
Checkpoint Protocols

@Andy_Pavlo // 15-721 // Spring 2018

ADVANCED
DATABASE 
SYSTEMS

L
e

c
tu

re
 #

1
3

https://twitter.com/andy_pavlo
http://15721.courses.cs.cmu.edu/spring2018/
http://db.cs.cmu.edu/


CMU 15-721 (Spring 2018)

COURSE ANNOUNCEMENTS

Mid-Term: Wednesday March 7th @ 3:00pm

Project #2: Monday March 12th @ 11:59pm

Project #3 Proposal: Monday March 19th

2

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

In-Memory Checkpoints

Shared Memory Restarts

3

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

OBSERVATION

Logging allows the DBMS to recover the database 
after a crash/restart. But this system will have to 
replay the entire log each time.

Checkpoints allows the systems to ignore large 
segments of the log to reduce recovery time.

4

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

IN-MEMORY CHECKPOINTS

There are different approaches for how the DBMS 
can create a new checkpoint for an in-memory 
database.

The choice of approach in a DBMS is tightly 
coupled with its concurrency control scheme.

The checkpoint thread(s) scans each table and 
writes out data asynchronously to disk.

5

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

IDEAL CHECKPOINT PROPERTIES

Do not slow down regular txn processing.

Do not introduce unacceptable latency spikes.

Do not require excessive memory overhead.

6

LOW-OVERHEAD ASYNCHRONOUS CHECKPOINTING
IN MAIN-MEMORY DATABASE SYSTEMS
SIGMOD 2016

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=2915966
http://dl.acm.org/citation.cfm?id=2915966


CMU 15-721 (Spring 2018)

CONSISTENT VS.  FUZZY CHECKPOINTS

Approach #1: Consistent Checkpoints
→ Represents a consistent snapshot of the database at some 

point in time. No uncommitted changes.
→ No additional processing during recovery.

Approach #2: Fuzzy Checkpoints
→ The snapshot could contain records updated from 

transactions that have not finished yet.
→ Must do additional processing to remove those changes.

7

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

CHECKPOINT CONTENTS

Approach #1: Complete Checkpoint
→ Write out every tuple in every table regardless of 

whether were modified since the last checkpoint.

Approach #2: Delta Checkpoint
→ Write out only the tuples that were modified since the 

last checkpoint.
→ Can merge checkpoints together in the background.

8

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

FREQUENCY

Taking checkpoints too often causes the runtime 
performance to degrade.

But waiting a long time between checkpoints is 
just as bad.

Approach #1: Time-based

Approach #2: Log File Size Threshold

Approach #3: On Shutdown (always!)

9

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

CHECKPOINT IMPLEMENTATIONS

10

Type Contents Frequency

MemSQL Consistent Complete Log Size

VoltDB Consistent Complete Time-Based

Altibase Fuzzy Complete Manual?

TimesTen Consistent (Blocking)
Fuzzy (Non-Blocking)

Complete
Complete

On Shutdown
Time-Based

Hekaton Consistent Delta Log Size

SAP HANA Fuzzy Complete Time-Based

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

IN-MEMORY CHECKPOINTS

Approach #1: Naïve Snapshots

Approach #2: Copy-on-Update Snapshots

Approach #3: Wait-Free ZigZag

Approach #4: Wait-Free PingPong

11

FAST CHECKPOINT RECOVERY ALGORITHMS 
FOR FREQUENTLY CONSISTENT APPLICATIONS
SIGMOD 2011

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2018/papers/13-checkpointing/p265-cao.pdf
http://15721.courses.cs.cmu.edu/spring2018/papers/13-checkpointing/p265-cao.pdf


CMU 15-721 (Spring 2018)

NAÏVE SNAPSHOT

Create a consistent copy of the entire database in a 
new location in memory and then write the 
contents to disk.

Two approaches to copying database:
→ Do it yourself (tuple data only).
→ Let the OS do it for you (everything).

12

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

HYPER FORK SNAPSHOTS

Create a snapshot of the database by forking the 
DBMS process.
→ Child process contains a consistent checkpoint if there 

are not active txns.
→ Otherwise, use the in-memory undo log to roll back txns

in the child process.

Continue processing txns in the parent process.

13

HYPER: A HYBRID OLTP&OLAP MAIN MEMORY DATABASE 
SYSTEM BASED ON VIRTUAL MEMORY SNAPSHOTS
ICDE 2011

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=2005619
http://dl.acm.org/citation.cfm?id=2005619


CMU 15-721 (Spring 2018)

H-STORE FORK SNAPSHOTS

14

Workload: TPC-C (8 Warehouses) + OLAP Query

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://www.cs.cmu.edu/~pavlo/blog/2013/12/fall-2013-research.html


CMU 15-721 (Spring 2018)

COPY-ON-UPDATE SNAPSHOT

During the checkpoint, txns create new copies of 
data instead of overwriting it.
→ Copies can be at different granularities (block, tuple)

The checkpoint thread then skips anything that 
was created after it started.
→ Old data is pruned after it has been written to disk

15

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

VOLTDB CONSISTENT CHECKPOINTS

A special txn starts a checkpoint and switches the 
DBMS into copy-on-write mode.
→ Changes are no longer made in-place to tables.
→ The DBMS tracks whether a tuple has been inserted, 

deleted, or modified since the checkpoint started.

A separate thread scans the tables and writes tuples 
out to the snapshot on disk.
→ Ignore anything changed after checkpoint.
→ Clean up old versions as it goes along.

16

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

OBSERVATION

Txns have to wait for the checkpoint thread when 
using naïve snapshots.

Txns may have to wait to acquire latches held by 
the checkpoint thread under copy-on-update if not 
using MVCC.

17

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

WAIT-FREE ZIGZAG

Maintain two copies of the entire database
→ Each txn write only updates one copy.

Use two BitMaps to keep track of what copy a txn
should read/write from per tuple.
→ Avoid the overhead of having to create copies on the fly 

as in the copy-on-update approach.

18

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

WAIT-FREE ZIGZAG

19

Copy #1

5

9

7

2

4

3

Copy #2

5

9

7

2

4

3

0

0

0

0

0

Read 
BitMap

1

1

1

1

1

1

Write 
BitMap

6

1

9 0

1

1

1

0

0

0

3

8

0

1

0

0

0

0

0

0

Txn Writes

Checkpoint Thread

1

0

1

0

0

1

Checkpoint
Written to Disk
Checkpoint
Written to Disk

Txn Writes

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

WAIT-FREE PINGPONG

Trade extra memory + CPU to avoid pauses at the 
end of the checkpoint.

Maintain two copies of the entire database at all 
times plus a third "base" copy.
→ Pointer indicates which copy is the current master.
→ At the end of the checkpoint, swap these pointers.

20

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

WAIT-FREE PINGPONG

37

Base Copy

5

9

7

2

4

3

Copy #1

-

-

-

-

-

-

0

0

0

0

0

0

Copy #2

5

9

7

2

4

3

1

1

1

1

1

1

Checkpoint Thread
Master: Copy #1

Shadow: Copy #2

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

WAIT-FREE PINGPONG

37

Base Copy

5

9

7

2

4

3

Copy #1

-

-

-

-

-

-

0

0

0

0

0

0

Copy #2

5

9

7

2

4

3

1

1

1

1

1

1

Checkpoint Thread
Master:

Txn Writes

Copy #1

Shadow: Copy #2

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

WAIT-FREE PINGPONG

37

Base Copy

5

9

7

2

4

3

Copy #1

-

-

-

-

-

-

0

0

0

0

0

0

Copy #2

5

9

7

2

4

3

1

1

1

1

1

1

Checkpoint Thread
Master:

6

1

9

6

1

9

1

1

1

Txn Writes

Copy #1

Shadow: Copy #2

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

WAIT-FREE PINGPONG

37

Base Copy

5

9

7

2

4

3

Copy #1

-

-

-

-

-

-

0

0

0

0

0

0

Copy #2

5

9

7

2

4

3

1

1

1

1

1

1

Checkpoint Thread
Master:

6

1

9

6

1

9

1

1

1

Copy #1

Shadow: Copy #2

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

WAIT-FREE PINGPONG

37

Base Copy

5

9

7

2

4

3

Copy #1

-

-

-

-

-

-

0

0

0

0

0

0

Copy #2

5

9

7

2

4

3

1

1

1

1

1

1

Checkpoint Thread
Master:

6

1

9

6

1

9

1

1

1

-

-

-

-

-

-

0

0

0

0

0

0

Copy #1

Shadow: Copy #2

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

WAIT-FREE PINGPONG

37

Base Copy

5

9

7

2

4

3

Copy #1

-

-

-

-

-

-

0

0

0

0

0

0

Copy #2

5

9

7

2

4

3

1

1

1

1

1

1

Master:

6

1

9

6

1

9

1

1

1

-

-

-

-

-

-

0

0

0

0

0

0

Copy #2

Shadow: Copy #1

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

WAIT-FREE PINGPONG

37

Base Copy

5

9

7

2

4

3

Copy #1

-

-

-

-

-

-

0

0

0

0

0

0

Copy #2

5

9

7

2

4

3

1

1

1

1

1

1

Master:

6

1

9

6

1

9

1

1

1

-

-

-

-

-

-

0

0

0

0

0

0

Copy #2
Checkpoint Thread

Shadow: Copy #1

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

WAIT-FREE PINGPONG

37

Base Copy

5

9

7

2

4

3

Copy #1

-

-

-

-

-

-

0

0

0

0

0

0

Copy #2

5

9

7

2

4

3

1

1

1

1

1

1

Master:

6

1

9

6

1

9

1

1

1

-

-

-

-

-

-

0

0

0

0

0

0

Copy #2
Checkpoint Thread

Shadow: Copy #1

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

WAIT-FREE PINGPONG

37

Base Copy

5

9

7

2

4

3

Copy #1

-

-

-

-

-

-

0

0

0

0

0

0

Copy #2

5

9

7

2

4

3

1

1

1

1

1

1

Master:

6

1

9

6

1

9

1

1

1

-

-

-

-

-

-

0

0

0

0

0

0

Copy #2
Checkpoint Thread

Shadow: Copy #1

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

CHECKPOINT IMPLEMENTATIONS

Bulk State Copying
→ Pause txn execution to take a snapshot.

Locking / Latching
→ Use latches to isolate the checkpoint thread from the 

worker threads if they operate on shared regions.

Bulk Bit-Map Reset:
→ If DBMS uses BitMap to track dirty regions, it must 

perform a bulk reset at the start of a new checkpoint.

Memory Usage:
→ To avoid synchronous writes, the method may need to 

allocate additional memory for data copies.

30

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

IN-MEMORY CHECKPOINTS

31

Bulk 
Copying Locking

Bulk Bit-
Map Reset

Memory 
Usage

Naïve Snapshot Yes No No 2x

Copy-on-Update No Yes Yes 2x

Wait-Free ZigZag No No Yes 2x

Wait-Free Ping-Pong No No No 3x

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

OBSERVATION

Not all DBMS restarts are due to crashes.
→ Updating OS libraries
→ Hardware upgrades/fixes
→ Updating DBMS software

Need a way to be able to quickly restart the DBMS 
without having to re-read the entire database from 
disk again.

32

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

FACEBOOK SCUBA FAST RESTARTS

Decouple the in-memory database lifetime from 
the process lifetime.

By storing the database shared memory, the DBMS 
process can restart and the memory contents will 
survive. 

33

FAST DATABASE RESTARTS AT FACEBOOK
SIGMOD 2014

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2018/papers/13-checkpointing/p541-goel.pdf
http://15721.courses.cs.cmu.edu/spring2018/papers/13-checkpointing/p541-goel.pdf


CMU 15-721 (Spring 2018)

FACEBOOK SCUBA

Distributed, in-memory DBMS for time-series 
event analysis and anomaly detection.

Heterogeneous architecture
→ Leaf Nodes: Execute scans/filters on in-memory data
→ Aggregator Nodes: Combine results from leaf nodes

34

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

FACEBOOK SCUBA ARCHITECTURE

35

Leaf Node Leaf Node Leaf Node Leaf Node

Aggregate Node

Aggregate Node

Aggregate Node

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

SHARED MEMORY RESTARTS

Approach #1: Shared Memory Heaps
→ All data is allocated in SM during normal operations.
→ Have to use a custom allocator to subdivide memory 

segments for thread safety and scalability.
→ Cannot use lazy allocation of backing pages with SM.

Approach #2: Copy on Shutdown
→ All data is allocated in local memory during normal 

operations.
→ On shutdown, copy data from heap to SM.

36

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

FACEBOOK SCUBA FAST RESTARTS

When the admin initiates restart command, the 
node halts ingesting updates.

DBMS starts copying data from heap memory to 
shared memory.
→ Delete blocks in heap once they are in SM.

Once snapshot finishes, the DBMS restarts.
→ On start up, check to see whether the there is a valid 

database in SM to copy into its heap.
→ Otherwise, the DBMS restarts from disk.

37

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

PARTING THOUGHTS

I think that copy-on-update checkpoints are the 
way to go especially if you are using MVCC

Shared memory does have some use after all…

38

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

NEXT CL ASS

Networking Protocols

39

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

