
15-721 Project 3 Final Presentation

MULTI-THREADED QUERIES

Wendong Li (wendongl)
Lu Zhang (lzhang3)
Rui Wang (ruiw1)

Project Objective
Intra-operator parallelism

● Use multiple threads in a single executor
● Focus on OLAP queries

Progress
● Insert exchange executors into the executor tree
● Concurrent data structures
● Implement different exchange executors

Progress
● Insert exchange executors into the executor tree

○
○
○ Two places to insert exchange executors

■ At translation step, translate into exchange plan node
■ At generate step, generate exchange executor node

○ We choose the second way
■ Exchange plan node does not really have anything new
■ Good for plan cache
■ Code sharing, easier if want to change plan node
■ Easier to implement

Postgres Plan
Tree

Peloton Plan
Tree

Peloton Executor
Tree

translate generate execute

Progress
● Concurrent data structures

○ Thread pool

■ Use the one already in Peloton
○ Lock free queue

■ Implement using boost lock free queue
○ Barrier to synchronize different work threads

■ Implement using mutex and conditional variable
○ Concurrent hash table

■ Implement using Cuckoo hash map

Progress
● Implement different exchange executors

○ Decompose the entire work into multiple tasks (typically one tile group per task)
○ Use multiple threads to finish tasks
○ Wait till all tasks finish before return result
○ Implemented executors

■ Sequential scan
■ Hash
■ Hash join

Progress
● Sequential scan

○ Wrap the scanning of one tile group into one task
○ Submit multiple tasks to thread pool
○ Wait for all tasks to finish before returning result

Progress
● Hash

○ Use one concurrent hash map
○ Wrap one logical tile into one task
○ Each task is responsible for inserting one logical tile into hash table
○ Waiting for all tasks to finish before returning result

Progress
● Hash Join

○ Use Hash mentioned before to build hash table on right table
○ Use a thread-safe set to record matched records in right table if needed (left/right/outer join)

○ Two Parallel Strategies:
■ Operator-at-a-time. Configurable workload for each task. (BAD performance!)
■ Tuple-at-a-time. One tile for each task. Better, used in experiments.

Correctness
● Test under existing Peloton tests
● Create tests to test parallel part of the code

Performance
● Experiment Setup

○ MemSQL machine.
○ dual-socket Xeon E5-2620 (6 cores / 12 threads -- total of 24 threads)

● ExchangeSeqScanExecutor vs. SeqScanExecutor
● ExchangeHashExecutor vs. HashExecutor
● ExchangeHashJoinExecutor vs. HashJoinExecutor (Probe phase)

Performance: ExchangeSeqScanExecutor
● 1000 records/tile group * 100000 tile groups

Performance: ExchangeSeqScanExecutor
● 100000 records/tile group * 1000 tile groups
● Less tile groups

○ Less communication & synchronization overhead
○ Less data structure overhead
○ Less result-passing overhead
○ Coarser task granularity, may lead to uneven work division

Performance: ExchangeSeqScanExecutor
● 100000 records/tile group * 1000 tile groups

Performance: Hash
● 100000 records/tile group * 300 tile groups

Performance: HashJoin (Probe Phase)
● Experiment Set1: #Thread

Performance: HashJoin (Probe Phase)
● Experiment Set2: Probe Speedup with ExchangeHashExecutor

Performance: HashJoin (Probe Phase)
● Experiment Set3: Probe Speedup with HashExecutor

Original Goal
Completed

● 75%
○ Ability to insert exchange operators

○ Thread pool and divide work into multiple

tasks

● 100% Implement exchange operators

○ Sequential Scan
○ Hash
○ Hash Join

Not Completed

● 100% Implement exchange operators
○ Other executors like aggregate

● 125% NUMA-aware data placement and task
scheduling

Future Work
● Improve hash executor and hash join executor (probe phase)

○ May want to reduce contention among threads

● Implement more exchange operators
○ Aggregate Executors

● Create plan nodes for exchange operators
○ If want to have exchange-operator specific data

Thanks

