15-721 Project 3 Final Presentation
MULTI-THREADED QUERIES

Wendong Li (wendongl)
Lu Zhang (Izhang3)
Rui Wang (ruiw1)

Project Objective

Intra-operator parallelism

® Use multiple threads in a single executor
® Focus on OLAP queries

Progress

® Insert exchange executors into the executor tree
® Concurrent data structures
® Implement different exchange executors

Progress

Insert exchange executors into the executor tree

©)

O

O

Postgres Plan
Tree

translate

| Peloton Plan

Tree

generate

Two places to insert exchange executors

B At translation step, translate into exchange plan node
B At generate step, generate exchange executor node
We choose the second way
B Exchange plan node does not really have anything new

B Good for plan cache
B Code sharing, easier if want to change plan node
B Easier to implement

Peloton Executor
Tree

execute

>

Progress

® Concurrent data structures

O Thread pool

B Use the one already in Peloton
o Lock free queue

B Implement using boost lock free queue
o Barrier to synchronize different work threads

B Implement using mutex and conditional variable
o Concurrent hash table

B Implement using Cuckoo hash map

Progress

® Implement different exchange executors
o Decompose the entire work into multiple tasks (typically one tile group per task)
o Use multiple threads to finish tasks
o Wait till all tasks finish before return result
o Implemented executors
B Sequential scan
B Hash

B Hashjoin

Progress

® Sequential scan
o Wrap the scanning of one tile group into one task
o Submit multiple tasks to thread pool
o Wait for all tasks to finish before returning result

Progress

® Hash
o Use one concurrent hash map
o Wrap one logical tile into one task
o Each task is responsible for inserting one logical tile into hash table
o Waiting for all tasks to finish before returning result

Progress

® Hash Join

o Use Hash mentioned before to build hash table on right table
o Use athread-safe set to record matched records in right table if needed (left/right/outer join)

o Two Parallel Strategies:
B Operator-at-a-time. Configurable workload for each task. (BAD performance!)
B Tuple-at-a-time. One tile for each task. Better, used in experiments.

Correctness

® Test under existing Peloton tests
® Create tests to test parallel part of the code

Performance

® Experiment Setup
o MemSQL machine.
o dual-socket Xeon E5-2620 (6 cores / 12 threads -- total of 24 threads)

® ExchangeSeqgScanExecutor vs. SeqScanExecutor
® ExchangeHashExecutor vs. HashExecutor
® ExchangeHashJoinExecutor vs. HashJoinExecutor (Probe phase)

Performance: ExchangeSeqScanExecutor

® 1000 records/tile group * 100000 tile groups

60000
45000 |

30000 |

Runtime (ms)
=
Speed Up

15000 |

Performance: ExchangeSeqScanExecutor

® 100000 records/tile group * 1000 tile groups

® Lesstile groups
o Less communication & synchronization overhead

o Less data structure overhead
o Less result-passing overhead
o Coarser task granularity, may lead to uneven work division

Performance: ExchangeSeqScanExecutor

® 100000 records/tile group * 1000 tile groups

60000

45000 6.75

30000 |

Runtime (ms)

15000 | 2.25

Performance: Hash

® 100000 records/tile group * 300 tile groups

20000
15000 |

10000 |

Runtime (ms)

5000 |

Performance: HashJoin (Probe Phase)

® Experiment Setl. #Thread

100000 tuples/group
left:200,right:150, under ExHash

250.00%

208.56% 208.64%

//¢ 200.00%
_—177.02%

e P Jr— —

”

P | 150.00%
»279.55%

100.00%

RunTime(ms) ™®SpeedUp -

Performance: HashJoin (Probe Phase)

® Experiment Set2: Probe Speedup with ExchangeHashExecutor

left:200, right:150, with ExHashExe,
thread:12

206.22% 203.28%

183.84%

100000 150000 200000 500000

RunTime(ms) Probe ™®RunTime(ms) ExProbe —=SpeedUp

Performance: HashJoin (Probe Phase)

® Experiment Set3: Probe Speedup with HashExecutor

left:100, right:50, with HashExe, thread:12

350.00%
340.16%

/\\\336.45% 340.00%

\25.87% 330.00%
: 319.23%

320.00%

\ 310.00%

305.54% 300.00%

290.00%
280.00%

| 270.00%
200000 300000 600000 800000 1000000 1200000

RunTime(ms) Probe ™®RunTime(ms) ExProbe -*=SpeedUp

Original Goal

Completed Not Completed
® 75% ® 100% Implement exchange operators
o Ability to insert exchange operators o Other executors like aggregate

tasks scheduling

® 100% Implement exchange operators

o Sequential Scan
o Hash
o Hash Join

Future Work

® Improve hash executor and hash join executor (probe phase)
o May want to reduce contention among threads

® Implement more exchange operators
o Aggregate Executors

® Create plan nodes for exchange operators
o If want to have exchange-operator specific data

Thanks

