
Trekking Through Siberia: Managing Cold Data in a
Memory-Optimized Database

Ahmed Eldawy*
University of Minnesota
eldawy@cs.umn.edu

Justin Levandoski
Microsoft Research

justin.levandoski@microsoft.com

Per-Åke Larson
Microsoft Research

palarson@microsoft.com

ABSTRACT

Main memories are becoming sufficiently large that most OLTP

databases can be stored entirely in main memory, but this may not

be the best solution. OLTP workloads typically exhibit skewed

access patterns where some records are hot (frequently accessed)

but many records are cold (infrequently or never accessed). It is still

more economical to store the coldest records on secondary storage

such as flash. This paper introduces Siberia, a framework for

managing cold data in the Microsoft Hekaton main-memory

database engine. We discuss how to migrate cold data to secondary

storage while providing an interface to the user to manipulate both

hot and cold data that hides the actual data location. We describe

how queries of different isolation levels can read and modify data

stored in both hot and cold stores without restriction while

minimizing number of accesses to cold storage. We also show how

records can be migrated between hot and cold stores while the

DBMS is online and active. Experiments reveal that for cold data

access rates appropriate for main-memory optimized databases, we

incur an acceptable 7-14% throughput loss.

1. INTRODUCTION
Database systems have traditionally been designed under the

assumption that data is disk resident and paged in and out of

memory as needed. However, the drop in memory prices over the

past 30 years is invalidating this assumption. Several database

engines have emerged that store the entire database in main

memory [3, 5, 7, 9, 11, 14, 19].

Microsoft has developed a memory-optimized database engine,

code named Hekaton, targeted for OLTP workloads. The Hekaton

engine is fully integrated into SQL Server and shipped in the 2014

release. It does not require a database be stored entirely in main

memory; a user can declare only some tables to be in-memory

tables managed by Hekaton. Hekaton tables can be queried and

updated in the same way as regular tables. To speed up processing

even further, a T-SQL stored procedure that references only

Hekaton tables can be compiled into native machine code. Further

details about the design of Hekaton can be found in [4], [11].

OLTP workloads often exhibit skewed access patterns where some

records are “hot” and accessed frequently (the working set) while

others are “cold” and accessed infrequently. Clearly, good

performance depends on the hot records residing in memory. Cold

records can be moved to cheaper external storage such as flash with

little effect on overall system performance.

The initial version of Hekaton requires that a memory-optimized

table fits entirely in main memory. However, even a frequently

accessed table may exhibit access skew where only a small fraction

of its rows are hot while many rows are cold. We are investigating

techniques to automatically migrate cold rows to a “cold store”

residing on external storage while the hot rows remain in the in-

memory “hot store”. The separation into two stores is only visible

to the storage engine; the upper layers of the engine (and

applications) are entirely unaware of where a row is stored.

The goal of our project, called Project Siberia, is to enable the

Hekaton engine to automatically and transparently maintain cold

data on cheaper secondary storage. We divide the problem of

managing cold data into four subproblems.

 Cold data classification: efficiently and non-intrusively

identify hot and cold data. We propose to do this by logging

record accesses, possibly only a sample, and estimating

accesses frequencies off line as described in more detail in

[13]. One could also use a traditional caching approach such

as LRU or LRU-2 but the overhead is high in both space and

time. As reported in [13], experiments showed that

maintaining a simple LRU chain added 25% overhead to the

cost of lookups in an in-memory hash table and added 16 bytes

to each record. This we deemed too high a price.

 Cold data storage: evaluation of cold storage device options

and techniques for organizing data on cold storage.

 Cold storage access reduction: reducing unnecessary accesses

to cold storage for both point and range lookups by

maintaining compact and accurate in-memory access filters.

We propose to achieve this by storing in memory compact

summaries of the cold store content. We are investigating two

techniques: a version of Bloom filters for point lookups and

range filters, a new compact data structure that also supports

range queries. More details can be found in [1, 17].

 Cold data access and migration mechanisms: mechanisms for

efficiently migrating, reading, and updating data on cold

storage that dovetail with Hekaton’s optimistic multi-version

concurrency control scheme [11].

In this paper, we focus on the fourth point, namely, how to migrate

records to and from the cold store and how to access and update

records in the cold store in a transactionally consistent manner. This

paper is not concerned with exact indexing and storage mechanisms

used; all we assume is that the cold store provides methods for

inserting, deleting, and retrieving records. To allow for maximum

flexibility in the choice of cold store implementations our only

* Work done while at Microsoft Research
This work is licensed under the Creative Commons Attribution-

NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this

license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain

permission prior to any use beyond those covered by the license. Contact

copyright holder by emailing info@vldb.org. Articles from this volume were

invited to present their results at the 40th International Conference on Very
Large Data Bases, September 1st - 5th 2014, Hangzhou, China.

Proceedings of the VLDB Endowment, Vol. 7, No. 11

Copyright 2014 VLDB Endowment 2150-8097/14/07

additional requirement is that the cold store guarantees durability,

i.e, that it does not lose data even in the event of crashes. We do not

require that the cold store be transactional. Thus, our design can

work with a number of cold store implementations, for example, a

traditional DBMS table, a key-value store, or even a file.

The basic idea of our approach is to completely separate hot and

cold data into separate stores. We do not store information about

cold records in memory (e.g., cold keys in in-memory indexes)

besides compact Bloom or range filters. Transactions are free to

access and update data in either store without restriction. In fact,

our design hides the details of the hot/cold storage split beneath the

interface to the Hekaton storage engine. Upper software layers are

unaffected by the split between hot and cold storage.

Siberia is designed to fully integrate with Hekaton’s optimistic

multi-version concurrency control (MVCC) scheme. The basic idea

of this scheme is that records are multi-versioned and versions have

disjoint valid time ranges. Transactions read records as of a logical

read time, while record updates create a new version. Reads operate

by first checking the in-memory “hot” table. If the key is not found

or the lookup index is not unique, the read then checks a Bloom

filter to see if it needs to access the cold store; if so it performs the

cold read. A transaction keeps records read from the cold store in a

private in-memory cache.

Siberia guarantees transactional consistency for updates that span

the hot and cold store (e.g., when data moves from hot to cold

storage or vice versa) even if the cold store is not transactional. To

achieve this we use an update memo, implemented as a durable

Hekaton table that temporarily stores information about records

whose update spans hot and cold stores. When a transaction

updates a cold record, the record moves from the cold to hot store.

The new version is placed in the hot store, while the transaction

also records a “delete” notice in the memo signifying that the cold

version will eventually become obsolete. The cold record and its

corresponding notice are deleted once the version in the cold store

is no longer visible to any active transaction. Records move from

the hot to cold store using a migration process that updates a stale

hot record and writes a new but identical version to the cold store.

The migrating transaction also posts a “migrated” notice to the

memo that records the valid begin time of the record on cold

storage. The “migrated” notice is deleted once the version in the

cold store becomes visible to all transactions. The old version in the

hot store is removed automatically by Hekaton’s garbage collection

mechanism.

While this may seem complex at first glance, the update memo

provides several important benefits. (1) The cold store is not

required to be transactional. (2) It enables live migration of data to

and from cold storage while the database is online and active. (3)

The timestamp updates done during postprocessing of a transaction

are done entirely in memory without accessing cold storage. (4)

Validation is done entirely in memory without accessing cold

storage (validation and postprocesing details of Hekaton are

covered in Section 3.1). The last two points are particularly salient,

as they allow Sibieria to make only the absolute minimal accesses

to cold storage, i.e., for reading, inserting, or deleting cold records.

We prototyped Siberia within the Hekaton engine and performed

extensive experiment evaluation. We find that for cold data access

rates appropriate for a main-memory optimized database (e.g., 5-

10%), Siberia leads to an acceptable throughput loss of 7-14%

when the cold store resides on a commodity flash SSD.

The rest of this paper is organized as follows. Section 2 and 3

describe Hekaton’s storage and indexing, as well as its concurrency

control technique. Section 4 and 5 covers the Siberia architecture

and describe how it integrates into Hekaton. Section 6 provides an

experimental evaluation of Siberia, while Section 7 covers related

work. Section 8 concludes this paper.

2. HEKATON STORAGE AND INDEXING
In this section we summarize how records are stored, accessed and

updated by the Hekaton storage engine. This background

information is needed to understand our design for cold data.

A table created with option memory_optimized is managed by

Hekaton and stored entirely in memory. Hekaton supports two

types of indexes: hash indexes which are implemented using lock-

free hash tables [16] and range indexes which are implemented

using Bw-trees, a novel lock-free version of B-trees [14]. A table

can have multiple indexes and records are always accessed via an

index lookup. Hekaton uses multiversioning where an update

always creates a new version.

Figure 1 shows a simple bank account table containing five version

records. Ignore the numbers (100) and text in red for now. The

table has three (user defined) columns: Name, City and Amount. A

version record includes a header and a number of link (pointer)

fields. A version’s valid time is defined by timestamps stored in the

Begin and End fields in the header.

The example table has two indexes; a hash index on Name and an

ordered index on City. Each index requires a link field in the record.

The first link field is reserved for the Name index and the second

link field for the City index. For illustration purposes we assume

that the hash function just picks the first letter of the name. Versions

that hash to the same bucket are linked together using the first link

field. The leaf nodes of the Bw-tree store pointers to records. If

multiple records have the same key value, the duplicates are linked

together using the second link field in the records and the Bw-tree

points to the first record on the chain.

Hash bucket J contains three records: two versions for John and one

version for Jane. Jane’s single version (Jane, Paris, 150) has a valid

time from 15 to infinity meaning that it was created by a transaction

that committed at time 15 and it is still valid. John’s oldest version

(John, London, 100) was valid from time 10 to time 20 when it was

updated. The update created a new version (John, London, 110).

Figure 1: Hekaton record structure and indexing.

2.1 Reads
Every read operation specifies a logical (as-of) read time and only

versions whose valid time overlaps the read time are visible to the

read; all other versions are ignored. Different versions of a record

always have non-overlapping valid times so at most one version of

a record is visible to a read. A lookup for John with read time 15,

for example, would trigger a scan of bucket J that checks every

record in the bucket but returns only the one with Name equal to

John and valid time 10 to 20. If the index on Name is declared to

be unique, the scan of the buckets stops as soon as a qualifying

record has been found.

2.2 Updates
Bucket L contains two records that belong to Larry. Transaction 75

is in the process of deducting $20 from Larry’s account. It has

created the new versions (Larry, Rome, 150) and inserted it into the

index.

Note that transaction 75 has stored its transaction Id in the Begin

and End fields of the new and old version, respectively (one bit in

the field indicates the field’s content type). A transaction Id stored

in the End field prevents other transactions from updating the same

version. A transaction Id stored in the Begin field informs readers

that the version may not yet be committed and identifies which

transaction created the version.

Now suppose transaction 75 commits with end timestamp 100.

After committing, transaction 75 returns to the old and new

versions and sets the Begin and End fields to 100. The final values

are shown in red below the old and new versions. The old version

(Larry, Rome, 170) now has the valid time 30 to 100 and the new

version (Larry, Rome, 150) has a valid time from 100 to infinity.

This example also illustrates how deletes and inserts are handled

because an update is equivalent to a deleting an existing version

and inserting a new version.

The system must discard obsolete versions that are no longer

needed to avoid filling up memory. A version can be discarded

when it is no longer visible to any active transaction. Cleaning out

obsolete versions, a.k.a. garbage collection, is handled

cooperatively by all worker threads. Garbage collection is

described in more detail in [4].

3. CONCURRENCY CONTROL
Hekaton utilizes optimistic multi-version concurrency control

(MVCC) to provide snapshot, repeatable read and serializable

transaction isolation without locking. This section summarizes the

core concepts of the optimistic MVCC implemented in Hekaton.

Further details can be found in reference [11].

Hekaton uses timestamps produced by a monotonically increasing

counter for several purposes.

 Commit/End Time for a transaction: every update transaction

commits at a distinct point in time called the commit or end

timestamp of the transaction. The commit time determines a

transaction’s position in transaction serialization order.

 Valid Time for a version: Every version in the database

contain two timestamps – begin and end. The valid time for a

version is the timestamp range defined by its begin and end

timestamps.

 Logical Read Time: the read time of a transaction is set to

the transaction’s start time. Only versions whose valid time

overlaps the logical read time are visible to the transaction.

The notion of version visibility is fundamental to concurrency

control in Hekaton. A transaction executing with logical read time

RT must only see versions whose begin timestamp is less than RT

and whose end timestamp is greater than RT. A transaction must of

course also see its own updates.

3.1 Transaction Commit Processing
Once a transaction has completed its normal processing, it begins

commit processing.

3.1.1 Validation
Validation is required only for update transactions running at

repeatable read or serializable isolation but not for read-only

transactions or update transactions at lower isolation levels.

Validation begins with the transaction obtaining an end timestamp.

It then verifies its reads and, if it runs under serializable isolation,

it also verifies that no phantoms have appeared.

To validate its reads, the transaction checks that the versions it read

are visible as of the transaction’s end time. To check for phantoms,

it repeats all its index scans looking for versions that have become

visible since the transaction began. To enable validation each

transaction maintains a read set, a list of pointers to the versions it

has read, and a scan set containing information needed to repeat

scans. While validation may sound expensive, keep in mind that it

is only required for update transactions at higher isolation levels

and, furthermore, most likely the versions visited during validation

remain in the L1 or L2 cache.

3.1.2 Logging and Post-processing
A transaction T is committed as soon as its updates to the database

have been hardened to the transaction log. Transaction T writes to

the log the contents of all new versions created by T and the primary

key of all versions deleted by T.

Once T’s updates have been successfully logged, T is irreversibly

committed. T then begins a postprocessing phase during which the

begin and end timestamps in all versions affected by the transaction

are updated to contain the end timestamp of the transaction.

Transactions maintain a write-set, a set of pointers to all inserted

and deleted versions that is used to perform the timestamp updates

and generate the log content.

4. SIBERIA ARCHITECTURE
In our proposed architecture, shown in Figure 2, some records are

stored in a hot store and some records in a cold store. The hot store

contains records that are accessed frequently while the cold store

contains archival data that is rarely accessed but still needs to be

part of the database.

Figure 2: Main architectural components of Siberia.

Our goal is to provide a unified interface for processing records

coming from hot or cold stores and hide the physical location of a

record to higher software layers. We achieve this by implementing

all the Siberia machinery below the cursor interface of the Hekaton

engine. At the same time, we need an efficient way to access the

cold store that minimizes the overhead caused by accessing

secondary storage. The intent is to move data automatically and

transparently between hot and cold stores according to their access

pattern. This migration of data between stores should be done

seamlessly without affecting the active transactions and while the

DBMS is online and running.

To allow seamless migration between hot and cold stores, we

perform migration using normal operations (insert and delete)

wrapped in a transaction. This allows the migration transaction to

run while other transactions are working and still keeping

transactions isolated and the database consistent.

4.1 Cold Store
The cold store is a persistent store where we can insert, read, and

delete records. The store does not have to be transactional; all we

require is durability. Optionally, the cold store may provide indexes

to speed up queries. With these minimal requirements, different

implementations of the cold store are possible. It could, for

example, be implemented as a traditional DBMS table because it is

durable, efficient and supports different types of indexes.

As shown in Figure 3, records in the cold store contain the same

key and payload fields as their hot counterparts plus a field TxnId

that stores the Id of the (migration) transaction that inserted the

record into the cold store. TxnId serves as a version number that

helps uniquely identify different versions of the same record.

4.2 Access Filters
The data in the cold store may have multiple indexes, typically the

same indexes as the corresponding in-memory table. Each cold

store index is associated with an in-memory access filter. The

access filter stores a compact (and accurate) summary of the

contents of cold store. Before accessing the cold store we check the

access filter; it the filter indicates that no records in the cold store

satisfy the search condition we have avoided an unnecessary trip to

the cold store. In previous work we proposed two novel access

filters: one for point lookups [17] and another that supports range

queries [1] (details are available in these references).

Our prototype only supports point lookups via hashing and uses a

new form of Bloom filters [17]. Instead of one large Bloom filter

per hash index, the filter is split into many smaller Bloom filters,

each one covering the records in a few adjacent hash buckets. The

filters are stored in an in-memory Hekaton table. This design has

several advantages over using a single large Bloom filter: (a)

building them is faster; (b) filter lookups are faster (fewer cache

misses); (c) access skew can be exploited by assigning fewer bits

to seldom used filters and more to heavily accessed ones; and (d)

filters that have deteriorated because of inserts and deletes can be

quickly rebuilt by scanning a few hash buckets.

4.3 Private Cache
Each transaction has a private cache that stores the records it has

read from the cold store. We use private caches because each record

in the cold store is accessed infrequently so the probability of

another transaction reading the same record within a short time

window is very low. This simplifies the cache implementation

because there is no need to consider concurrency issues. If a cold

record is read twice by two different transactions, we will actually

keep two cached versions, one for each transaction. There is a

chance of using extra memory here but we view this as an

acceptable price to pay.

Figure 4 shows the structure of a record in the cache. The part

labelled “Real record” has exactly the same structure as a record in

the hot store. The field NoticePtr in the prefix contains a pointer to

a notice in the update memo (described in the next section) or null.

This pointer is only used during validation.

When a cursor receives a record from a cold scanner, it checks

whether the record is visible and satisfies the cursor’s filter

predicate (if any). If it finds that the record qualifies, it copies the

record into its private cache, marks it as COLD, clears link fields,

and sets the NoticePtr. It then returns a pointer to the Real record

part of the copy. Each transaction has a separate memory heap and

the cached copies are stored in this heap. When a transaction

terminates, all memory reserved by its heap is released.

To software layers above the cursor interface, records in a private

cache look exactly the same as records in the hot store. However,

during validation we need to be able to identify which records

originate from cold storage. We mark a record as cold by setting its

first link field to a special value “COLD”.

4.4 Update Memo
The update memo is an in-memory table that temporarily stores

timestamp notices that specify the current status of records in the

cold store. Its primary purpose is to enable validation and detection

of write-write conflicts to be done entirely in memory without

accessing the cold store. The update memo is implemented as a

durable Hekaton table. There is one update memo per database. A

notice is structured as shown in Figure 5.

As all records in Hekaton tables, a notice contains a begin

timestamp (Begin) and an end timestamp (End). The record header

contains miscellaneous other fields used internally by Hekaton. The

notice’s target record is uniquely identified by the three underlined

fields: TableID, RecTxnId, and Key. TableID contains the ID of the

table to which the record belongs. RecTxnId contains the value

from the field TxnId of the target record. The field Key is a variable

length field storing the record’s unique key. The cold store may

contain multiple versions of the same record but the versions have

different RecTxnId values. The field BTsCopy is used for storing a

copy of a timestamp – it is seldom used but still needed.

Figure 3: Structure a record in the cold store. Figure 4: Structure of a cached record.

Figure 5: Structure of a timestamp notice in the update memo.

A timestamp notice carries timestamps for its target records which

are used when the record is read into a private cache. The Type field

specifies which timestamps the notice carries as follows.

 N (None) – temporary notice with no timestamps. The target

record is orphaned because of an in-progress or failed

migration transaction and is to be ignored.

 B (Begin) – the begin timestamp of the notice equals the begin

timestamp of the record

 E (End) – the begin timestamp of the notice equals the end

timestamp of the record

 BE (Begin & End) – the BTsCopy field contains the begin

timestamp of the record and the begin timestamp of the notice

equals the end timestamp of the record

The update memo is used when reading a record from the cold store

and during validation. When reading a record, we check whether

there is matching notice in the update memo. If so, the notice

specifies the record’s current status and its timestamps.

An update transaction running under repeatable read or serializable

isolation must validate its reads by rechecking the timestamps of

every record it read. The update memo stores the current

timestamps of all records that have been updated since the begin

time of the oldest active transaction. Consequently, a transaction

can validate its reads simply by checking notices in the update

memo.

A serializable update transaction must also validate its scans. We

completely avoid repeating scans against the cold store by always

inserting new versions in the hot store. This is explained in more

detail in the next section.

5. SIBERIA INTEGRATION IN HEKATON
In this section, we describe how each basic operation is done in the

presence of the cold store. First, we describe how we insert a record

into the cold store during migration. Then, we discuss how we

delete and update records in the cold store. After that, we explain

how to read a record from cold storage. Finally, we show how a

transaction can be validated when it reads cold records.

5.1 Insert
New records are always inserted into the hot store. When a record

is updated the new version is always inserted into the hot store

regardless of where the old version resides.

5.2 Migration to Cold Storage
Siberia classifies candidate records for migration to and from cold

storage using a technique we proposed in previous work [13]. The

basic idea is to log a sample of records to reduce overhead on

Hekaton’s main execution path. Our classification algorithm is

capable of classifying hot and cold records from a log of 1B

accesses in sub-second time (and can be pushed to a different

machine or given its own core, if necessary). Siberia triggers

migration to and from cold storage using the results of

classification. We now describe how data migrates to cold storage.

We use the update operation to bring records from cold to hot

storage (cold record updates are discussed in Section 5.4).

All inserts into the cold store are done by a special migration

transactions that move records from the hot store to the cold store.

Migration is preferably done in the background when the system is

lightly loaded. We discuss how to migrate a single record but the

same techniques apply when multiple records are migrated at once.

A record is migrated to the cold store by deleting it from the hot

store and re-inserting a record with the same content in the cold

store. During migration, the system is still active and other

transactions may be running, some of which may wish to read or

update the record being migrated.

Because the cold store is not transactional, migration must be done

carefully in two steps, each in a separate transaction. If it were done

in a single transaction and the transaction aborted we could end up

with two valid instances of the same record, one in the hot store and

one in the cold store.

The first transaction, TxN, reads a target record and installs a

preliminary migration notice Ntc of type N in the update memo.

The notice essentially says “If you read a record that matches this

notice, ignore it – it’s not supposed to be there.” A record is not

migrated unless it is a latest version (end timestamp equals infinity)

and it is visible to all transactions, current and future. Hekaton’s

versioning is transient meaning that an old version is kept only until

it is no longer visible to any currently active transactions. Old

versions are cleaned out quickly so there is no point in migrating

them to the cold store.

The second transaction. TxM, performs the actual migration. It

creates a copy of the target record, inserts it into the cold store, and

updates any affected Bloom filters. Once the record has safely been

inserted into the cold store, the migration notice is updated, setting

its type to B. Finally the record in the hot store is deleted and the

transaction commits. The notice stores the begin timestamp of the

version in the hot store. The notice is updated in the same

transaction as the version in the hot store is deleted which ensures

that the two versions will have non-overlapping timestamp ranges.

Hence, only one of the two version will be visible to a transaction,

never both.

If transaction TxM doesn’t commit because of a crash or any other

reason, all its changes except the insert into the cold store will be

rolled back automatically by Hekaton. In that case, the new version

will still exist in the cold store but readers will find a notice of type

N and ignore it.

The effect of migrating a record to the cold store is illustrated in

Figure 6. It shows the status after commit of transactions TxN and

TxM. Transction TxN just inserts a notice into the update memo.

Transaction TxM deletes the version in the hot store by setting its

end timestamp. It inserts a copy of the record into the cold store and

updates the notice in the update memo.

Figure 6: Contents of cold store, hot store, and update memo

during migration of a record.

The old version in the hot store and the old version of the notice (of

type N) will be garbage collected once they are no longer visible to

any active transactions. The new version of the notice can be

deleted as soon as the version in the cold store is visible to all active

transactions, that is, when the read time of the oldest active

transaction in the system becomes higher than CtM. Cleaning out

notices that are no longer needed is done in the background by

special memo cleanup transactions (described in Section 5.6).

It is possible that a transaction T might attempt to read or update a

record R in the hot store that is under active migration. In this case,

R will have an end timestamp of TxM, meaning TxM is in the

process of moving R to cold storage and changing R’s update notice

type. In this case T follows Hekaton’s visibility rules. If T is a

reader it ignores R if TxM is active or aborted. If TxM is preparing

to commit, then R is visible to T if TxM’s commit time is greater

than T’s read time, otherwise T speculatively ignores R1. If TxM is

committed then T uses TxM’s end timestamp to test visibility. T is

allowed to update R only if TxM has aborted; if TxM is active or

preparing then this is write-write conflict and T must abort. The

details of Hekaton’s visibility rules are covered in [11].

5.3 Delete
Deleting a record from the cold store is also a two-step process. We

first mark the record logically deleted by creating a notice of type

E or BE in the update memo. The notice specifies the end

timestamp of the record. Readers always check the update memo

so they will find the notice and check the record’s visibility. If the

record is not visible, the reader ignores the record. The record is

physically removed later by a memo cleaner transaction. The record

can be removed and the notice deleted only when it is no longer

visible to any of the active transactions.

A record in the cold store may be deleted because it is being

updated. If that is the case, the new version is inserted into the hot

store in the same transaction.

Figure 7 shows the effect on the update memo of a deletion. The

net effect is simply to add or update a notice in the update memo.

The begin timestamp of the notice specifies the end timestamp of

the target record. The notice is essentially saying “As of my begin

timestamp the record is no longer visible to anybody so ignore it”.

We also need to consider whether write-write conflicts will be

correctly detected. Suppose we have two transactions that attempt

to delete or update the same record concurrently. A write-write

conflict in the hot store is easily detected because each record has

exactly one copy in memory. One of the transactions will be the

first one to update the record’s end timestamp. When the other

transaction attempts to change the timestamp it will notice that it is

no longer equal to infinity, conclude that another transaction has or

is about to delete the version, and abort.

With cold records, each transaction reads its own copy from disk

and obtains a cached version in its own buffer. An update or delete

is done by inserting or updating a notice in the update memo. If

there is an existing notice that needs to be modified, the conflict is

detected when the transactions attempts to modify the end

timestamp of the notice. However, there may be no old notice to

modify. The update memo has a unique index built on the fields

TableID, RecTxnId, and Key. Two transactions trying to modify

the same record version will end up trying to insert two notices with

1 Speculatively ignoring R means T takes a commit dependency on

TxM. Hekaton commit dependency handling is covered in [11].

the same key value. The unique index on the update memo will

detect the violation and one of the transactions will abort.

5.4 Updates
A record in the cold store is updated by deleting the old version

from the cold store and inserting the new version into the hot store.

The new version may, of course, be later migrated into the cold

store but new versions are never directly inserted into the cold store.

Regular insertions of completely new records also go into the hot

store (as described in Section 5.1).

There are two reasons for always inserting new versions into the

hot store. First, a new record is considered hot and updating a

record is interpreted as a signal that it is (potentially) becoming hot.

Second, it has the effect that the scan validation required by

serializable transactions can be done entirely in the hot store, that

is, entirely in memory. Scan validation checks for new records

satisfying the scan predicate that have appeared since the

transaction began. Since all modified and new records are always

inserted into the hot store, it is unnecessary to check the cold store.

5.5 Read
A point lookup or scan first probes the in-memory access filter to

see if it must access cold storage. If a cold access is necessary, it

begins by retrieving the record from the cold store into an IO buffer

and padding it so it has the same format as in-memory records. The

next step is to look for a matching notice in the update memo. If

notice of type N is found the record is ignored. Otherwise its begin

timestamp and end timestamp are set and we check whether it is

visible and passes any user-defined filter functions. If it passes all

the tests, it is copied into the transaction’s cache and a pointer to

the cached record is returned to the transaction.

5.6 Update Memo and Cold Store Cleaning
Migrating records to the cold store and updating or deleting records

in the cold store adds notices to the update memo. Deletes from the

cold store do not physically remove records. To prevent the update

memo from growing indefinitely, we need to delete stale notices.

Similarly, we also need to remove records in the cold store that are

no longer visible to any transactions.

Figure 7: Effect on the cold store and update memo of a

record deletion.

This required maintenance of the update memo is done by a cleaner

process that is invoked periodically. While the cleaner process is

running migration is blocked. The cleaner process scans through

the memo once, checking each committed notice. The action taken

depends on the type of the notice.

 An N type notice indicates a failed insert into the cold store.

The associated record is not visible to anybody so it can be

safely removed and the notice deleted.

 A notice of type BE or E corresponds to a (logically) deleted

records. If the record was deleted before the begin timestamp

of the oldest active transaction, it is not visible to any current

or future transactions and can be safely removed and the

notice deleted.

 A notice of type B corresponds to a currently visible record

(its end timestamp is infinity). If its begin timestamp is earlier

than the begin timestamp of the oldest active transaction, the

record is visible to all current and future transaction. If so the

notice can be safely deleted because a record with no notice

will get default timestamps (1, infinity) when being read.

The actual delete of a notice has to be done in a transaction that

begins after the corresponding cold record, if any, has been deleted.

This is to prevent a situation where a notice was deleted but the

corresponding record was not.

5.7 Validation
An update transaction running at repeatable read or serializable

isolation needs to validate before it commits. If validation fails, the

transaction aborts.

For both repeatable read and serializable isolation, we must verify

that records read by the transaction have not been updated or

deleted by another transaction before commit. In a memory-only

scenario, this is done by keeping a pointer to each record read. At

commit time, we test to make sure that all the read versions are still

visible as of the commit time. If all versions are still visible, it

means that no other transaction changed them during the lifetime

of the validating transaction.

With cold records, we do not have a single copy of the record.

However, we know that all updates to cold records are done through

the update memo. The test is similar to that in memory-only

scenario but we need to fix the end timestamp of the records in the

transaction’s cache before performing the visibility check.

To update the end timestamp of a cached record Rc, recall that Rc

is prefixed with a field NoticePtr that is either null or points to the

notice used when the record was read. If NoticePtr is not null, we

copy the notice’s begin timestamp if it is of type E. Otherwise, the

notice is of type BE and we we copy from its BTsCopy field.

For a serializable update transaction, we must also validate the

transactions scans to detect phantoms. In a memory-only scenario,

we accomplish this by repeating the scan against the main-memory

index and checking whether any new records have appeared.

Repeating a scan in the cold store could be very expensive, so we

want to avoid doing so. By design, we insert newly inserted records

and new versions resulting from an update of a cold record directly

2 We assume the read is necessary and that the access filters are

accurate.

into the hot table. This means that a scan of the hot table is enough

to detect phantoms.

However, a serializable transaction may still fail in the following

scenario:

1. TxS (Serializable) scans the table. TxS is still active.

2. TxI (Insert) inserts a new record to the hot store and commits.

3. TxM (Migrate) migrates the newly inserted record to the cold

store and commits.

4. TxS validates by repeating the scan over the hot table. The

newly inserted record will not be visible anymore because the

version in the hot store has been migrated.

To solve this problem we enforce an additional constraint on

migrating records. When the migration transaction starts, it first

computes TsBoundSer, the begin timestamp of the oldest

serializable transaction that is still active (uncommitted) in the

system. The migration transaction does not migrate any record with

a begin timestamp later than TsBoundSer. This ensures that a newly

inserted record in the hot store will remain there until the

serializable transaction validates. This additional constraint is not

likely to delay migration of very many records so its effect is

minimal. However, it is necessary for correctness.

5.8 Discussion
Any cold-data management framework should limit accesses to

slower cold storage to an absolute minimum. This section briefly

discusses how the Siberia achieves this goal within Hekaton. A

read of a cold record2 requires a single cold store read to bring the

record into memory (the transaction’s private cache); after that all

processing is done in memory. An update or delete of a cold record

requires (a) a single cold store read to bring the existing record into

memory (also to verify its existence) and (b) a single cold store

delete to remove the record from secondary storage (in case of an

update the new version is placed in memory). The migration of a

record from hot to cold storage requires a single insert into the cold

store. Insert operations place a new record in memory, thus do not

incur an access to cold storage. Since the update memo and private

cache ensure all validation and postprocessing occur in memory, no

extra cold storages accesses are necessary.

Figure 8: In-memory overhead of the Siberia framework.

0%

5%

10%

15%

20%

25%

30%

35%

40%

100 95 90 85 80 75 70 65 60 55 50

T
h

ro
u

g
h

p
u

t
L

o
s

s

Hot Data Access Rate (% of Database)

No Client Time 500 usec Client Time

6. Experiments
To evaluate the Siberia framework, we prototyped it within the

Microsoft SQL Server Hekaton engine. This section reports

experimental evaluation of the cold data access techniques

described in this paper.

6.1 Setup

6.1.1 Machine Configuration
Our experiment machine is an Intel Xeon W3550 (at 3.07 GHz)

with 24 GB of RAM and 8MB L3 cache. The machine contains

four cores that we hyper-thread to eight logical processors. All cold

data is stored on a Samsung 840 SSD with 500GB capacity. Tests

using the SQLIO utility [22] revealed that this drive is capable of

sustaining 140K IOPs for 512 byte random reads (at queue depth

32). All I/O in our experiments is un-buffered.

6.1.2 Workload
We use two workloads in our experiments:

YCSB Benchmark. The YCSB cloud benchmark [23] consists of

a 20GB single-table database. Each record is 1KB consisting of ten

100 byte columns. YCSB consists of single-step transactions that

either read or upate a record. We run three workload types from the

benchmark: (1) Read-heavy: 90% reads and 10% updates; (2)

Write-heavy: 50% reads and 50% updates; (3) Read-only: 100%

reads. YCSB uses a scrambled Zipfian distribution to generate key

accesses for a workload. We vary distribution skew between 0.5

(lower skew) and 1.5 (higher skew).

Multi-step read/update workload. This workload consists of a

single Hekaton table containing 20M records. Each record has a

size of 56 bytes (including header), meaning the database occupies

roughly 1.04 GB of memory; this is safely outside of the L3 cache

of our experiment machine. We employ two types of transactions

in our workload. (1) Read-only: a transaction consisting of four

reads of four distinct records. (2) Update-only. a transaction

consists of four updates of four distinct records While simple, this

single-table workload allows us to closely control the experiment

parameters to understand Siberia’s performance.

Unless otherwise noted, 70% of the database resides in the cold

store. The workload is generated by 32 clients. Each client maps

to a single thread and calls directly into the Hekaton engine. To

introduce realistic client processing and communication delay, each

client waits 500 microseconds before issuing its next transaction.

We chose 500 microseconds since it roughly estimates the round-

trip time for an inter-datacenter network message [2].

6.1.3 Cold Stores
Our experiments use two cold store implementations.

 Memory-only: The cold store is in-memory Hekaton table.

We use this store to provide pinpoint measurements of in-

memory overhead of the Siberia machinery.

 Direct-mapped file: The cold store maps a record id to a

direct offset in a file on flash. All I/O against the file is

unbuffered. Unless explicitly mentioned, the direct-mapped

file is the default cold store for all experiments.

As mentioned previously in Section 4.1.1, an important aspect of

Siberia is its flexibility in interfacing with various cold storage

implementations (e.g., a traditional DBMS table, a file on

secondary storage, or a key-value store [14]). However, we

experiment with two simple cold stores to avoid observing

overhead of a second system stack. As noted previously in Section

1, it is not our focus to study the optimal medium and architecture

for cold storage; we are concerned with the overhead of integrating

the cold data migration and access machinery within Hekaton. Our

Bloom access filters are allotted 0.1% of the database memory

budget. Since our filters are adaptive to skew (see Section 4.2), this

budget provides sufficient accuracy.

6.2 In-Memory Performance
This experiment measures the pure in-memory overhead of the

Siberia machinery by running the read-only workload on (1)

Hekaton without the Siberia implementation and (2) Hekaton with

Siberia using the memory-only cold store. We run the workload two

ways: (a) with no client time delay where the workload runs as a

stored procedure compiled against the Hekaton engine; this

measurement represents the performance of only the core Hekaton

engine and (b) with a 500 microsecond client delay; representing a

more realistic client/server transaction processing scenario, e.g.,

when Hekaton runs inside SQL Server connected to a client on a

separate node.

Figure 8 reports the throughput loss when running Hekaton with

Siberia for decreasing hot data access rates (for Hekaton without

Siberia, the workload accesses random keys in the table, while

Hekaton with Siberia accesses hot/cold keys at the specified rate).

As expected, for the no client delay case the overhead rises as the

cold access rate increases. Each cold store probe consists of two

extra in-memory table probes: one to check the Bloom filter and

another to access cold storage. However, the performance loss ratio

is less than one-to-one in the amount of extra probes need to access

cold records (e.g., a 5% cold access rate leads to 7% throughput

loss, while 50% cold accesses leads to a 37% loss). This is likely

due to CPU caching effects, especially for the Bloom table that

stays relatively small. The story is different for the 500 usec client

delay case. With realistic client delay the in-memory overhead of

the Siberia framework accounts for roughly 1% loss in throughput

for realistic cold data access rates of up to 15%. For extreme cold

access rates the throughput loss is only 3%, thus the in-memory

Siberia machinery accounts for a very low performance loss

overall.

6.3 Migration
This experiment studies the overhead of running live migration

while transactions are actively running within Hekaton. We

continuously run transactions on our database for 60 seconds while

a migration worker migrates 10% of the database to cold storage

Figure 9: Migration overhead.

65000

70000

75000

80000

5 10 15 20 25 30 35 40 45 50 55 60

T
h

ro
u

g
h

p
u

t
(t

x
/s

e
c

)

Elapsed Time (seconds)

0% cold reads 0% cold reads during migration

5% cold reads 5% cold reads during migration

5% cold updates 5% cold updates during migration

(each migration transaction contains a batch of 100 records); this is

sufficient to keep migration running for the whole experiment. We

perform three experiments. (a) Using the read-only workload that

accesses 0% cold records (black line with square markers); this run

does not touch records in the cold store nor "in transit" migrating

records in order to measure the overhead of the migration thread

without interference from cold accesses. (b) Using the read-only

workload that reads 5% cold keys (grey line with triangle markers).

(c) Using the update-only workload that touches 5% cold keys

(light grey line with circle markers). For experiment (b) and (c), the

5% includes cold records, recently migrated records (due to the

migrating thread), and in-transit migrating records. For each

experiment, we compare against the same workload running

without active migration.

Figure 9 reports the numbers for this experiment over the 60 second

experiment period in 5 second increments (x-axis). Overall,

performance of the system remains stable when live migration is

active; this is important as users will not experience sporadic

performance degradation. Experiment (a) reveals that the overhead

of active migration is at most 2% when transactions do not access

cold data; this overhead is due to both the migration thread stealing

cycles as well as creating garbage (old record version) in the hot

store. Experiment (b) reveals that read transactions experience a 7%

overhead when accessing cold data while migration is active. On

top of the 2% ambient overhead from the migration thread, these

transactions also require an additional probe of the update memo

on the cold data access path (since the migration creates fresh

memo notices) as well as copying timestamps from the update

memo if it accesses a cold record that was freshly migrated.

Experiment (c) reveals that update transactions initially incur an 8%

overhead to both read then update the cold record. However as time

moves forward the overhead slowly diminishes since more records

are found in the hot store due to updates automatically writing new

versions to the hot store.

6.4 Effect of the Update Memo
This experiment studies the overhead of the update memo on the

path to accessing a cold record. The experiment consists of all read-

only transactions, where each read touches a cold record in the

memory-only cold store (there are no hot accesses). We run each

workload in three different configurations: (a) with no entries in the

update memo, meaning each read avoids probing the update memo

altogether; (b) the update memo is populated, but the read does not

find a matching entry in the memo; (c) the update memo is

populated and the read finds a matching entry in the memo.

Figure 11 : Read-only workload results for decreasing hot data hit rates. Figure (a) plots throughput (left axis) as

lines and latency (right axis) as bars.

(a) (b)

0

100

200

300

400

500

600

700

800

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

100 95 90 85 80 75 70 65 60 55 50

L
a

te
n

c
y
 (

u
s

e
c

)
-

B
a
rs

T
h

ro
u

g
h

p
u

t
(T

x
/S

e
c
)

-
L

in
e
s

Hot Data Hit Rate (% of record accesses)

32 thr lat (mem) 32 thr lat (file) 64 thr lat (mem)

64 thr lat (file) 32 thr (mem) 32 thr (file)

64 thr (mem) 64 thr (file)

0

20000

40000

60000

80000

100000

120000

140000

0%

10%

20%

30%

40%

50%

60%

70%

100 95 90 85 80 75 70 65 60 55 50

IO
P

s
 -

B
a
rs

T
h

ro
u

g
h

p
u

t
L

o
s

s
 -

L
in

e
s

Hot Data Hit Rate (% of record accesses)

IOPs (32 thr) IOPs (64 thr) 32 Threads 64 Threads

(b) (a)

Figure 12 : Update-only workload results for decreasing hot data hit rates. Figure (a) plots throughput

(left axis) as lines and latency (right axis) as bars.

0

50

100

150

200

250

300

350

400

450

500

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

100 95 90 85 80 75 70 65 60 55 50

L
a

te
n

c
y
 (

u
s

e
c

)
-

B
a
rs

T
h

ro
u

g
h

p
u

t
(T

x
/S

e
c

)
-

L
in

e
s

Hot Data Hit Rate (% of record accesses)

32 thr lat (mem) 32 thr lat (file) 64 thr lat (mem)

64 thr lat (file) 32 thr (in-memory) 32 thr (flash)

64 thr (in-memory) 64 thr (flash)

0

20000

40000

60000

80000

100000

120000

140000

160000

0%

10%

20%

30%

40%

50%

60%

100 95 90 85 80 75 70 65 60 55 50

IO
P

s
 -

B
a
rs

T
h

ro
u

g
h

p
u

t
L

o
s

s
 -

L
in

e
s

Hot Data Hit Rate (% of record accesses)

IOPs (32 thr) IOPs (64 thr) 32 Threads 64 Threads

Table 1 reports the average transaction latency (in microseconds)

for reading a cold record for each configuration. Without a memo

probe, a transaction accessing only cold records takes

approximately 11.14 microseconds (including transaction setup

and teardown time). Accessing the memo without a match takes

13.89 microseconds (a 24% increase) while accessing the probe

with a match takes 15.14 microseconds (a 35% increase). Clearly,

the overhead of accessing the memo is expensive, since this

involves allocating a memo stub for a probe and performing the

table probe for the update memo. This means memo cleaning is

necessary for good performance.

6.5 Synthetic End-to-End Workload
This experiment tests end to end workloads of Siberia for varying

hot data hit rates (each transaction selects a hot/cold record id based

on the access rate). We run the workloads on both cold store

configuration (denoted “in-memory” and “file”) to test the relative

performance loss when I/O is on the critical path. Since the direct

map file I/O is sequential, we run the workloads using both 64 and

32 worker threads in order to experiment with different traffic

patterns to the I/O subsystem. For all runs, migration is inactive to

ensure the workload is achieving its exact hot/cold hit rate. The

update cleaner process is active for the duration of the workload.

6.5.1 Read-Only Transactions
Figure 11(a) reports the throughput and latency results for

decreasing hot data hit rates (increasing cold data hit rates), while

Figure 11(b) reports the IOPs for the direct-mapped file cold store

configuration along with the relative performance loss compared

against the in-memory cold store (representing an “optimal” cold

storage implementation).

In terms of latency, using 64 threads a 5% cold access rate leads to

a latency increase of 36 usec (for 32 threads it is 28 usec) – a minor

fraction of a transaction’s end-to-end processing time (including

network and client processing time). For 32 threads the throughput

loss is linear to the amount of cold records accessed as we observe

that 50% cold accesses lead to 50% less throughput. This is

because the system is not I/O bound (IOPs are below the flash

drive’s capability). At 64 threads, the workload is IO bound at a

cold access rate of 35%, thus throughput loss is more than linear.

We also observe in Figure 11(b) that as cold access rates increase,

the throughput loss is greater for 64 threads than for 32 threads.

This is likely due to the fact that as the number of workers increase,

I/O queue length increases thereby increasing the time a transaction

waits on I/Os. Longer waits naturally lead to increased transaction

latency, as we observe in Figure 11(a), which in turn affects

throughput since fewer transactions complete per second.

This experiment clearly shows that for high cold data access rates,

having I/O on the critical path of a main-memory database

adversely affects performance. However, the main takeaway from

this experiment is that for realistic cold data access rates, the

performance loss is acceptable: for 5% cold data access rates, the

throughput loss between the direct-mapped file and in-memory

cold store is 7%; for a 10% cold access rate, the throughput loss is

roughly 14%.

6.5.2 Update-Only Transactions
Figure 12 reports the experimental results for the update-only

workload. The general trends are similar to that of the read-only

workload. Throughput is slightly lower overall since each update

requires a read prior to installing a new record version. Since

updates of cold records go to the hot store, a cold read accounts for

a large portion of the update cost. In addition, garbage collection is

necessary to both clean the update memo and collect old in-memory

versions.

Similar to the read-only workload, for realistic cold data update

rates the performance degradation is acceptable at 8% throughput

loss for 5% cold data updates and 13% throughput loss for 10%

cold data update rates.

6.6 YCSB Workload
Figure 13 reports the results of the YCSB write-heavy workload.

We report throughput (y-axis) for various workload skew (x-axis)

Figure 13: YCSB write-heavy workload.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

1.5 1.25 1 0.75 0.5

T
h

ro
u

g
h

p
u

t
(T

x
/S

e
c

)

Workload Skew

mem/db ratio=1:1 mem/db ratio=1:2

mem/db ratio=1:4 mem/db ratio=1:8

Figure 14: YCSB read-heavy workload.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

1.5 1.25 1 0.75 0.5

T
h

ro
u

g
h

p
u

t
(T

x
/S

e
c

)

Workload Skew

mem/db ratio=1:1 mem/db ratio=1:2

mem/db ratio=1:4 mem/db ratio=1:8

Figure 15: YCSB read-only workload.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

1.5 1.25 1 0.75 0.5

T
h

ro
u

g
h

p
u

t
(T

x
/S

e
c

)

Workload Skew

mem/db ratio=1:1 mem/db ratio=1:2

mem/db ratio=1:4 mem/db ratio=1:8

Table 1: Effect of the update memo.

 Empty Memo Probe (no hit) Probe (hit)

Latency 11.14 usec 13.89 usec 15.14 usec

and different memory to database size ratios (e.g., a ratio of 1:X

means the database is X times the memory size). For a 1:1 ratio, all

accesses are in memory and performance stays relatively constant.

For high workload skew, accesses mostly hit memory-resident

records and performance for all ratios stays close to the in-memory

case (the 1:1 ratio). As expected, for less skewed access

performance starts to degrade as more accesses hit cold storage.

When database size is 8x of memory, the system becomes heavily

bottlenecked on updates of records on cold storage. Performance

for other ratios degrades less severely since more records are

memory-resident.

Figure 14 and 15 report the results of the YCSB read-heavy

workload and read-only workloads. As expected, performance at

the 1:1 ratio is better than the write-heavy workload due to less

contention during updates (e.g., write-write conflicts). Performance

for these workloads also degrades as access skew decreases and

memory to database size ratios increase. For read-heavy workloads,

we observe a smaller abort rates for transactions at higher skew

rates compared to the write-heavy workloads. This is due to less

conflict on the update path and leads to less dramatic performance

drop-off at higher access skews. We note that similar trends for the

YCSB workload were reported independently by [3], though

absolute performance is not comparable due to different hardware

configurations.

7. RELATED WORK
Buffer pool. Buffer pool caching is a tried-and-true method from

traditional DBMS architectures that maps buffer pool pages to on-

disk pages. This technique is not ideal for our scenario. Like most

main-memory systems [6, 8], Hekaton does not use page-based

indirection for efficiency reasons; there are only records and thus

no buffer pool. In addition, buffer pool management incurs an

unnecessarily large CPU overhead when the majority of accesses

are to in-memory data [7], as is the case in our scenario.

Main memory OLTP engines. There has been much work

recently exploring OLTP engine architectures optimized for main-

memory access. Research prototypes in this space include H-Store

[8, 19], HYRISE [6], and HyPer [9]. Commercial main-memory

systems are currently on the market and include IBM’s solidDB

[15], Oracle’s TimesTen [10], Microsoft’s Hekaton [4], and

VoltDB [20]. Most of these systems such as HyPer, solidDB,

TimesTem, and VoltDB assume that the entire database fits in

memory, completely dropping the concept of secondary storage. In

this work, we diverge from this “memory-only” philosophy by

considering a scenario where a main-memory optimized engine

may occasionally access data in cold storage.

Cold data management in main-memory systems. A number of

researchers have explored management of cold data within main-

memory database systems. Our previous paper studied how to

identify hot and cold data at record granularity [13]; this paper

studies how to migrate and access cold data in a transactionally-

consistent manner inside the Hekaton engine.

HyPer [9] is a main-memory hybrid OLTP and OLAP system.

HyPer achieves high performance for OLTP workloads by

partitioning tables. Partitions are further broken into “chunks” that

are stored in “attribute vectors” with each attribute vector stored on

a different virtual memory (VM) page. This approach enables the

system to take VM snapshots for OLAP functionality. HyPer’s

cold-data management scheme [5] is capable of identifying cold

transactional data at the VM page level, separating it from the hot

data, and compressing it in a read-optimized format for OLAP

queries. HyPer relies on virtual memory paging for databases with

sizes larger than physical memory. In contrast, our work explores

migrating and accessing cold data at record granularity.

Stoica et al [18] propose a cold data management approach similar

to HyPer that separates hot and cold data into separate memory

locations. The goal of this work is to place cold data in a memory

location where it is most likely to be paged out by the operating

system. Cold data is identified at the granularity of a record, similar

to our approach in Siberia [13]. However, cold data migration and

access is done at the granularity of a VM page, whereas we consider

cold data access at record granularity.

The approach of clustering cold records on separate pages and

relying on the operating system to page them in and out of memory

is a poor fit for Hekaton. Hekaton indexes chain records together

by pointers embedded in records. An index chain could include

records both on hot and cold pages. Consequently, even an access

of a hot record may have to pass through cold records on its way to

the target record, forcing cold pages to be brought into memory. If

a table has multiple indexes, clustering records on pages to

minimize “just passing through” accesses is a challenging problem.

Calvin [21] is a distributed main-memory database system that uses

a deterministic execution strategy. Calvin is capable of accessing

data on secondary storage, however, it cannot simply schedule a

new transaction while waiting for I/O. Instead, it employs a “warm

up” phase before execution that attempts to retrieve (from disk) all

records a transaction might access.

Anti-caching [3] is an approach for migrating and accessing cold

data in H-Store. The basic idea is to move cold records to external

storage leaving only a stub in memory. Indexes remain in memory

so all index keys (both hot and cold) must stay in memory. Hot and

cold records are identified using LRU but with sampling to reduce

the overhead of maintaining LRU chains.

Anti-caching is built for the H-store single-threaded execution

model that executes one transaction at a time. A thread executing

transaction T1 that encounters a disk-resident record goes into a

“pre-pass” phase that speculatively runs the transaction in attempt

to find all disk-resident records it might need (without issuing the

I/O). The transaction then aborts and the thread goes on to execute

other transactions while waiting for asynchronous I/Os to retrieve

and install records for T1. T1 is restarted after its data is brought

into memory. Anti-caching has two serious drawbacks.

Limited space savings. Indexes and index keys for cold records

remain in memory. For tables with multiple indexes, especially if

they have multi-column keys, this may severely limit the space

savings. Furthermore, the LRU chains also consume valuable

space. We opt to completely separate both hot and cold data; only

hot records remain in memory, while cold records (keys and

payloads) are kept in cold storage.

Repeated execution. If any of the records required by a transaction

reside in the cold store, the transaction goes through a pre-pass

execution to determine what records to bring in. Once the records

have been read in, the transaction is restarted. Unfortunately, a

single pre-pass execution may not be enough. Consider a query that

joins three tables R, S, and T and the join structure is a chain (R

→S → T). This may require up to three pre-pass execution. The

first execution causes missing R records to be brought in. In the

second we have the join keys from R but some required S records

may be missing. In the third execution some T records may be

missing. Finally, in the fourth execution all the required records are

in memory and the query finally executes successfully. This wastes

a lot of resources and leads to unpredictable performance. Our

design does not suffer from this problem: execution of a transaction

resumes as soon as the required record has been brought into

memory.

8. CONCLUSION
This paper described the Siberia architecture and functionality that

enables migrating, reading, and updating data on cold storage in the

Hekaton main-memory database engine. Our approach completely

separates hot and cold data into an in-memory hot store and

persistent cold store (e.g., flash or disk). Siberia does not require a

transactional cold store, thus its design is flexible enough to work

with a wide array of cold storage implementations. Siberia is space-

efficient; besides compact Bloom filters, no information about cold

data is kept in memory. Siberia dovetails with Hekaton's optimistic

multi-version concurrency control scheme and allows transactions

to read and update data in both hot and cold stores without

restriction. This functionality is enabled by our update memo

design that temporarily stores timestamp information for records

recently inserted into or deleted from the cold store. The update

memo completely removes extraneous accesses to cold storage by

ensuring that Hekaton postprocessing and validation of cold data is

done completely in memory. Experiments on Siberia implemented

in Hekaton reveal that for cold data acccess rates appropriate for

main-memory optimized databases, we incur an acceptable 7-14%

throughput loss.

9. REFERENCES
[1] K. Alexiou, D. Kossmann, P.Å. Larson. Adaptive Range

Filters for Cold Data: Avoiding Trips to Siberia. PVLDB

6(14): 1714-1725 (2013).

[2] J. Dean. Challenges in Building Large-Scale Information

Retrieval Systems. In WSDM 2009 (keynote). Slides

available at:
http://research.google.com/people/jeff/WSDM09-keynote.pdf

[3] J. DeBrabant, A. Pavlo, S. Tu, M. Stonebraker, and S.

Zdonik. Anti-Caching: A New Approach to Database

Management System Architecture. PVLDB 6(14): 1942-1953

(2013).

[4] C. Diaconu, C. Freedman, E. Ismert, P.Å. Larson, P. Mittal,

R. Stonecipher, N. Verma, and M. Zwilling, Hekaton: SQL

Server’s Memory-Optimized OLTP Engine. In SIGMOD,

2013.

[5] F. Funke, A. Kemper, and T. Neumann. Compacting

Transactional Data in Hybrid OLTP & OLAP Databases.

PVLDB 5(11): 1424– 1435 (2012).

[6] M. Grund, J. Krüger, H. Plattner, A. Zeier, P. Cudre-

Mauroux, and S. Madden. HYRISE - A Main Memory

Hybrid Storage Engine. PVLDB 4(2): 105-116 (2010).

[7] S. Harizopoulos, D.J. Abadi, S. Madden, and M.

Stonebraker. OLTP Through the Looking Glass, and What

We Found There. In SIGMOD, 2008.

[8] R. Kallman et al. H-store: a high-performance, distributed

main memory transaction processing system. PVLDB 1(2):

1496-1499 (2008).

[9] A. Kemper and T. Neumann. HyPer: A Hybrid OLTP &

OLAP Main Memory Database System Based on Virtual

Memory Snapshots. In ICDE, 2011.

[10] T. Lahiri, M.A. Neimat, and S. Folkman. Oracle TimesTen:

An In-Memory Database for Enterprise Applications. IEEE

Data Engineering Bulletin 36(2): 6-13 (2013).

[11] P.Å. Larson, S. Blanas, C. Diaconu, C. Freedman, J. M.

Patel, M. Zwilling. High-Performance Concurrency Control

Mechanisms for Main-Memory Databases. PVLDB 5(4):

298-309 (2011).

[12] J. Lee, M. Muehle, N., May, F. Faerber, V. Sikka, H.

Plattner, J. Krueger, and M. Grund. High-Performance

Transaction Processing in SAP HANA. IEEE Data

Engineering Bulletin 36(2): 28-33 (2013).

[13] J. Levandoski, P.Å. Larson, and R.Stoica. Classifying Hot

and Cold Data in a Main Memory OLTP Engine. In ICDE,

2013.

[14] J. Levandoski, D. B. Lomet, and S Sengupta, The Bw-Tree:

A B-tree for New Hardware Platforms. In ICDE, 2013.

[15] J. Lindström, V. Raatikka, J. Ruuth, P. Soini, K. Vakkila.

IBM solidDB: In-Memory Database Optimized for Extreme

Speed and Availability. IEEE Data Engineering Bulletin

36(2): 14-20 (2013).

[16] M. M. Michael. High performance dynamic lock-free hash

tables and list-based sets. In SPAA, 2002.

[17] L. Sidirourgos and P.Å. Larson, Adjustable and Updatable

Bloom Filters. Available from the authors.

[18] R. Stoica and A. Ailamaki. Enabling Efficient OS Paging for

Main-memory OLTP Databases. In DaMon, 2013.

[19] M. Stonebraker et al. The End of an Architectural Era (Its

Time for a Complete Rewrite). In VLDB, 2007.

[20] M. Stonebraker and A. Weisberg. The VoltDB Main

Memory DBMS. IEEE Data Engineering Bulletin 36(2): 21-

27 (2013).

[21] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao,

and D. J. Abadi. Calvin: Fast Distributed Transactions for

Partitioned Database Systems. In SIGMOD, 2012.

[22] SQLIO Disk Benchmark Tool: http://aka.ms/Naxvpm

[23] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and

R. Sears. Benchmarking Cloud Serving Systems with YCSB.

In SoCC, 2010.

