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COURSE ANNOUNCEMENTS

Mid-Term: Wednesday March 7th @ 3:00pm

Project #2: Monday March 12th @ 11:59pm

Project #3 Proposal: Monday March 19th
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In-Memory Checkpoints

Shared Memory Restarts
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OBSERVATION

Logging allows the DBMS to recover the database 
after a crash/restart. But this system will have to 
replay the entire log each time.

Checkpoints allows the systems to ignore large 
segments of the log to reduce recovery time.
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IN-MEMORY CHECKPOINTS

There are different approaches for how the DBMS 
can create a new checkpoint for an in-memory 
database.

The choice of approach in a DBMS is tightly 
coupled with its concurrency control scheme.

The checkpoint thread(s) scans each table and 
writes out data asynchronously to disk.
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IDEAL CHECKPOINT PROPERTIES

Do not slow down regular txn processing.

Do not introduce unacceptable latency spikes.

Do not require excessive memory overhead.
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LOW-OVERHEAD ASYNCHRONOUS CHECKPOINTING
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CONSISTENT VS.  FUZZY CHECKPOINTS

Approach #1: Consistent Checkpoints
→ Represents a consistent snapshot of the database at some 

point in time. No uncommitted changes.
→ No additional processing during recovery.

Approach #2: Fuzzy Checkpoints
→ The snapshot could contain records updated from 

transactions that have not finished yet.
→ Must do additional processing to remove those changes.
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CHECKPOINT CONTENTS

Approach #1: Complete Checkpoint
→ Write out every tuple in every table regardless of 

whether were modified since the last checkpoint.

Approach #2: Delta Checkpoint
→ Write out only the tuples that were modified since the 

last checkpoint.
→ Can merge checkpoints together in the background.
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FREQUENCY

Taking checkpoints too often causes the runtime 
performance to degrade.

But waiting a long time between checkpoints is 
just as bad.

Approach #1: Time-based

Approach #2: Log File Size Threshold

Approach #3: On Shutdown (always!)
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CHECKPOINT IMPLEMENTATIONS
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Type Contents Frequency

MemSQL Consistent Complete Log Size

VoltDB Consistent Complete Time-Based

Altibase Fuzzy Complete Manual?

TimesTen Consistent (Blocking)
Fuzzy (Non-Blocking)

Complete
Complete

On Shutdown
Time-Based

Hekaton Consistent Delta Log Size

SAP HANA Fuzzy Complete Time-Based
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IN-MEMORY CHECKPOINTS

Approach #1: Naïve Snapshots

Approach #2: Copy-on-Update Snapshots

Approach #3: Wait-Free ZigZag

Approach #4: Wait-Free PingPong
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FAST CHECKPOINT RECOVERY ALGORITHMS 
FOR FREQUENTLY CONSISTENT APPLICATIONS
SIGMOD 2011
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NAÏVE SNAPSHOT

Create a consistent copy of the entire database in a 
new location in memory and then write the 
contents to disk.

Two approaches to copying database:
→ Do it yourself (tuple data only).
→ Let the OS do it for you (everything).
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HYPER FORK SNAPSHOTS

Create a snapshot of the database by forking the 
DBMS process.
→ Child process contains a consistent checkpoint if there 

are not active txns.
→ Otherwise, use the in-memory undo log to roll back txns

in the child process.

Continue processing txns in the parent process.
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HYPER: A HYBRID OLTP&OLAP MAIN MEMORY DATABASE 
SYSTEM BASED ON VIRTUAL MEMORY SNAPSHOTS
ICDE 2011
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H-STORE FORK SNAPSHOTS
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Workload: TPC-C (8 Warehouses) + OLAP Query
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COPY-ON-UPDATE SNAPSHOT

During the checkpoint, txns create new copies of 
data instead of overwriting it.
→ Copies can be at different granularities (block, tuple)

The checkpoint thread then skips anything that 
was created after it started.
→ Old data is pruned after it has been written to disk
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VOLTDB CONSISTENT CHECKPOINTS

A special txn starts a checkpoint and switches the 
DBMS into copy-on-write mode.
→ Changes are no longer made in-place to tables.
→ The DBMS tracks whether a tuple has been inserted, 

deleted, or modified since the checkpoint started.

A separate thread scans the tables and writes tuples 
out to the snapshot on disk.
→ Ignore anything changed after checkpoint.
→ Clean up old versions as it goes along.
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OBSERVATION

Txns have to wait for the checkpoint thread when 
using naïve snapshots.

Txns may have to wait to acquire latches held by 
the checkpoint thread under copy-on-update if not 
using MVCC.
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WAIT-FREE ZIGZAG

Maintain two copies of the entire database
→ Each txn write only updates one copy.

Use two BitMaps to keep track of what copy a txn
should read/write from per tuple.
→ Avoid the overhead of having to create copies on the fly 

as in the copy-on-update approach.
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WAIT-FREE ZIGZAG
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WAIT-FREE PINGPONG

Trade extra memory + CPU to avoid pauses at the 
end of the checkpoint.

Maintain two copies of the entire database at all 
times plus a third "base" copy.
→ Pointer indicates which copy is the current master.
→ At the end of the checkpoint, swap these pointers.
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WAIT-FREE PINGPONG
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WAIT-FREE PINGPONG
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WAIT-FREE PINGPONG
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WAIT-FREE PINGPONG
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WAIT-FREE PINGPONG
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WAIT-FREE PINGPONG
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WAIT-FREE PINGPONG
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WAIT-FREE PINGPONG
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WAIT-FREE PINGPONG
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CHECKPOINT IMPLEMENTATIONS

Bulk State Copying
→ Pause txn execution to take a snapshot.

Locking / Latching
→ Use latches to isolate the checkpoint thread from the 

worker threads if they operate on shared regions.

Bulk Bit-Map Reset:
→ If DBMS uses BitMap to track dirty regions, it must 

perform a bulk reset at the start of a new checkpoint.

Memory Usage:
→ To avoid synchronous writes, the method may need to 

allocate additional memory for data copies.
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IN-MEMORY CHECKPOINTS

31

Bulk 
Copying Locking

Bulk Bit-
Map Reset

Memory 
Usage

Naïve Snapshot Yes No No 2x

Copy-on-Update No Yes Yes 2x

Wait-Free ZigZag No No Yes 2x

Wait-Free Ping-Pong No No No 3x
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OBSERVATION

Not all DBMS restarts are due to crashes.
→ Updating OS libraries
→ Hardware upgrades/fixes
→ Updating DBMS software

Need a way to be able to quickly restart the DBMS 
without having to re-read the entire database from 
disk again.
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FACEBOOK SCUBA FAST RESTARTS

Decouple the in-memory database lifetime from 
the process lifetime.

By storing the database shared memory, the DBMS 
process can restart and the memory contents will 
survive. 
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SIGMOD 2014
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FACEBOOK SCUBA

Distributed, in-memory DBMS for time-series 
event analysis and anomaly detection.

Heterogeneous architecture
→ Leaf Nodes: Execute scans/filters on in-memory data
→ Aggregator Nodes: Combine results from leaf nodes
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FACEBOOK SCUBA ARCHITECTURE
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Leaf Node Leaf Node Leaf Node Leaf Node

Aggregate Node

Aggregate Node
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SHARED MEMORY RESTARTS

Approach #1: Shared Memory Heaps
→ All data is allocated in SM during normal operations.
→ Have to use a custom allocator to subdivide memory 

segments for thread safety and scalability.
→ Cannot use lazy allocation of backing pages with SM.

Approach #2: Copy on Shutdown
→ All data is allocated in local memory during normal 

operations.
→ On shutdown, copy data from heap to SM.
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FACEBOOK SCUBA FAST RESTARTS

When the admin initiates restart command, the 
node halts ingesting updates.

DBMS starts copying data from heap memory to 
shared memory.
→ Delete blocks in heap once they are in SM.

Once snapshot finishes, the DBMS restarts.
→ On start up, check to see whether the there is a valid 

database in SM to copy into its heap.
→ Otherwise, the DBMS restarts from disk.
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PARTING THOUGHTS

I think that copy-on-update checkpoints are the 
way to go especially if you are using MVCC

Shared memory does have some use after all…
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NEXT CL ASS

Networking Protocols
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