.

35

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

KEY-RANGE LOCKS

Locks that cover a key value and the gap to the 
next key value in a single index.
→ Need “virtual keys” for artificial values (infinity)

36

10 12 14 16{Gap}{Gap} {Gap}

B+Tree Leaf Node

Next Key [14, 16)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

KEY-RANGE LOCKS

Locks that cover a key value and the gap to the 
next key value in a single index.
→ Need “virtual keys” for artificial values (infinity)

36

10 12 14 16{Gap}{Gap} {Gap}

B+Tree Leaf Node

Prior Key (12, 14]

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

HIERARCHICAL LOCKING

Allow for a txn to hold wider key-range locks with 
different locking modes.
→ Reduces the number of visits to lock manager.

37

10 12 14 16{Gap}{Gap} {Gap}

B+Tree Leaf Node

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

HIERARCHICAL LOCKING

Allow for a txn to hold wider key-range locks with 
different locking modes.
→ Reduces the number of visits to lock manager.

37

10 12 14 16{Gap}{Gap} {Gap}

B+Tree Leaf Node
IX

[10, 16)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

HIERARCHICAL LOCKING

Allow for a txn to hold wider key-range locks with 
different locking modes.
→ Reduces the number of visits to lock manager.

37

10 12 14 16{Gap}{Gap} {Gap}

B+Tree Leaf Node
IX

[10, 16)

[14, 16)
X

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

HIERARCHICAL LOCKING

Allow for a txn to hold wider key-range locks with 
different locking modes.
→ Reduces the number of visits to lock manager.

37

10 12 14 16{Gap}{Gap} {Gap}

B+Tree Leaf Node
IX

[10, 16)

[14, 16)
X

IX [12, 12]
X

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

PARTING THOUGHTS

Hierarchical locking essentially provides predicate 
locking without complications.
→ Index locking occurs only in the leaf nodes.
→ Latching is to ensure consistent data structure.

Peloton currently does not support serializable 
isolation with range scans.

38

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

NEXT CL ASS

Index Key Representation

Memory Allocation & Garbage Collection

T-Trees (1980s / TimesTen)

Bw-Tree (Hekaton)

Concurrent Skip Lists (MemSQL)

39

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

