
Integrating Compression and Execution in
Column-Oriented Database Systems

Daniel J. Abadi
MIT

dna@csail.mit.edu

Samuel R. Madden
MIT

madden@csail.mit.edu

Miguel C. Ferreira
MIT

mferreira@alum.mit.edu

ABSTRACT
Column-oriented database system architectures invite a re-
evaluation of how and when data in databases is compressed.
Storing data in a column-oriented fashion greatly increases
the similarity of adjacent records on disk and thus opportuni-
ties for compression. The ability to compress many adjacent
tuples at once lowers the per-tuple cost of compression, both
in terms of CPU and space overheads.

In this paper, we discuss how we extended C-Store (a
column-oriented DBMS) with a compression sub-system. We
show how compression schemes not traditionally used in row-
oriented DBMSs can be applied to column-oriented systems.
We then evaluate a set of compression schemes and show that
the best scheme depends not only on the properties of the
data but also on the nature of the query workload.

1. INTRODUCTION
Compression in traditional database systems is known to

improve performance significantly [13, 16, 25, 14, 17, 37]: it
reduces the size of the data and improves I/O performance
by reducing seek times (the data are stored nearer to each
other), reducing transfer times (there is less data to trans-
fer), and increasing buffer hit rate (a larger fraction of the
DBMS fits in buffer pool). For queries that are I/O limited,
the CPU overhead of decompression is often compensated
for by the I/O improvements.

In this paper, we revisit this literature on compression
in the context of column-oriented database systems [28, 9,
10, 18, 21, 1, 19]. A column-oriented database system (or
“column-store”) is one in which each attribute is stored in
a separate column, such that successive values of that at-
tribute are stored consecutively on disk. This is in contrast
to most common database systems (e.g. Oracle, IBM DB2,
Microsoft SQL Server) that store relations in rows (“row-
stores”) where values of different attributes from the same
tuple are stored consecutively. Since there has been signif-
icant recent interest in column-oriented databases in both
the research community [28, 9, 10, 18, 24, 34] and in the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2006, June 27–29, 2006, Chicago, Illinois, USA.
Copyright 2006 ACM 1-59593-256-9/06/0006 ...$5.00.

commercial arena [21, 1, 19], we believe the time is right to
systematically revisit the topic of compression in the context
of these systems, particularly given that one of the oft-cited
advantages of column-stores is their compressibility.

Storing data in columns presents a number of opportuni-
ties for improved performance from compression algorithms
when compared to row-oriented architectures. In a column-
oriented database, compression schemes that encode multi-
ple values at once are natural. In a row-oriented database,
such schemes do not work as well because an attribute is
stored as a part of an entire tuple, so combining the same
attribute from different tuples together into one value would
require some way to “mix” tuples.

Compression techniques for row-stores often employ dic-
tionary schemes where a dictionary is used to code wide val-
ues in the attribute domain into smaller codes. For example,
a simple dictionary for a string-typed column of colors might
map “blue” to 0, “yellow” to 1, “green” to 2, and so on [13,
26, 11, 37]. Sometimes these schemes employ prefix-coding
based on symbol frequencies (e.g., Huffman encoding [15])
or express values as small differences from some frame of ref-
erence and remove leading nulls from them (e.g., [29, 14, 26,
37]). In addition to these traditional techniques, column-
stores are also well-suited to compression schemes that com-
press values from more than one row at a time. This al-
lows for a larger variety of viable compression algorithms.
For example, run-length encoding (RLE), where repeats of
the same element are expressed as (value, run-length) pairs,
is an attractive approach for compressing sorted data in a
column-store. Similarly, improvements to traditional com-
pression algorithms that allow basic symbols to span more
than one column entry are also possible in a column-store.

Compression ratios are also generally higher in column-
stores because consecutive entries in a column are often quite
similar to each other, whereas adjacent attributes in a tu-
ple are not [21]. Further, the CPU overhead of iterating
through a page of column values tends to be less than that
of iterating through a page of tuples (especially when all
values in a column are the same size), allowing for increased
decompression speed by using vectorized code that takes ad-
vantage of the super-scalar properties of modern CPUs [10,
37]. Finally, column-stores can store different columns in
different sort-orders [28], further increasing the potential for
compression, since sorted data is usually quite compressible.

Column-oriented compression schemes also improve CPU
performance by allowing database operators to operate di-
rectly on compressed data. This is particularly true for com-
pression schemes like run length encoding that refer to mul-
tiple entries with the same value in a single record. For ex-

ample, if a run-length encoded column says the value “42”
appears 1000 times consecutively in a particular column for
which we are computing a SUM aggregate, the operator can
simply take the product of the value and run-length as the
SUM, without having to decompress.

In this paper we study a number of alternative compres-
sion schemes that are especially well-suited to column stores,
and show how these schemes can easily be integrated into C-
Store, an open-source column-oriented database [3, 28].

In summary, in this paper we demonstrate several fun-
damental results related to compression in column-oriented
database systems:

• We overview commonly used DBMS compression algo-
rithms and show how they can be applied in column-
store systems. We compare this traditional set of algo-
rithms with compression algorithms especially suited
for column-store systems.

• Through experiments, we explore the trade-offs be-
tween these algorithms, varying the characteristics of
the data set and the query workload. We use results
from these experiments to create a decision tree to aid
the database designer to decide how to compress a par-
ticular column.

• We introduce an architecture for a query executor that
allows for direct operation on compressed data while
minimizing the complexity of adding new compression
algorithms. We experimentally show the benefits of
operating directly on compressed data.

• We illustrate the importance of introducing as much
order as possible into columns and demonstrate the
value of having secondary and tertiary sort orders.

As a caveat, we note that the purpose of this paper is not
to propose fundamental new compression schemes. Many of
the approaches we employ have been investigated in isolation
in the context of row-oriented databases, and all are known
in the data compression literature (we only propose slight
variations to these schemes). Our purpose is to explore the
performance and architectural implications of integrating a
wide range of compression schemes into a column-oriented
database. Our focus in this paper is in using compression to
maximize query performance, not to minimize storage sizes.

2. RELATED WORK
While research in database compression has been around

nearly as long as there has been research in databases [20,
27, 12], compression methods were not commonly used in
DBMSs until the 1990s. This is perhaps because much of the
early work concentrated on reducing the size of the stored
data, and it was not until the 90s when researchers began
to concentrate on how compression affects database perfor-
mance [13, 16, 25, 14, 17]. This research observed that while
compression does reduce I/O, if the CPU cost of compress-
ing/decompressing the data outweighs this savings, then the
overall performance of the database is reduced. As improve-
ments in CPU speed continue to outpace improvements in
memory and disk access [8], this trade-off becomes more fa-
vorable for compression. In order to keep CPU costs down,
most papers focus on light-weight techniques (in the sense
that they are not CPU-intensive) that result in sub-optimal

compression but that have low CPU overhead so that per-
formance is improved when taking into consideration all rel-
evant costs.

One way that the CPU overhead of compression has been
reduced over the years is by integrating knowledge about
compression into the query executor and allowing some amount
of operation directly on compressed data. In early databases,
data would be compressed on disk and then eagerly decom-
pressed upon being read into memory. This had the dis-
advantage that everything read into memory had to be de-
compressed whether or not it was actually used. Graefe and
Shapiro [13] (and later Goldstein et. al. [14], and Westmann
et. al [29], and in the context of column-oriented DBMSs,
MonetDB/X100 [37]) cite the virtues of lazy decompression,
where data is compressed on the attribute level and held
compressed in memory, and data is decompressed only if
needed to be operated on. This has the advantage that some
operations such as a hybrid hash join see improved perfor-
mance by being able to keep a higher percentage of the ta-
ble in memory, reducing the number of spills to disk. Chen
et. al. [11] note that some operators can decompress tran-
siently, decompressing to perform operations such as apply-
ing a predicate, but keeping a copy of the compressed data
and returning the compressed data if the predicate succeeds.

The idea of decreasing CPU costs by operating directly
on compressed data was introduced by Graefe and Shapiro
[13]. They pointed out that exact-match comparisons and
natural joins can be performed directly on compressed data
if the constant portion of the predicate is compressed in the
same way as the data. Also exact-match index lookups are
possible on compressed data if an order-preserving (consis-
tent) compression scheme is used. Further, projection and
duplicate elimination can be performed on compressed data.
However, this is the extent of research on direct operation on
compressed data. In particular, to the best of our knowledge,
there has been no attempt to take advantage of some com-
pression algorithms’ ability to represent multiple values in
a single field to simultaneously apply an operation on these
many values at once. In essence, previous work has viewed
each tuple as compressed or uncompressed, and when oper-
ations cannot simply compare compressed values, they must
be performed on decompressed tuples. Our work shows that
column-oriented compression schemes provide further oppor-
tunity for direct operation on compressed data.

Our work also introduces a novel architecture for passing
compressed data between operators that minimizes operator
code complexity while maximizing opportunities for direct
operation on compressed data. Previous work [14, 29, 11]
also stresses the importance of insulating the higher levels
of the DBMS code from the details of the compression tech-
nique. In general, this is accomplished by decompressing
the data before it reaches the operators (unless dictionary
compression is used and the data can be processed directly).
However, in some cases increased performance can be ob-
tained in query processing if operators can operate directly
on compressed data (beyond simple dictionary schemes) and
our work is the first to propose a solution to profit from these
potential optimizations while keeping the higher levels of the
DBMS as insulated as possible.

In summary, in this paper we revisit much of this re-
lated work on compression in the context of column-oriented
database systems and we differ from other work on com-
pression in column-oriented DBMSs (Zukowski et. al [37] on

MonetDB/X100) in that we focus on column-oriented com-
pression algorithms and direct operation on compressed data
(whereas [37] focuses on improving CPU/cache performance
of standard row-based light-weight techniques).

3. C-STORE ARCHITECTURE
For this study on compression in column-oriented DBMSs,

we chose to extend the C-Store system [28] since the C-Store
architecture is designed to maximize the ability to achieve
good compression ratios. We now present a brief overview
of the salient parts of the C-Store architecture.

C-Store provides a relational interface on top of a column-
store. Logically, users interact with tables in SQL. Each ta-
ble is physically represented as a collection of projections.
Each projection consists of a set of columns, each stored
column-wise, along with a common sort order for those columns.
Every column of each table is represented in at least one pro-
jection, and columns are allowed to be stored in multiple pro-
jections – this allows the query optimizer to choose from one
of several available sort orders for a given column. Columns
within a projection can be secondarily or tertiarily sorted;
e.g. an example C-Store projection with four columns taken
from TPC-H could be:

(shipdate, quantity, retflag, suppkey | shipdate,

quantity, retflag)

indicating that the projection is sorted by shipdate, secon-
darily sorted by quantity, and tertiarily sorted by return flag
in the example above. These secondary levels of sorting in-
crease the locality of the data, improving the performance
of most of the compression algorithms (for example, RLE
compression can now be used on quantity and return flag).
Projections in C-Store typically have few columns and mul-
tiple secondary sort orders, which allows most columns to
compress quite well. Thus, with a given space budget, it is
often possible to store the same column in multiple projec-
tions, each with a different sort order.

Projections in C-Store are related to each other via join
indices [28], which are simply permutations that map tuples
in one projection to the corresponding tuples in another pro-
jection from the same source relation.

We extended C-Store such that each column is compressed
using one of the methods described in Section 4. As the re-
sults in Section 6 show, different types of data are best rep-
resented with different compressions schemes. For example,
a column of sorted numerical data is likely best compressed
with RLE compression, whereas a column of unsorted data
from a smaller domain is likely best compressed using our
dictionary compression method. An interesting direction for
future research could be to use these results to develop a
set of tools that automatically select the best partitions and
compression schemes for a given logical table.

C-Store includes column-oriented versions of most of the
familiar relational operators. The major differences between
C-Store operators and relational operators are:

• Selection operators produce bit-columns that can be
efficiently combined. A special “mask” operator is used
to materialize a subset of values from a column and a
bitmap.

• A special permute operator is used to reorder a column
using a join index.

• Projection is free since it requires no changes to the
data, and two projections in the same order can be
concatenated for free as well.

• Joins produce positions rather than values. A complete
discussion of this distinction is given in Section 5.2

4. COMPRESSION SCHEMES
In this section we briefly describe the compression schemes

that we implemented and experimented with in our column-
oriented DBMS. For each scheme, we first give a brief de-
scription of the traditional version of the scheme as previ-
ously used in row store systems (due to lack of space we do
not give complete descriptions, but cite papers that provide
more detail when possible). We then describe how the algo-
rithm is used in the context of column-oriented databases.

4.1 Null Suppression
There are many variations on the null compression tech-

nique (see [26, 29] for some examples), but the fundamen-
tal idea is that consecutive zeros or blanks in the data are
deleted and replaced with a description of how many there
were and where they existed. Generally, this technique per-
forms well on data sets where zeros or blanks appear fre-
quently. We chose to implement a column-oriented version
of the scheme described in [29]. Specifically, we allow field
sizes to be variable and encode the number of bytes needed
to store each field in a field prefix. This allows us to omit
leading nulls needed to pad the data to a fixed size. For
example, for integer types, rather than using the full 4 bytes
to store the integer, we encoded the exact number of bytes
needed using two bits (1, 2, 3, or 4 bytes) and placed these
two bits before the integer. To stay byte-aligned (see Sec-
tion 4.2 for a discussion on why we do this), we combined
these bits with the bits for three other integers (to make a
full byte’s worth of length information) and used a table to
decode this length quickly as in [29].

4.2 Dictionary Encoding
Dictionary compression schemes are perhaps the most preva-

lent compression schemes found in databases today. These
schemes replace frequent patterns with smaller codes for
them. One example of such a scheme is the color-mapping
given in the introduction. Other examples can be found in
[13, 26, 11, 37].

We implemented a column-optimized version of dictionary
encoding. All of the row-oriented dictionary schemes cited
above have the limitation that they can only map attribute
values from a single tuple to dictionary entries. This is be-
cause row-stores fundamentally are incapable of mixing at-
tributes from more than one tuple in a single entry if other
attributes of the tuples are not also included in the same
entry (by definition of “row-store” – this statement does not
hold for PAX-like [4] techniques that columnize blocks).

Our dictionary encoding algorithm first calculates the num-
ber of bits, X, needed to encode a single attribute of the
column (which can be calculated directly from the number
of unique values of the attribute). It then calculates how
many of these X-bit encoded values can fit in 1, 2, 3, or 4
bytes. For example, if an attribute has 32 values, it can be
encoded in 5 bits, so 1 of these values can fit in 1 byte, 3
in 2 bytes, 4 in 3 bytes, or 6 in 4 bytes. We choose one of
these four options using the algorithm described in Section

4.2.1. Suppose that the 3-value/2-byte option was chosen.
In that case, a mapping is created between every possible
set of 3 5-bit values and the original 3 values. For example,
if the value 1 is encoded by the 5 bits: 00000; the value 25 is
encoded by the 5 bits: 00001; and the value 31 is encoded by
the 5 bits 00010; then the dictionary would have the entry
(read entries right-to-left)

X000000000100010 -> 31 25 1

where the X indicates an unused “wasted” bit. The decoding
algorithm for this example is then straight-forward: read in
2-bytes and lookup entry in dictionary to get 3 values back
at once. Our decision to keep data byte-aligned might be
considered surprising in light of recent work that has shown
that bit-shifting in the processor is relatively cheap. However
our experiments show that column stores are so I/O efficient
that even a small amount of compression is enough to make
queries on that column become CPU-limited (Zukowski et.
al observe a similar result [37]) so the I/O savings one obtains
by not wasting the extra space are not important. Thus, we
have found that it is worth byte-aligning dictionary entries
to obtain even modest CPU savings.

4.2.1 Cache-Conscious Optimization
The decision as to whether values should be packed into

1, 2, 3, or 4 bytes is decided by requiring the dictionary to
fit in the L2 cache. In the above example, we fit each entry
into 2 bytes and the number of dictionary entries is 323 =
32768. Therefore the size of the dictionary is 524288 bytes
which is half of the L2 cache on our machine (1MB). Note
that for cache sizes on current architectures, the 1 or 2 byte
options will be used exclusively.

4.2.2 Parsing Into Single Values
Another convenient feature of this scheme is that it de-

grades gracefully into a single-entry per attribute scheme
which is useful for operating directly on compressed data.
For example, instead of decoding a 16-bit entry in the above
example into the 3 original values, one could instead apply 3
masks (and corresponding bit-shifts) to get the three single
attribute dictionary values. For example:

(X000000000100010 & 0000000000011111) >> 0 = 00010

(X000000000100010 & 0000001111100000) >> 5 = 00001

(X000000000100010 & 0111110000000000) >> 10 = 00000

These dictionary values in many cases can be operated on
directly (as described in Section 5) and lazily decompressed
at the top of the query-plan tree.

We chose not to use an order preserving dictionary encod-
ing scheme such as ALM [7] or ZIL [33] since these schemes
typically have variable-length dictionary entries and we pre-
fer the performance advantages of having fixed length dic-
tionary entries.

4.3 Run-length Encoding
Run-length encoding compresses runs of the same value

in a column to a compact singular representation. Thus,
it is well-suited for columns that are sorted or that have
reasonable-sized runs of the same value. These runs are re-
placed with triples: (value, start position, run length) where
each element of the triple is given a fixed number of bits.

When used in row-oriented systems, RLE is only used for
large string attributes that have many blanks or repeated

characters. But RLE can be much more widely used in
column-oriented systems where attributes are stored consec-
utively and runs of the same value are common (especially
in columns that have few distinct values). As described in
Section 3, the C-Store architecture results in a high percent-
age of columns being sorted (or secondarily sorted) and thus
provides many opportunities for RLE-type encoding.

4.4 Bit-Vector Encoding
Bit-vector encoding is most useful when columns have a

limited number of possible data values (such as states in the
US, or flag columns). In this type of encoding, a bit-string
is associated with each value with a ’1’ in the corresponding
position if that value appeared at that position and a ’0’
otherwise. For example, the following data:

1 1 3 2 2 3 1

would be represented as three bit-strings:

bit-string for value 1: 1100001
bit-string for value 2: 0001100
bit-string for value 3: 0010010

Since an extended version of this scheme can be used to
index row-stores (so-called bit-map indices [23]), there has
been much work on further compressing these bit-maps and
the implications of this further compression on query per-
formance [22, 5, 17, 31, 30, 32, 6]; however, the most recent
work in this area [31, 32] indicates that one needs the bit-
maps to be fairly sparse (on the order of 1 bit in 1000) in
order for query performance to not be hindered by this fur-
ther compression, and since we only use this scheme when
the column cardinality is low, our bit-maps are relatively
dense and we choose not to perform further compression.

4.5 Heavyweight Compression Schemes
Lempel-Ziv Encoding. Lempel-Ziv ([35, 36]) compres-

sion is the most widely used technique for lossless file com-
pression. This is the algorithm upon which the UNIX com-
mand gzip is based. Lempel-Ziv takes variable sized pat-
terns and replaces them with fixed length codes. This is
in contrast to Huffman encoding which produces variable
sized codes. Lempel-Ziv encoding does not require knowl-
edge about pattern frequencies in advance; it builds the pat-
tern table dynamically as it encodes the data. The basic idea
is to parse the input sequence into non-overlapping blocks
of different lengths while constructing a dictionary of blocks
seen thus far. Subsequent appearances of these blocks are
replaced by a pointer to an earlier occurrence of the same
block. We refer the reader to [35, 36] for more details.

For our experiments, we used a freely available version of
the Lempel-Ziv algorithm [2] that is optimized for decom-
pression performance (we found it to be much faster than
UNIX gzip).

We experimented with several other heavyweight compres-
sion schemes, including Huffman and Arithmetic encoding,
but found that their decompression costs were prohibitively
expensive for use inside of a database system.

5. COMPRESSED QUERY EXECUTION
In this section we describe how we integrate the compres-

sion schemes discussed above into the C-Store query execu-

Properties Iterator Access Block Information
isOneValue() getNext() getSize()
isValueSorted() asArray() getStartValue()
isPosContig() getEndPosition()

Table 1: Compressed Block API

tor in a way that allows for direct operation on compressed
data while minimizing the complexity of adding new com-
pression algorithms to the system.

5.1 Query Executor Architecture
We extended C-Store to handle a variety of column com-

pression techniques by adding two classes to the source code
for each new compression technique. The first class encap-
sulates an intermediate representation for compressed data
called a compression block. A compression block contains a
buffer of the column data in compressed format and provides
an API that allows the buffer to be accessed in several ways.
Table 1 lists the salient methods of the compression block
API.

The methods listed in the properties column of Table 1
will be discussed in Section 5.2 and are a way for operators
to facilitate operating directly on compressed data instead of
having to decompress and iterate through it. For the cases
where decompression cannot be avoided, there are two ways
to iterate through block data. First is through repeated use
of the getNext() method which will progress through the
compressed buffer, transiently decompressing the next value
and returning that value along with the position (a position
is the ordinal offset of a value in a column) that the value
was located at in the original column. Second is through the
asArray() method which decompresses the entire buffer and
returns a pointer to an array of data in the uncompressed
column type.

The block information methods (see Table 1) return data
that can be extracted from the compressed block without de-
compressing it. For example, for RLE, a block consists of a
single RLE triple of the form (value, start pos, run length).
getSize() returns run length, getStartValue() returns value,
and getEndPosition() returns (start pos + run length − 1).
A more complex example is for bit-vector encoding: a block
is a subset of the bit-vector associated with a single value.
Thus, we call a bit-vector block a non position-contiguous
block, since it contains a compressed representation of a
set of (usually non-consecutive) positions for a single value.
Here, getSize() returns the number of on bits in the bitstring,
getStartValue() returns the value with which the bit-string
is associated, and getEndPosition() returns the position of
the last on bit in the bitstring.

The other class that we added to the source code for
each new compression technique is a DataSource operator.
A DataSource operator serves as the interface between the
query plan and the storage manager and has compression
specific knowledge about how pages for that compression
technique are stored on disk and what indexes are available
on that column. It thus is able to serve as a scan oper-
ator, reading in compressed pages from disk and convert-
ing them into the compressed blocks described above. For
some heavy-weight compression schemes (e.g., LZ), the cor-
responding DataSource operator may simply decompress the
data as it is read from disk, presenting uncompressed blocks
to parent operators.

Selection predicates from the query can be pushed down
into DataSources. For example, if an equality predicate is
pushed down into a DataSource operator sitting on top of
bit-vector encoded data, the operator performs a projection,
returning only the bit-vector for the requested value. The
selection thus becomes trivial. For an equality predicate on
a dictionary encoded column, the DataSource converts the
predicate value to its dictionary entry and does a direct com-
parison on dictionary data (without having to perform de-
compression). In other cases, selection simply evaluates the
predicate as data is read from disk (avoiding decompression
whenever possible).

5.2 Compression-Aware Optimizations
We will show in Section 6 that there are clear performance

advantages to operating directly on compressed data, but
these advantages come at a cost: query executor complex-
ity. Every time a new compression scheme is added to the
system, all operators that operate directly on this type of
data have to be supplemented to handle the new scheme.
Without careful engineering, there would end up being n

versions of each operator – one for each type of compression
scheme that can be input to the operator. Operators that
take two inputs (like joins) would need n2 versions. This
clearly causes the code to become very complex very quickly.

To illustrate this, we study a nested loops join opera-
tor. We note that joins in column-oriented DBMSs can
look different from joins in row-oriented DBMSs. In C-
Store, if columns have already been stitched together into
row-store tuples, joins work identically as in row-store sys-
tems. However, joins can alternatively receive as input only
the columns needed to evaluate the join predicate. The out-
put of the join is then set of pairs of positions in the input
columns for which the predicate succeeded. For example,
the figure below shows the results of a join of a column of
size 5 with a column of size 3. The positions that are output
can then be sent to other columns from the input relations
(since only the columns in the join predicate were sent to
the join) to extract the values at these positions.

42
36
42
44
38

1

38
42
46

=
1 2
3 2
5 1

An outline for the code for this operator is shown Figure
1 (assume that the join predicate is an equality predicate on
one attribute from each relation).

The pseudocode shows the join operator making some op-
timizations if the input columns are compressed. If one of
the input columns is RLE and the other is uncompressed,
the resulting position columns of the join can be expressed
directly in RLE. This reduces the number of necessary op-
erations by a factor of k, where k is the run-length of the
RLE triple whose value matches a value from the uncom-
pressed column. If one of the input columns is bit-vector
encoded, then the resulting column of positions for the un-
encoded column can be represented using RLE encoding and
the resulting column of positions for the bit-vector column
can be copied from the appropriate bit-vector for the value
that matched the predicate. Again, this reduces the number
of necessary operations by a large factor.

So while many optimizations are possible if operators are
allowed to work directly on compressed data, the example

NLJoin(Predicate q, Column c1, Column c2)

if c1 is not compressed and c2 is not compressed

for each value valc1 with position i in c1 do

for each value valc2 with position j in c2 do
if q(valc1,valc2) then output-left: (i), output-right: (j)

end
end

if c1 is not compressed and c2 is RLE compressed

for each value valc1 with position i in c1 do

for each triple t with val v,startpos j and runlen k in c2

if q(valc1,v) then:
output-left: t,
output-right: (j ... j+k-1)

end
end

if c1 is not compressed and c2 is bit-vector compressed

for each value valc1 with position i in c1 do

for each value valc2 with bitstring b in c2 do
//assume that there are num ’1’s in b

if q(valc1,valc2) then output
output-left: new RLE triple (NULL,i,num),
output-right: b

end
end

etc. etc. for every possible combination of encoding types

Figure 1: Pseudocode for NLJoin

shows that the code becomes complex fairly quickly, since
an if statement and an appropriate block of code is needed
for each possible combination of compression types.

We alleviate this complexity by abstracting away the prop-
erties of compressed data that allow the operators to perform
optimizations when processing. In the example above, the
operator was able to optimize processing because the com-
pression schemes encoded multiple positions for the same
value (e.g., RLE indicated multiple consecutive positions for
the same value and bit-vector encoding indicated multiple
non-consecutive positions for the same value). This knowl-
edge allowed the operator to directly output the join result
for multiple tuples without having to actually perform the
execution more than once. The operator simply forwarded
on the positions for each copy of the joining values rather
than dealing with each record independently.

Hence, we enhanced each compression block with meth-
ods that make it possible for operators to determine the
properties of each block of data. The properties we have
added thus far are shown in the Properties column of Table
1. isOneValue() returns whether or not the block contains
just one value (and many positions for that value). isValue-
Sorted() returns whether or not the block’s values are sorted
(blocks with one value are trivially sorted). isPosContig()
returns whether the block contains a consecutive subset of
a column (i.e. for a given position range within a column,
the block contains all values located in that range). Proper-
ties are usually fixed for each compression scheme but could
in principle be set on a per-block basis by the DataSource
operator.

The table below gives the value of these properties for var-
ious encoding schemes. Note that there are many variations
of each scheme. For example, we experimented with three
versions of dictionary encoding before settling on the one
described in this paper; in one version there was a single
dictionary entry per row value – i.e., a standard row-based
dictionary scheme; another version was a pure column-based
scheme that did not gracefully degenerate into single values
as in the current scheme. In most cases, each variation of
the same scheme will have the same block properties in the
table below. A no/yes entry in the table indicates that the

compression scheme is agnostic to the property and the value
is determined by the data.

Encoding Type Sorted? 1 value? Pos. contig.?
RLE yes yes yes
Bit-string yes yes no
Null Supp. no/yes no yes
Lempel-Ziv no/yes no yes
Dictionary no/yes no yes
Uncompressed no/yes no no/yes

When an operator cannot operate on compressed data (if,
for example, it cannot make any optimizations based on the
block properties), it repeatedly accesses the block through
an iterator, as described in Section 5.1. If, however, the
operator can operate on compressed data, it can use the
block information methods described in Section 5.1 to take
shortcuts in operation. For example, the pseudocode for a
Count aggregator is shown in Figure 2. Here, the passed
in column is used for grouping (e.g., in a query of the form
SELECT c1, COUNT(*) FROM t GROUP BY c1). (Note: this
code is simplified from the actual aggregation code for ease
of exposition).

Count(Column c1)
b = get next compressed block from c1

while b is not null

if b.isOneValue()
x = fetch current count for b.getStartVal()
x = x + b.getSize()

else
a = b.asArray()

for each element i in a

x = fetch current count for i

x = x + 1
b = get next compressed block from c1

Figure 2: Pseudocode for Simple Count Aggregation

Note that despite RLE and bit-vector encoding being very
different compression techniques, the pseudocode in Figure 2
need not distinguish between them, pushing the complexity
of calculating the block size into the compressed block code.
In both cases, the size of the block can be calculated without
block decompression.

Figure 3 gives some more examples of how join and gener-
alized aggregation operators can take advantage of operating
on compressed data given block properties.

In summary, by using compressed blocks as an intermedi-
ate representation of data, operators can operate directly
on compressed data whenever possible, and can degener-
ate to a lazy decompression scheme when this is impossible
(by iterating through block values). Further, by abstracting
general properties about compression techniques and hav-
ing operators check these properties rather than hardcoding
knowledge of a specific compression algorithm, operators are
shielded from needing knowledge about the way data is en-
coded. They simply have to condition for these basic prop-
erties of the blocks of data they receive as input. We have
found that this architecture significantly reduces the query
executor complexity while still allowing direct operation on
compressed data whenever possible.

6. EXPERIMENTAL RESULTS
We ran experiments on our extended version of the C-

Store system with two primary goals. First, we wanted to

Property Optimization
One value,
Contiguous
Positions

Aggregation: If both the group-by and aggre-
gate input blocks are of this type, then the ag-
gregate input block can be aggregated with one
operation (e.g. if size was 8 and aggregation was
sum, result is 8*value)
Join: Perform optimization shown in the second
if statement in Figure 1 (works in general, not
just for RLE).

One value,
Pos. Non-
contiguous

Join: Perform optimization shown in the third if
statement in Figure 1 (works in general, not just
for bit-vector compression).

One value Aggregation Group-By clause: The position
list of the value can be used to probe the data
source for the aggregate column so that only val-
ues relevant to the group by clause are read in

Sorted Max or Min Aggregation: Finding the max-
imum or minimum value in a sorted block is a
single operation
Join Finding a value within a block can be done
via binary search.

Figure 3: Optimizations on Compressed Data

identify situations in which the encoding types described in
Section 4 perform well. Second we wanted to demonstrate
the benefits of operating directly on compressed data.

Our benchmarking system is a 3.0 GHz Pentium IV, run-
ning RedHat Linux, with 2 Gbytes of memory, 1MB L2
cache, and 750 Gbytes of disk. The disk can read cold data at
50-60MB/sec. We used a combination of synthetically gen-
erated and TPC-H data. For the experiments where we used
TPC-H data, we used columns from the lineitem fact table
at scale 10 which consists of just under 60,000,000 lineitems.

We begin by presenting results from a simple aggregation
query on a single column of data encoded with each of the
six encoding schemes described in Section 4. We used gen-
erated data so that we could carefully vary the data charac-
teristics. We ran three variations of this experiment. In the
first variation, we required the column to be decompressed
as it was brought off disk. In the second variation, we lazily
decompressed the data and allowed operators to apply opti-
mizations to compressed data. In the third variation, queries
ran with competition for CPU cycles. In these experiments,
we observe that the number of distinct values and sorted run
lengths are the primary determinant of query performance;
we use these metrics to predict performance on TPC-H data.

We also present results from more complicated queries
to further illustrate the benefits of different compression
schemes and the interaction of these schemes with each other
in multi-column queries. Section 7 summarizes our results.

6.1 Eager Decompression
In this experiment, we ran a simple aggregation on a sin-

gle column of data encoded with each of the six encoding
schemes described in Section 4. We ran on generated data
and required that the column be decompressed as it was
brought off disk. The query that we ran was simply:

SELECT SUM(C)

FROM TABLE

GROUP BY C

The column that we are aggregating has 100 million 32-bit
integer values. Since most columns in C-Store projections
have some kind of order (see section 3), we assume sorted
runs of size X (we vary X). For example, if column C is

tertiarily sorted and the first column in the projection has
500 unique values and the second column in the projection
has 1000 unique values then C will have average sorted runs
of size 100000000/(500*1000)=200. If C itself has 10 unique
values, then within each of these sorted runs, each value
would appear 20 times. Since bit-vector compression is only
designed to be able to run on columns with few distinct
values, in our first set of experiments, we allowed the number
of distinct values in C to vary between 2 and 40 (so that
we could directly compare all the introduced compression
techniques). Also, in most data-warehousing environments,
there are a large number of columns with few distinct values;
for example, in the TPC-H lineitem fact table, 25% of the
columns have fewer than 50 distinct values. We experiment
with columns with a higher number of distinct values in
Section 6.3.

We experimented with 4 sorted run lengths in C: 50, 100,
500, and 1000. We compressed the data in each of the fol-
lowing six ways: Null suppression, Lempel-Ziv, RLE, bit-
vector, dictionary, and no compression. The sizes of the
compressed columns are shown in Figures 4(a) and 4(b) for
different cardinalities of C (here, we use cardinality to mean
the number of distinct values). We omit the plots for the
100 and 500 sorted runs cases as they follow the trends ob-
served in Figure 4. In these experiments, dictionary and LZ
compression consistently get the highest compression ratios,
with RLE also performing well for low-cardinalities (this is
because RLE performs better with large runs of repeated
values and the average run-length of a point on these graphs
can be calculated directly by dividing the sorted run-length
by the number of unique values). Interestingly, dictionary
does a slightly better job compressing the data than the
heavy-weight LZ scheme at low column cardinalities. The
compression ratio for bit-vector is linear in the number of
unique values in the column. Since we do not further com-
press the bit-vectors, as soon as the column cardinality is
more than 32, type-2 compression is no longer more com-
pressed than the original 32-bit data.

The performance of the aggregation query on these same
compressed columns is shown in Figures 5(a) and 5(b) (again
we do not show the plots for sorted runs of 100 and 500 since
we have limited space and they follow the trends between
these two graphs).

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20 25 30 35 40

C
ol

um
n

si
ze

 in
 M

B

No. of Distinct Values

No Compression
LZ Compression
Null-suppression
RLE Compression
Dictionary compression
Bit-vector compression

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 5 10 15 20 25 30 35 40

No. of Distinct Values

(a) (b)

Figure 4: Compressed column sizes for varied com-
pression schemes on column with sorted runs of size
50 (a) and 1000 (b)

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 5 10 15 20 25 30 35 40

T
im

e
(in

 s
ec

on
ds

)

No. of Distinct Values

No Compression
LZ Compression
Null-suppression
RLE Compression
Dictionary compression

 1

 2

 3

 4

 5

 6

 7

 8

 0 5 10 15 20 25 30 35 40

No. of Distinct Values

(a) (b)

Figure 5: Query Performance With Eager Decom-
pression on column with sorted runs of size 50 (a)
and 1000 (b)

Not surprisingly, these results show that the size of the
compressed column on disk is not a good indicator of query
performance. This is most apparent for bit-vector compres-
sion which took from 35 to 120 seconds – an order of magni-
tude slower than the uncompressed line despite taking half
the space on average – that we could not show it on the
same graph as the other schemes. Decompression costs are
so significant because C-Store is not I/O bound on this query
(since it does completely sequential I/O) so decompression
costs dominate performance rather than (relatively) small
differences in the compression ratio.

Bit-vector encoding was by far the slowest decompression
scheme. To completely decompress a bit-vector encoded col-
umn, one must read in parallel and merge each bit-vector
(one for each distinct value in the column). RLE and NS
performed worse than dictionary and LZ (though RLE per-
formed better as the average run-length of the column im-
proved). This can be attributed to the fact that RLE and
NS require if-then-else statements in the decompression code
which makes loop pipelining difficult and results in code that
does not take advantage of the super-scalar properties of
modern CPUs (this was also observed in Monet DB/X100
[37]).

The uncompressed line in Figure 5(a) does not remain
constant since an increased number of distinct values re-
sults in smaller runs of repeats of the same value, and since
the aggregation code only has to do a hash look-up on the
current value if the current value is different from the previ-
ous value, all compression schemes benefit from longer runs.
Since CPU is not completely overlapped with I/O, this in-
creased CPU cost is reflected in increased query time. How-
ever, the runs are sufficiently long in Figure 5(b) that this
CPU effect is not observed as the query becomes I/O limited
for the uncompressed data.

6.2 Operating Directly on Compressed Data
We ran the same experiments as in the previous section,

without eager decompression. Operators were allowed to
operate directly on compressed data. Since LZ and NS can-
not operate on encoded data, their performance for these
experiments was identical (and we omit them from some
of our graphs). However, since there are two alternative
ways for operating directly on our dictionary compression
scheme for this aggregation query, there are two lines on

each graph corresponding to dictionary compression. The
first approach, called dictionary single-value, simply extracts
each individual dictionary symbol from a 32-bit dictionary-
compressed record (as described in section 4.2.2), performs
a count group-by aggregation on these symbols, then decom-
presses each symbol to its original value and multiplies this
original value by the counts to get a sum. For example, if
value 2 maps to symbol 000, value 4 maps to 001, and value 8
maps to 002 and the aggregator receives the following input:

001, 001, 000, 001, 002, 002

Then the aggregator would count the number of instances
of each dictionary entry:

001: 3; 000: 1; 002: 2

and would then decode the symbols their original values and
compute the sum to produce the output 12, 2, 16.

The second approach, called dictionary multi-value, does
the same thing except that it groups entire multi-value dic-
tionary entries before decompressing them, combining counts
for all entries containing a particular value, and multiplying
these counts with each decompressed value in the dictio-
nary entry. We separate these two schemes since dictio-
nary single-value can be easily used for all aggregations but
the dictionary multi-value shortcut can only be used well in
group-by-self queries (where the group-by and aggregation
clauses are on the same column, e.g. count(*)).

In addition to the dictionary optimizations, the aggrega-
tor also operates directly on RLE and bit-vector data as
described in Section 5.2. The results are shown in Figures
6(a) and 6(b). We see that substantial performance gains
are possible when data is not eagerly decompressed. On
the data with 1000-record sorted runs, the performance im-
provement for RLE was 3.3X on average, for bit-vector it
was 10.3X, and for dictionary it was 3.94X and 1.1X with
and without the group-by-self optimization respectively.

To show the importance of operating directly on com-
pressed data, we reran the same experiments with contention
for CPU cycles (this was done by running C-Store at the
same time as another process that infinitely accessed, pro-
cessed, and wrote data to a large array). The bar graph in
Figure 6(c) shows the average increase in query time caused
by CPU contention compared with the results in Figures
6(a) and (b) for each compression technique.

We reran the experiment with performance counters to
find out whether the contention was for CPU cycles or for
cache lines and found that the competition for cache lines ac-
counted for less than 2% of the increase in query time. Thus
contention for CPU cycles is the dominant reason for the
increase in query time, and queries that were CPU limited
take longer.

NS and LZ perform the worst (relative to their previous
values) since the aggregator does not operate directly on this
data. Similarly for RLE (for small average run lengths) and
the value-at-a-time dictionary scheme (although the dictio-
nary data does not need to be completely decompressed,
the aggregator must still iterate through all values and dic-
tionary entries must be bit-shifted into integers). However,
for the schemes on which the aggregator can take short-
cuts, the performance hit of CPU contention is significantly
smaller. This is because the column-oriented nature of these
schemes allow the aggregator to aggregate multiple values at
once; the CPU cost of the aggregation is proportional to n,

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 5 10 15 20 25 30 35 40

T
im

e
(in

 s
ec

on
ds

)

No. of Distinct Values

No Compression
RLE Compression
Bit-vector compression
Dictionary single-value
Dictionary multi-value

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20 25 30 35 40

T
im

e
(in

 s
ec

on
ds

)

No. of Distinct Values

No Compression
RLE Compression
Bit-vector compression
Dictionary single-value
Dictionary multi-value

 0

 2

 4

 6

 8

 10

 12

 14

Dict-Dict-Bit-RLELZNullNo

A
ve

ra
ge

 S
lo

w
do

w
n

(in
 s

ec
on

ds
)

Comp. Supp. Vector Single Multi

Sorted Runs of Size 50
Sorted Runs of Size 1000

(a) (b) (c)

Figure 6: Query performance with direct operation on compressed data on column with sorted runs of size
50 (a) and 1000 (b). Figure (c) shows the average increase in query time relative to the query times in (a)
and (b) when contention for CPU cycles is introduced.

where n is num tuples for the row-oriented schemes, but only
num tuples/avg run len for RLE, num tuples/dict entry size
for dictionary multi-value, and num distinct values for bit-
vector encoding. Thus while normal compression simply
trades “expensive” I/O time for “cheap” CPU, operating
directly on compressed data reduces both I/O and CPU cy-
cles. This suggests that even on a machine with a much
faster I/O or a much slower CPU, compressing data and
operating directly on it will be beneficial.

6.3 Higher column cardinalities
We now present some results for experiments with higher

cardinality data. For these experiments we generated data
from a uniform distribution (such that a value is equally
likely to appear at any location independently of what val-
ues surround that tuple). We only experimented with RLE,
LZ, dictionary, and no compression for these experiments
since NS and bit-vector encoding perform poorly at higher
cardinalities. Figure 7(a) shows the results of running the
same aggregation query on this higher cardinality data, and
Figure 7(b) shows the same experiment on the same distri-
bution of data; however each tuple appears 14 times in a row
(to increase the average run-length). Operators are allowed
to operate directly on compressed data. Note that at high
cardinalities (> 10000 values) the aggregation hash table no
longer fits in cache, causing a discontinuous increase in query
time.

These graphs show that schemes which take advantage of
data locality (like RLE and LZ) perform poorly on random
data but do well as soon as run-lengths are introduced, even
with high data cardinalities. Dictionary encoding performs
comparatively well on data with less locality.

The following table compares results from the previous
experiments to summarize how data characteristics affect
aggregate query performance on various compression types
(times are in seconds). The best performing schemes are
shown in bold. We show data with and without runs and
with high and low cardinalities, since these properties appear
to have the biggest effect on the performance of our compres-
sion schemes. For high and low cardinality rows, the number
of distinct values was 10,000 and 37 respectively. For data
with “Runs” we chose an average run-length of 14.

 5

 10

 15

 20

 25

 30

 35

 40

 45

 10 100 1000 10000 100000

T
im

e
(in

 s
ec

on
ds

)

No. of Distinct Values

No Compression
LZ Compression

RLE Compression
Dictionary compression

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 10 100 1000 10000 100000

No. of Distinct Values

(a) (b)

Figure 7: Aggregation Query on High Cardinality
Data with Avg. Run Lengths of 1 (a) and 14 (b)

Data RLE LZ Dictionary Bit-Vector No Comp.
No runs, low
card.

17.67 9.30 7.49 12.02 10.86

Runs, low
card.

2.43 3.93 3.29 9.83 7.59

No runs,
high card.

32.48 15.05 11.25 N/A 13.31

Runs, high
card.

2.56 4.48 4.56 N/A 9.52

This table shows that for RLE and LZ, run-length is a
better indicator of performance than cardinality. As soon
as the data has moderate sized runs, performance improves
dramatically. This correlation between run-length and per-
formance is less significant for the latter three techniques.
As explained in Section 6.1, all techniques see some improve-
ment with longer run-lengths.

6.4 Generated vs. TPC-H Data
To verify that our results on our generated data set match

the results on more general data sets, we compared our query
performance on our generated data to query performance
on TPC-H data. For this set of experiments, we used the
shipdate, supplier key, extended price, linenumber, quantity,

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 50 100 150 200 250 300 350 400 450 500

T
im

e
(in

 s
ec

on
ds

)

Avg. Sorted Run Length

NS

LZ

RLE

LZ Compression Gen. Data
LZ Compression TPC-H Data
Null-suppression Gen. Data
Null-suppression TPC-H Data
RLE Compression Gen. Data
RLE Compression TPC-H Data

Figure 8: Comparison of query performance on
TPC-H and generated data

extended price, and return flag columns from the TPC-H
lineitem fact table and created the following projections:

(shipdate, retflag, quantity) [314]

(price, retflag) [15]

(suppkey, linenumber) [86]

(suppkey, retflag) [200]

(shipdate, quantity) [475]

Each projection was sorted from left to right (e.g., the
first projection was primarily sorted on shipdate, secondar-
ily sorted on retflag, and tertiarily sorted on quantity). This
sorting resulted in varying average run-lengths of the right-
most column (in brackets above). We then performed the
same aggregation query as in the previous experiments on
the final column of each of these six projections. Since the
previous experiments showed that average run-length is a
reasonable predictor of query performance for each compres-
sion scheme except bit-vector and dictionary, we took 10
columns from the previous set of experiments with similar
run-lengths and compared query performance with the TPC-
H columns (where average run-length is shown on the X
axis). Since the scale 10 TPC-H data was 40% smaller than
our generated data, we ran the query on the first 60% of the
data in the generated data columns. The results are shown
in Figure 8. As expected, run-length is a good predictor of
query performance for the RLE, LZ, and null-suppression
compression schemes.

6.5 Other Query Types
In this section we experiment with different types of queries

to observe how compressing one column affects access to
other columns in a query and also to observe further advan-
tages of operating directly on compressed data.

The first query we experimented with was a simple selec-
tion query (with an aggregation on top so that outputting
query results wouldn’t play a significant part in query time):

SELECT COL1, COUNT(*)

FROM CSTORE_PROJ1

WHERE PREDICATE(COL2)

GROUP BY COL1

Queries of this type are done in C-Store using position filters
that work as follows. First, a predicate is applied to a col-
umn by sending it to the DataSource for that column. The
DataSource produces a list of positions in that column for

 0.01

 0.1

 1

 10

 100

 10 100 1000 10000 100000 1e+06

T
im

e
(in

 s
ec

on
ds

)

Avg. Run length of COL2

 0.01

 0.1

 1

 10

 100

 10 100 1000 10000 100000 1e+06

Avg. Run length of COL2

No Compression
RLE Compression

Bit-vector compression
Dictionary compression

(a) (b)

Figure 9: (a) Predicate on the variably compressed
column, position filter on the RLE column and (b)
Predicate on the RLE column, position filter on the
variably compressed column. Note log-log scale.

which that predicate succeeded. This list of positions can be
represented as a compressed list or bit-string. This position
list is then ANDed (or ORed) together with position lists
from other applied predicates and the results are sent to the
DataSources for all columns that are used by parent oper-
ators (e.g., all columns in the select clause of the query) to
extract values. We refer to this action as position filtering.
In the query above, the Count Aggregator consumes values
from COL1 which are produced according to a position filter
sent from COL2.

For this experiment, we used TPC-H data (scale 10 lineitem
table). COL2 was the quantity column (the predicate was
quantity == 1) and was compressed using RLE, bit-vector,
dictionary compression, or with no compression. We exper-
imented with COL1 being the suppkey, shipdate, linenum-
ber, and returnflag columns from the same lineitem table.
We use a projection that is sorted by COL1 and secondarily
sorted by COL2. COL1 is therefore RLE compressed (this is
usually the best option for sorted data). Figure 9(a) shows
the results of running this query. The X axis represents the
average run-length of the COL2 (l quantity) column which
varies according to the column we used for COL1.

Once again, operating directly on compressed data pro-
vides a substantial performance gain. Bit-vector encoding is
very fast because it is already storing the result of the pred-
icate as it already contains a position list for each unique
value in the column. So applying the predicate amounts to
simply producing the position list for the appropriate value.
Additionally, the COL1 (RLE in this case) DataSource can
take shortcuts based on the format of the position list that
it receives. In this example, it is receiving a bit-vector (a
non-position-contiguous list). Since COL1 contains a list of
single-value, position contiguous triples, it is straightforward
to take the intersection of these position contiguous triples
with the non-position contiguous position blocks (by only
looking at the start and end position of each triple and posi-
tion block) and converting RLE blocks into bit-vector blocks.
Most of the code for doing this is inside the bit-vector posi-
tion block.

In the next experiment we ran the same query; however,
we switched the role of the two columns in the query. So

now the predicate is on COL1 and we position filter COL2
(which is again encoded using the same four compression
techniques as in the previous query). The results of this
experiment are shown in Figure 9(b). Bit-vector performs
much more poorly (note the log scale). This is because the
query requires the values of the bit-vector column in position
order which forces decompression which has already been
shown to be slow (at very high run-lengths bit-vector en-
coding starts to see entire pages of ’1’s and ’0’s which causes
it to optimize its operation, which is why it starts to perform
well in the final two points in the graph). This difference in
performance between Figures 9(a) and 9(b) illustrates that
the proper choice of encoding type for a column depends not
just on data characteristics, but also on the expected query
workload. This observation supports a major future research
goal of exploring the interaction between physical database
design, optimization, and compression. It also indicates that
redundantly storing the same column in the same sort order
using different compression schemes might be a good idea.

The next query that we experimented with was a join
query (again with an aggregation):

SELECT S.COL3, COUNT(*)

FROM CSTORE_P1 AS L, CSTORE_P2 AS S

WHERE PREDICATE(S.COL2) AND PREDICATE(L.COL1)

AND L.COL2=S.COL1

GROUP BY S.COL3

The algorithm for performing joins in C-Store was described
in Section 5.1. Assume for this query that
CSTORE P1 is a projection from the fact table and that
CSTORE P2 is a projection from a dimension table that
contains its primary key (which is the common join case
in star schema queries). Hence, L.COL2 is a foreign key
into CSTORE P2 (S.COL1 is the key). This query applies
a predicate to each table before the join, does a foreign-
primary key join, and then uses the position list result from
the join to filter and aggregate a column from CSTORE P2.

Again, we started with CSTORE P1 being the lineitem
fact table from TPC-H. The join attribute is the supplier for-
eign key. We assume the projections are sorted on S.COL2
and L.COL1 (this is the common case since the C-Store op-
timizer will have a choice as to what projections to use for a
query and will choose projections that are sorted by predi-
cated columns) and are therefore RLE encoded. We allowed
L.COL2 (suppkey) to be secondarily sorted and encoded it
with the same four coding algorithms as the previous (select)
queries. In order to show results for the bit-vector case, we
reduced the number of unique supplier keys in the fact table
to just 50 values in one of our experiments (we allowed 50000
values in the other experiment). The results of performing
this join are shown in the table below (times are in seconds).

Encoding Type 50 keys 50000 keys
RLE 0.06 0.07
Bit-vector 0.97 N/A
Dictionary 3.15 3.86
No Compression 4.08 4.3

The techniques for operating directly on RLE and bit-
vector data have been discussed previously, for the join part
of this query in Section 5.1 and for the resulting position
filtering in the previous query in this section. To operate
directly on dictionary data, the dimension table join column
had to be recoded using the fact table’s dictionary at the
beginning of the query (this is included in the query time.)

Figure 10: Decision tree summarizing our results re-
garding the proper selection of compression scheme.

7. CONCLUSION
The decision tree in Figure 10 summarizes our results and

provides a heuristic for deciding which encoding scheme to
use for a column.

In this tree, “exhibits good locality” means that the col-
umn is either one of the sort columns in the projection, is
correlated with one of the sort columns in the projection, or
otherwise contains repeated patterns of data. “Likely to be
used in a position contiguous manner” means that that the
column needs to be read in parallel with another column,
so the column is not accessed out of order. For example, if
the column is in the WHERE clause, accessing it in position
contiguous fashion is not required, but if it is in the SELECT
clause it is likely to be accessed via a sorted position list in
a position contiguous manner.

In addition to the observations regarding when to use each
of the various compression schemes, our results also illustrate
the following important points:

• Physical database design should be aware of the com-
pression subsystem. Performance is improved by com-
pression schemes that take advantage of data locality.
Queries on columns in projections with secondary and
tertiary sort orders perform well, and it is generally
beneficial to have low cardinality columns serve as the
leftmost sort orders in the projection (to increase the
average run-lengths of columns to the right). The more
order and locality in a column, the better.

• It is a good idea to operate directly on compressed
data. Sacrificing the compression ratio of heavy-weight
schemes for the efficiency light-weight schemes in oper-
ating on compressed data is a good trade-off to make.

• The optimizer needs to be aware of the performance
implications of operating directly on compressed data
in its cost models. Further, cost models that only take
into account I/O costs will likely perform poorly in the
context of column-oriented systems since CPU cost is
often the dominant factor.

In summary, this paper shows that significant database
performance gains can be had by implementing light-weight
compression schemes and operators that work directly on
compressed data. By classifying compression schemes ac-
cording to a set of basic properties, we were able to extend
C-Store to perform this direct operation without requiring

new operator code for each compression scheme. Further-
more, our focus on column-oriented compression allowed us
to demonstrate that the performance benefits of operating
directly on compressed data in column-oriented schemes is
much greater than the benefit in operating directly on row-
oriented schemes. Hence, we see this work as an important
step in understanding the substantial performance benefits
of column-oriented database designs.

8. ACKNOWLEDEMENTS & REFERENCES
We would like to thank Michael Stonebraker, David De-

Witt, Pat O’Neil, Stavros Harizopoulos, and Alex Rasin for
their helpful feedback and ideas.

This work was supported by the National Science Founda-
tion under NSF Grant number IIS-0325525 and by an NSF
Graduate Research Fellowship.

[1] http://www.addamark.com/products/sls.htm.

[2] http://www.lzop.org.

[3] C-Store code release under bsd license.
http://db.csail.mit.edu/projects/cstore/, 2005.

[4] A. Ailamaki, D. J. DeWitt, M. D. Hill, and
M. Skounakis. Weaving relations for cache
performance. In VLDB, pages 169–180, 2001.

[5] S. Amer-Yahia and T. Johnson. Optimizing queries on
compressed bitmaps. In VLDB, pages 329–338, 2000.

[6] G. Antoshenkov. Byte-aligned data compression. U.S.
Patent Number 5,363,098.

[7] G. Antoshenkov, D. B. Lomet, and J. Murray. Order
preserving compression. In ICDE ’96, pages 655–663.
IEEE Computer Society, 1996.

[8] P. Boncz, S. Manegold, and M. Kersten. Database
architecture optimized for the new bottleneck:
Memory access. In VLDB, pages 54–65, 1999.

[9] P. A. Boncz and M. L. Kersten. MIL primitives for
querying a fragmented world. VLDB Journal: Very
Large Data Bases, 8(2):101–119, 1999.

[10] P. A. Boncz, M. Zukowski, and N. Nes.
Monetdb/x100: Hyper-pipelining query execution. In
CIDR, pages 225–237, 2005.

[11] Z. Chen, J. Gehrke, and F. Korn. Query optimization
in compressed database systems. In SIGMOD ’01,
pages 271–282, 2001.

[12] G. V. Cormack. Data compression on a database
system. Commun. ACM, 28(12):1336–1342, 1985.

[13] G.Graefe and L.Shapiro. Data compression and
database performance. In ACM/IEEE-CS Symp. On
Applied Computing pages 22 -27, April 1991.

[14] J. Goldstein, R. Ramakrishnan, and U. Shaft.
Compressing relations and indexes. In ICDE ’98,
pages 370–379, 1998.

[15] D. Huffman. A method for the construction of
minimum-redundancy codes. Proc. IRE,
40(9):1098-1101, September 1952.

[16] B. R. Iyer and D. Wilhite. Data compression support
in databases. In VLDB ’94, pages 695–704, 1994.

[17] T. Johnson. Performance measurements of compressed
bitmap indices. In VLDB, pages 278–289, 1999.

[18] S. Khoshafian, G. P. Copeland, T. Jagodis, H. Boral,
and P. Valduriez. A query processing strategy for the
decomposed storage model. In ICDE, pages 636–643.
IEEE Computer Society, 1987.

[19] Kx Sytems, Inc. Faster database platforms for the
real-time enterprise: How to get the speed you need to
break through business intelligence bottlenecks in
financial institutions.
http://library.theserverside.com/

data/document.do?res id=1072792428 967, 2003.

[20] C. A. Lynch and E. B. Brownrigg. Application of data
compression to a large bibliographic data base. In
VLDB ’81, Cannes, France, pages 435–447, 1981.

[21] R. MacNicol and B. French. Sybase IQ multiplex -
designed for analytics. In VLDB, pages 1227–1230,
2004.

[22] A. Moffat and J. Zobel. Compression and fast indexing
for multi-gigabyte text databases. Australian
Computer Journal, 26(1):1–9, 1994.

[23] P. O’Neil and D. Quass. Improved query performance
with variant indexes. In SIGMOD, pages 38–49, 1997.

[24] R. Ramamurthy, D. Dewitt, and Q. Su. A case for
fractured mirrors. In VLDB, pages 89 – 101, 2002.

[25] G. Ray, J. R. Haritsa, and S. Seshadri. Database
compression: A performance enhancement tool. In
COMAD, 1995.

[26] M. A. Roth and S. J. V. Horn. Database compression.
SIGMOD Rec., 22(3):31–39, 1993.

[27] D. G. Severance. A practitioner’s guide to data base
compression - tutorial. Inf. Syst., 8(1):51–62, 1983.

[28] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen,
M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. Madden,
E. J. O’Neil, P. E. O’Neil, A. Rasin, N. Tran, and
S. B. Zdonik. C-Store: A column-oriented DBMS. In
VLDB, pages 553–564, 2005.

[29] T. Westmann, D. Kossmann, S. Helmer, and
G. Moerkotte. The implementation and performance
of compressed databases. SIGMOD Rec., 29(3):55–67,
2000.

[30] K. Wu, E. Otoo, and A. Shoshani. Compressed bitmap
indices for efficient query processing. Technical Report
LBNL-47807, 2001.

[31] K. Wu, E. Otoo, and A. Shoshani. Compressing
bitmap indexes for faster search operations. In
SSDBM’02, pages 99–108, 2002. LBNL-49627., 2002.

[32] K. Wu, E. Otoo, A. Shoshani, and H. Nordberg. Notes
on design and implementation of compressed bit
vectors. Technical Report LBNL/PUB-3161, 2001.

[33] A. Zandi, B. R. Iyer, and G. G. Langdon Jr. Sort order
preserving data compression for extended alphabets.
In Data Compression Conference, pages 330–339, 1993.

[34] J. Zhou and K. Ross. A multi-resolution block storage
model for database design. In Proceedings of the 2003
IDEAS Conference, pages 22–33, 2003.

[35] J. Ziv and A. Lempel. A universal algorithm for
sequential data compression. IEEE Transactions on
Information Theory, 23(3):337–343, 1977.

[36] J. Ziv and A. Lempel. Compression of individual
sequences via variable-rate coding. IEEE Transactions
on Information Theory, 24(5):530–536, 1978.

[37] M. Zukowski, S. Heman, N. Nes, and P. Boncz.
Super-scalar ram-cpu cache compression. In ICDE,
2006.

