
Trekking Through Siberia: Managing Cold Data in a 
Memory-Optimized Database 

Ahmed Eldawy* 
University of Minnesota 
eldawy@cs.umn.edu 

Justin Levandoski 
Microsoft Research 

justin.levandoski@microsoft.com 

Per-Åke Larson 
Microsoft Research 

palarson@microsoft.com 

 

 

ABSTRACT 

Main memories are becoming sufficiently large that most OLTP 

databases can be stored entirely in main memory, but this may not 

be the best solution. OLTP workloads typically exhibit skewed 

access patterns where some records are hot (frequently accessed) 

but many records are cold (infrequently or never accessed). It is still 

more economical to store the coldest records on secondary storage 

such as flash. This paper introduces Siberia, a framework for 

managing cold data in the Microsoft Hekaton main-memory 

database engine. We discuss how to migrate cold data to secondary 

storage while providing an interface to the user to manipulate both 

hot and cold data that hides the actual data location. We describe 

how queries of different isolation levels can read and modify data 

stored in both hot and cold stores without restriction while 

minimizing number of accesses to cold storage. We also show how 

records can be migrated between hot and cold stores while the 

DBMS is online and active. Experiments reveal that for cold data 

access rates appropriate for main-memory optimized databases, we 

incur an acceptable 7-14% throughput loss. 

1. INTRODUCTION 
Database systems have traditionally been designed under the 

assumption that data is disk resident and paged in and out of 

memory as needed. However, the drop in memory prices over the 

past 30 years is invalidating this assumption. Several database 

engines have emerged that store the entire database in main 

memory [3, 5, 7, 9, 11, 14, 19]. 

Microsoft has developed a memory-optimized database engine, 

code named Hekaton, targeted for OLTP workloads. The Hekaton 

engine is fully integrated into SQL Server and shipped in the 2014 

release. It does not require a database be stored entirely in main 

memory; a user can declare only some tables to be in-memory 

tables managed by Hekaton. Hekaton tables can be queried and 

updated in the same way as regular tables. To speed up processing 

even further, a T-SQL stored procedure that references only 

Hekaton tables can be compiled into native machine code. Further 

details about the design of Hekaton can be found in [4], [11]. 

OLTP workloads often exhibit skewed access patterns where some 

records are “hot” and accessed frequently (the working set) while 

others are “cold” and accessed infrequently. Clearly, good 

performance depends on the hot records residing in memory. Cold 

records can be moved to cheaper external storage such as flash with 

little effect on overall system performance. 

The initial version of Hekaton requires that a memory-optimized 

table fits entirely in main memory. However, even a frequently 

accessed table may exhibit access skew where only a small fraction 

of its rows are hot while many rows are cold. We are investigating 

techniques to automatically migrate cold rows to a “cold store” 

residing on external storage while the hot rows remain in the in-

memory “hot store”. The separation into two stores is only visible 

to the storage engine; the upper layers of the engine (and 

applications) are entirely unaware of where a row is stored. 

The goal of our project, called Project Siberia, is to enable the 

Hekaton engine to automatically and transparently maintain cold 

data on cheaper secondary storage.  We divide the problem of 

managing cold data into four subproblems. 

 Cold data classification: efficiently and non-intrusively 

identify hot and cold data. We propose to do this by logging 

record accesses, possibly only a sample, and estimating 

accesses frequencies off line as described in more detail in 

[13]. One could also use a traditional caching approach such 

as LRU or LRU-2 but the overhead is high in both space and 

time. As reported in [13], experiments showed that 

maintaining a simple LRU chain added 25% overhead to the 

cost of lookups in an in-memory hash table and added 16 bytes 

to each record. This we deemed too high a price. 

 Cold data storage: evaluation of cold storage device options 

and techniques for organizing data on cold storage.  

 Cold storage access reduction: reducing unnecessary accesses 

to cold storage for both point and range lookups by 

maintaining compact and accurate in-memory access filters. 

We propose to achieve this by storing in memory compact 

summaries of the cold store content. We are investigating two 

techniques: a version of Bloom filters for point lookups and 

range filters, a new compact data structure that also supports 

range queries. More details can be found in [1, 17]. 

 Cold data access and migration mechanisms: mechanisms for 

efficiently migrating, reading, and updating data on cold 

storage that dovetail with Hekaton’s optimistic multi-version 

concurrency control scheme [11].  

In this paper, we focus on the fourth point, namely, how to migrate 

records to and from the cold store and how to access and update 

records in the cold store in a transactionally consistent manner. This 

paper is not concerned with exact indexing and storage mechanisms 

used; all we assume is that the cold store provides methods for 

inserting, deleting, and retrieving records. To allow for maximum 

flexibility in the choice of cold store implementations our only 
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additional requirement is that the cold store guarantees durability, 

i.e, that it does not lose data even in the event of crashes. We do not 

require that the cold store be transactional. Thus, our design can 

work with a number of cold store implementations, for example, a 

traditional DBMS table, a key-value store, or even a file. 

The basic idea of our approach is to completely separate hot and 

cold data into separate stores. We do not store information about 

cold records in memory (e.g., cold keys in in-memory indexes) 

besides compact Bloom or range filters. Transactions are free to 

access and update data in either store without restriction. In fact, 

our design hides the details of the hot/cold storage split beneath the 

interface to the Hekaton storage engine. Upper software layers are 

unaffected by the split between hot and cold storage.  

Siberia is designed to fully integrate with Hekaton’s optimistic 

multi-version concurrency control (MVCC) scheme. The basic idea 

of this scheme is that records are multi-versioned and versions have 

disjoint valid time ranges. Transactions read records as of a logical 

read time, while record updates create a new version. Reads operate 

by first checking the in-memory “hot” table. If the key is not found 

or the lookup index is not unique, the read then checks a Bloom 

filter to see if it needs to access the cold store; if so it performs the 

cold read. A transaction keeps records read from the cold store in a 

private in-memory cache. 

Siberia guarantees transactional consistency for updates that span 

the hot and cold store (e.g., when data moves from hot to cold 

storage or vice versa) even if the cold store is not transactional. To 

achieve this we use an update memo, implemented as a durable 

Hekaton table that temporarily stores information about records 

whose update spans hot and cold stores.  When a transaction 

updates a cold record, the record moves from the cold to hot store. 

The new version is placed in the hot store, while the transaction 

also records a “delete” notice in the memo signifying that the cold 

version will eventually become obsolete.  The cold record and its 

corresponding notice are deleted once the version in the cold store 

is no longer visible to any active transaction. Records move from 

the hot to cold store using a migration process that updates a stale 

hot record and writes a new but identical version to the cold store. 

The migrating transaction also posts a “migrated” notice to the 

memo that records the valid begin time of the record on cold 

storage. The “migrated” notice is deleted once the version in the 

cold store becomes visible to all transactions. The old version in the 

hot store is removed automatically by Hekaton’s garbage collection 

mechanism.  

While this may seem complex at first glance, the update memo 

provides several important benefits. (1) The cold store is not 

required to be transactional.  (2) It enables live migration of data to 

and from cold storage while the database is online and active. (3) 

The timestamp updates done during postprocessing of a transaction 

are done entirely in memory without accessing cold storage. (4) 

Validation is done entirely in memory without accessing cold 

storage (validation and postprocesing details of Hekaton are 

covered in Section 3.1). The last two points are particularly salient, 

as they allow Sibieria to make only the absolute minimal accesses 

to cold storage, i.e., for reading, inserting, or deleting cold records. 

We prototyped Siberia within the Hekaton engine and performed 

extensive experiment evaluation. We find that for cold data access 

rates appropriate for a main-memory optimized database (e.g., 5-

10%), Siberia leads to an acceptable throughput loss of 7-14% 

when the cold store resides on a commodity flash SSD. 

The rest of this paper is organized as follows. Section 2 and 3 

describe Hekaton’s storage and indexing, as well as its concurrency 

control technique. Section 4 and 5 covers the Siberia architecture 

and describe how it integrates into Hekaton. Section 6 provides an 

experimental evaluation of Siberia, while Section 7 covers related 

work. Section 8 concludes this paper. 

2. HEKATON STORAGE AND INDEXING 
In this section we summarize how records are stored, accessed and 

updated by the Hekaton storage engine. This background 

information is needed to understand our design for cold data.  

A table created with option memory_optimized is managed by 

Hekaton and stored entirely in memory. Hekaton supports two 

types of indexes: hash indexes which are implemented using lock-

free hash tables [16] and range indexes which are implemented 

using Bw-trees, a novel lock-free version of B-trees [14].  A table 

can have multiple indexes and records are always accessed via an 

index lookup. Hekaton uses multiversioning where an update 

always creates a new version. 

Figure 1 shows a simple bank account table containing five version 

records. Ignore the numbers (100) and text in red for now.  The 

table has three (user defined) columns: Name, City and Amount. A 

version record includes a header and a number of link (pointer) 

fields. A version’s valid time is defined by timestamps stored in the 

Begin and End fields in the header.  

The example table has two indexes; a hash index on Name and an 

ordered index on City. Each index requires a link field in the record. 

The first link field is reserved for the Name index and the second 

link field for the City index. For illustration purposes we assume 

that the hash function just picks the first letter of the name. Versions 

that hash to the same bucket are linked together using the first link 

field. The leaf nodes of the Bw-tree store pointers to records. If 

multiple records have the same key value, the duplicates are linked 

together using the second link field in the records and the Bw-tree 

points to the first record on the chain.  

Hash bucket J contains three records: two versions for John and one 

version for Jane. Jane’s single version (Jane, Paris, 150) has a valid 

time from 15 to infinity meaning that it was created by a transaction 

that committed at time 15 and it is still valid. John’s oldest version 

(John, London, 100) was valid from time 10 to time 20 when it was 

updated. The update created a new version (John, London, 110). 

Figure 1: Hekaton record structure and indexing. 



2.1 Reads 
Every read operation specifies a logical (as-of) read time and only 

versions whose valid time overlaps the read time are visible to the 

read; all other versions are ignored. Different versions of a record 

always have non-overlapping valid times so at most one version of 

a record is visible to a read. A lookup for John with read time 15, 

for example, would trigger a scan of bucket J that checks every 

record in the bucket but returns only the one with Name equal to 

John and valid time 10 to 20. If the index on Name is declared to 

be unique, the scan of the buckets stops as soon as a qualifying 

record has been found. 

2.2 Updates 
Bucket L contains two records that belong to Larry. Transaction 75 

is in the process of deducting $20 from Larry’s account. It has 

created the new versions (Larry, Rome, 150) and inserted it into the 

index.  

Note that transaction 75 has stored its transaction Id in the Begin 

and End fields of the new and old version, respectively (one bit in 

the field indicates the field’s content type). A transaction Id stored 

in the End field prevents other transactions from updating the same 

version. A transaction Id stored in the Begin field informs readers 

that the version may not yet be committed and identifies which 

transaction created the version.  

Now suppose transaction 75 commits with end timestamp 100. 

After committing, transaction 75 returns to the old and new 

versions and sets the Begin and End fields to 100. The final values 

are shown in red below the old and new versions. The old version 

(Larry, Rome, 170) now has the valid time 30 to 100 and the new 

version (Larry, Rome, 150) has a valid time from 100 to infinity. 

This example also illustrates how deletes and inserts are handled 

because an update is equivalent to a deleting an existing version 

and inserting a new version. 

The system must discard obsolete versions that are no longer 

needed to avoid filling up memory. A version can be discarded 

when it is no longer visible to any active transaction. Cleaning out 

obsolete versions, a.k.a. garbage collection, is handled 

cooperatively by all worker threads. Garbage collection is 

described in more detail in [4]. 

3. CONCURRENCY CONTROL 
Hekaton utilizes optimistic multi-version concurrency control 

(MVCC) to provide snapshot, repeatable read and serializable 

transaction isolation without locking. This section summarizes the 

core concepts of the optimistic MVCC implemented in Hekaton. 

Further details can be found in reference [11]. 

Hekaton uses timestamps produced by a monotonically increasing 

counter for several purposes. 

 Commit/End Time for a transaction: every update transaction 

commits at a distinct point in time called the commit or end 

timestamp of the transaction.  The commit time determines a 

transaction’s position in transaction serialization order. 

 Valid Time for a version:  Every version in the database 

contain two timestamps – begin and end.  The valid time for a 

version is the timestamp range defined by its begin and end 

timestamps.   

  Logical Read Time: the read time of a transaction is set to 

the transaction’s start time. Only versions whose valid time 

overlaps the logical read time are visible to the transaction.   

The notion of version visibility is fundamental to concurrency 

control in Hekaton.  A transaction executing with logical read time 

RT must only see versions whose begin timestamp is less than RT 

and whose end timestamp is greater than RT. A transaction must of 

course also see its own updates. 

3.1 Transaction Commit Processing 
Once a transaction has completed its normal processing, it begins 

commit processing.  

3.1.1 Validation 
Validation is required only for update transactions running at 

repeatable read or serializable isolation but not for read-only 

transactions or update transactions at lower isolation levels. 

Validation begins with the transaction obtaining an end timestamp. 

It then verifies its reads and, if it runs under serializable isolation, 

it also verifies that no phantoms have appeared.    

To validate its reads, the transaction checks that the versions it read 

are visible as of the transaction’s end time. To check for phantoms, 

it repeats all its index scans looking for versions that have become 

visible since the transaction began. To enable validation each 

transaction maintains a read set, a list of pointers to the versions it 

has read, and a scan set containing information needed to repeat 

scans. While validation may sound expensive, keep in mind that it 

is only required for update transactions at higher isolation levels 

and, furthermore, most likely the versions visited during validation 

remain in the L1 or L2 cache.  

3.1.2 Logging and Post-processing 
A transaction T is committed as soon as its updates to the database 

have been hardened to the transaction log.  Transaction T writes to 

the log the contents of all new versions created by T and the primary 

key of all versions deleted by T.  

Once T’s updates have been successfully logged, T is irreversibly 

committed. T then begins a postprocessing phase during which the 

begin and end timestamps in all versions affected by the transaction 

are updated to contain the end timestamp of the transaction.  

Transactions maintain a write-set, a set of pointers to all inserted 

and deleted versions that is used to perform the timestamp updates 

and generate the log content. 

4. SIBERIA ARCHITECTURE 
In our proposed architecture, shown in Figure 2, some records are 

stored in a hot store and some records in a cold store. The hot store 

contains records that are accessed frequently while the cold store 

contains archival data that is rarely accessed but still needs to be 

part of the database. 

Figure 2: Main architectural components of Siberia. 



Our goal is to provide a unified interface for processing records 

coming from hot or cold stores and hide the physical location of a 

record to higher software layers. We achieve this by implementing 

all the Siberia machinery below the cursor interface of the Hekaton 

engine.  At the same time, we need an efficient way to access the 

cold store that minimizes the overhead caused by accessing 

secondary storage. The intent is to move data automatically and 

transparently between hot and cold stores according to their access 

pattern. This migration of data between stores should be done 

seamlessly without affecting the active transactions and while the 

DBMS is online and running. 

To allow seamless migration between hot and cold stores, we 

perform migration using normal operations (insert and delete) 

wrapped in a transaction. This allows the migration transaction to 

run while other transactions are working and still keeping 

transactions isolated and the database consistent. 

4.1 Cold Store 
The cold store is a persistent store where we can insert, read, and 

delete records. The store does not have to be transactional; all we 

require is durability. Optionally, the cold store may provide indexes 

to speed up queries. With these minimal requirements, different 

implementations of the cold store are possible. It could, for 

example, be implemented as a traditional DBMS table because it is 

durable, efficient and supports different types of indexes. 

As shown in Figure 3, records in the cold store contain the same 

key and payload fields as their hot counterparts plus a field TxnId 

that stores the Id of the (migration) transaction that inserted the 

record into the cold store. TxnId serves as a version number that 

helps uniquely identify different versions of the same record. 

4.2 Access Filters 
The data in the cold store may have multiple indexes, typically the 

same indexes as the corresponding in-memory table. Each cold 

store index is associated with an in-memory access filter. The 

access filter stores a compact (and accurate) summary of the 

contents of cold store. Before accessing the cold store we check the 

access filter; it the filter indicates that no records in the cold store 

satisfy the search condition we have avoided an unnecessary trip to 

the cold store. In previous work we proposed two novel access 

filters: one for point lookups [17] and another that supports range 

queries [1] (details are available in these references). 

Our prototype only supports point lookups via hashing and uses a 

new form of Bloom filters [17]. Instead of one large Bloom filter 

per hash index, the filter is split into many smaller Bloom filters, 

each one covering the records in a few adjacent hash buckets. The 

filters are stored in an in-memory Hekaton table. This design has 

several advantages over using a single large Bloom filter: (a) 

building them is faster; (b) filter lookups are faster (fewer cache 

misses); (c) access skew can be exploited by assigning fewer bits 

to seldom used filters and more to heavily accessed ones; and (d) 

filters that have deteriorated because of inserts and deletes can be 

quickly rebuilt by scanning a few hash buckets.   

4.3 Private Cache 
Each transaction has a private cache that stores the records it has 

read from the cold store. We use private caches because each record 

in the cold store is accessed infrequently so the probability of 

another transaction reading the same record within a short time 

window is very low. This simplifies the cache implementation 

because there is no need to consider concurrency issues. If a cold 

record is read twice by two different transactions, we will actually 

keep two cached versions, one for each transaction. There is a 

chance of using extra memory here but we view this as an 

acceptable price to pay.  

Figure 4 shows the structure of a record in the cache. The part 

labelled “Real record” has exactly the same structure as a record in 

the hot store. The field NoticePtr in the prefix contains a pointer to 

a notice in the update memo (described in the next section) or null. 

This pointer is only used during validation.  

When a cursor receives a record from a cold scanner, it checks 

whether the record is visible and satisfies the cursor’s filter 

predicate (if any). If it finds that the record qualifies, it copies the 

record into its private cache, marks it as COLD, clears link fields, 

and sets the NoticePtr. It then returns a pointer to the Real record 

part of the copy. Each transaction has a separate memory heap and 

the cached copies are stored in this heap. When a transaction 

terminates, all memory reserved by its heap is released.  

To software layers above the cursor interface, records in a private 

cache look exactly the same as records in the hot store. However, 

during validation we need to be able to identify which records 

originate from cold storage. We mark a record as cold by setting its 

first link field to a special value “COLD”. 

4.4 Update Memo 
The update memo is an in-memory table that temporarily stores 

timestamp notices that specify the current status of records in the 

cold store. Its primary purpose is to enable validation and detection 

of write-write conflicts to be done entirely in memory without 

accessing the cold store. The update memo is implemented as a 

durable Hekaton table. There is one update memo per database.  A 

notice is structured as shown in Figure 5. 

As all records in Hekaton tables, a notice contains a begin 

timestamp (Begin) and an end timestamp (End). The record header 

contains miscellaneous other fields used internally by Hekaton. The 

notice’s target record is uniquely identified by the three underlined 

fields: TableID, RecTxnId, and Key. TableID contains the ID of the 

table to which the record belongs. RecTxnId contains the value 

from the field TxnId of the target record. The field Key is a variable 

length field storing the record’s unique key. The cold store may 

contain multiple versions of the same record but the versions have 

different RecTxnId values. The field BTsCopy is used for storing a 

copy of a timestamp – it is seldom used but still needed. 

Figure 3: Structure a record in the cold store. Figure 4: Structure of a cached record. 

Figure 5: Structure of a timestamp notice in the update memo. 



A timestamp notice carries timestamps for its target records which 

are used when the record is read into a private cache. The Type field 

specifies which timestamps the notice carries as follows. 

 N (None) – temporary notice with no timestamps. The target 

record is orphaned because of an in-progress or failed 

migration transaction and is to be ignored. 

 B (Begin) – the begin timestamp of the notice equals the begin 

timestamp of the record 

 E (End) – the begin timestamp of the notice equals the end 

timestamp of the record 

 BE (Begin & End) – the BTsCopy field contains the begin 

timestamp of the record and the begin timestamp of the notice 

equals the end timestamp of the record 

The update memo is used when reading a record from the cold store 

and during validation. When reading a record, we check whether 

there is matching notice in the update memo. If so, the notice 

specifies the record’s current status and its timestamps.   

An update transaction running under repeatable read or serializable 

isolation must validate its reads by rechecking the timestamps of 

every record it read.  The update memo stores the current 

timestamps of all records that have been updated since the begin 

time of the oldest active transaction. Consequently, a transaction 

can validate its reads simply by checking notices in the update 

memo.  

A serializable update transaction must also validate its scans. We 

completely avoid repeating scans against the cold store by always 

inserting new versions in the hot store. This is explained in more 

detail in the next section. 

5. SIBERIA INTEGRATION IN HEKATON 
In this section, we describe how each basic operation is done in the 

presence of the cold store. First, we describe how we insert a record 

into the cold store during migration. Then, we discuss how we 

delete and update records in the cold store. After that, we explain 

how to read a record from cold storage. Finally, we show how a 

transaction can be validated when it reads cold records. 

5.1 Insert 
New records are always inserted into the hot store. When a record 

is updated the new version is always inserted into the hot store 

regardless of where the old version resides. 

5.2 Migration to Cold Storage 
Siberia classifies candidate records for migration to and from cold 

storage using a technique we proposed in previous work [13]. The 

basic idea is to log a sample of records to reduce overhead on 

Hekaton’s main execution path. Our classification algorithm is 

capable of classifying hot and cold records from a log of 1B 

accesses in sub-second time (and can be pushed to a different 

machine or given its own core, if necessary). Siberia triggers 

migration to and from cold storage using the results of 

classification. We now describe how data migrates to cold storage. 

We use the update operation to bring records from cold to hot 

storage (cold record updates are discussed in Section 5.4). 

All inserts into the cold store are done by a special migration 

transactions that move records from the hot store to the cold store.   

Migration is preferably done in the background when the system is 

lightly loaded. We discuss how to migrate a single record but the 

same techniques apply when multiple records are migrated at once. 

A record is migrated to the cold store by deleting it from the hot 

store and re-inserting a record with the same content in the cold 

store. During migration, the system is still active and other 

transactions may be running, some of which may wish to read or 

update the record being migrated.  

Because the cold store is not transactional, migration must be done 

carefully in two steps, each in a separate transaction. If it were done 

in a single transaction and the transaction aborted we could end up 

with two valid instances of the same record, one in the hot store and 

one in the cold store. 

The first transaction, TxN, reads a target record and installs a 

preliminary migration notice Ntc of type N in the update memo. 

The notice essentially says “If you read a record that matches this 

notice, ignore it – it’s not supposed to be there.” A record is not 

migrated unless it is a latest version (end timestamp equals infinity) 

and it is visible to all transactions, current and future. Hekaton’s 

versioning is transient meaning that an old version is kept only until 

it is no longer visible to any currently active transactions. Old 

versions are cleaned out quickly so there is no point in migrating 

them to the cold store. 

The second transaction. TxM, performs the actual migration. It 

creates a copy of the target record, inserts it into the cold store, and 

updates any affected Bloom filters. Once the record has safely been 

inserted into the cold store, the migration notice is updated, setting 

its type to B. Finally the record in the hot store is deleted and the 

transaction commits. The notice stores the begin timestamp of the 

version in the hot store. The notice is updated in the same 

transaction as the version in the hot store is deleted which ensures 

that the two versions will have non-overlapping timestamp ranges. 

Hence, only one of the two version will be visible to a transaction, 

never both. 

If transaction TxM doesn’t commit because of a crash or any other 

reason, all its changes except the insert into the cold store will be 

rolled back automatically by Hekaton. In that case, the new version 

will still exist in the cold store but readers will find a notice of type 

N and ignore it. 

The effect of migrating a record to the cold store is illustrated in 

Figure 6. It shows the status after commit of transactions TxN and 

TxM. Transction TxN just inserts a notice into the update memo. 

Transaction TxM deletes the version in the hot store by setting its 

end timestamp. It inserts a copy of the record into the cold store and 

updates the notice in the update memo. 

Figure 6: Contents of cold store, hot store, and update memo 

during migration of a record. 



The old version in the hot store and the old version of the notice (of 

type N) will be garbage collected once they are no longer visible to 

any active transactions.  The new version of the notice can be 

deleted as soon as the version in the cold store is visible to all active 

transactions, that is, when the read time of the oldest active 

transaction in the system becomes higher than CtM. Cleaning out 

notices that are no longer needed is done in the background by 

special memo cleanup transactions (described in Section 5.6). 

It is possible that a transaction T might attempt to read or update a 

record R in the hot store that is under active migration. In this case, 

R will have an end timestamp of TxM, meaning TxM is in the 

process of moving R to cold storage and changing R’s update notice 

type. In this case T follows Hekaton’s visibility rules. If T is a 

reader it ignores R if TxM is active or aborted. If TxM is preparing 

to commit, then R is visible to T if TxM’s commit time is greater 

than T’s read time, otherwise T speculatively ignores R1. If TxM is 

committed then T uses TxM’s end timestamp to test visibility. T is 

allowed to update R only if TxM has aborted; if TxM is active or 

preparing then this is write-write conflict and T must abort. The 

details of Hekaton’s visibility rules are covered in [11]. 

5.3 Delete 
Deleting a record from the cold store is also a two-step process. We 

first mark the record logically deleted by creating a notice of type 

E or BE in the update memo. The notice specifies the end 

timestamp of the record. Readers always check the update memo 

so they will find the notice and check the record’s visibility. If the 

record is not visible, the reader ignores the record. The record is 

physically removed later by a memo cleaner transaction. The record 

can be removed and the notice deleted only when it is no longer 

visible to any of the active transactions.  

A record in the cold store may be deleted because it is being 

updated. If that is the case, the new version is inserted into the hot 

store in the same transaction. 

Figure 7 shows the effect on the update memo of a deletion. The 

net effect is simply to add or update a notice in the update memo. 

The begin timestamp of the notice specifies the end timestamp of 

the target record. The notice is essentially saying “As of my begin 

timestamp the record is no longer visible to anybody so ignore it”.  

We also need to consider whether write-write conflicts will be 

correctly detected. Suppose we have two transactions that attempt 

to delete or update the same record concurrently. A write-write 

conflict in the hot store is easily detected because each record has 

exactly one copy in memory. One of the transactions will be the 

first one to update the record’s end timestamp. When the other 

transaction attempts to change the timestamp it will notice that it is 

no longer equal to infinity, conclude that another transaction has or 

is about to delete the version, and abort. 

With cold records, each transaction reads its own copy from disk 

and obtains a cached version in its own buffer. An update or delete 

is done by inserting or updating a notice in the update memo. If 

there is an existing notice that needs to be modified, the conflict is 

detected when the transactions attempts to modify the end 

timestamp of the notice. However, there may be no old notice to 

modify.  The update memo has a unique index built on the fields 

TableID, RecTxnId, and Key. Two transactions trying to modify 

the same record version will end up trying to insert two notices with 

                                                                 
1 Speculatively ignoring R means T takes a commit dependency on 

TxM. Hekaton commit dependency handling is covered in [11]. 

the same key value. The unique index on the update memo will 

detect the violation and one of the transactions will abort. 

5.4 Updates 
A record in the cold store is updated by deleting the old version 

from the cold store and inserting the new version into the hot store. 

The new version may, of course, be later migrated into the cold 

store but new versions are never directly inserted into the cold store. 

Regular insertions of completely new records also go into the hot 

store (as described in Section 5.1).  

There are two reasons for always inserting new versions into the 

hot store. First, a new record is considered hot and updating a 

record is interpreted as a signal that it is (potentially) becoming hot. 

Second, it has the effect that the scan validation required by 

serializable transactions can be done entirely in the hot store, that 

is, entirely in memory. Scan validation checks for new records 

satisfying the scan predicate that have appeared since the 

transaction began. Since all modified and new records are always 

inserted into the hot store, it is unnecessary to check the cold store. 

5.5 Read 
A point lookup or scan first probes the in-memory access filter to 

see if it must access cold storage. If a cold access is necessary, it 

begins by retrieving the record from the cold store into an IO buffer 

and padding it so it has the same format as in-memory records. The 

next step is to look for a matching notice in the update memo. If 

notice of type N is found the record is ignored. Otherwise its begin 

timestamp and end timestamp are set and we check whether it is 

visible and passes any user-defined filter functions. If it passes all 

the tests, it is copied into the transaction’s cache and a pointer to 

the cached record is returned to the transaction. 

5.6 Update Memo and Cold Store Cleaning 
Migrating records to the cold store and updating or deleting records 

in the cold store adds notices to the update memo. Deletes from the 

cold store do not physically remove records. To prevent the update 

memo from growing indefinitely, we need to delete stale notices. 

Similarly, we also need to remove records in the cold store that are 

no longer visible to any transactions. 

Figure 7: Effect on the cold store and update memo of a 

record deletion.  



This required maintenance of the update memo is done by a cleaner 

process that is invoked periodically. While the cleaner process is 

running migration is blocked. The cleaner process scans through 

the memo once, checking each committed notice. The action taken 

depends on the type of the notice.  

 An N type notice indicates a failed insert into the cold store. 

The associated record is not visible to anybody so it can be 

safely removed and the notice deleted. 

 A notice of type BE or E corresponds to a (logically) deleted 

records. If the record was deleted before the begin timestamp 

of the oldest active transaction, it is not visible to any current 

or future transactions and can be safely removed  and the 

notice deleted. 

 A notice of type B corresponds to a currently visible record 

(its end timestamp is infinity). If its begin timestamp is earlier 

than the begin timestamp of the oldest active transaction, the 

record is visible to all current and future transaction. If so the 

notice can be safely deleted because a record with no notice 

will get default timestamps (1, infinity) when being read. 

The actual delete of a notice has to be done in a transaction that 

begins after the corresponding cold record, if any, has been deleted. 

This is to prevent a situation where a notice was deleted but the 

corresponding record was not.  

5.7 Validation 
An update transaction running at repeatable read or serializable 

isolation needs to validate before it commits. If validation fails, the 

transaction aborts.  

For both repeatable read and serializable isolation, we must verify 

that records read by the transaction have not been updated or 

deleted by another transaction before commit. In a memory-only 

scenario, this is done by keeping a pointer to each record read. At 

commit time, we test to make sure that all the read versions are still 

visible as of the commit time. If all versions are still visible, it 

means that no other transaction changed them during the lifetime 

of the validating transaction. 

With cold records, we do not have a single copy of the record.  

However, we know that all updates to cold records are done through 

the update memo. The test is similar to that in memory-only 

scenario but we need to fix the end timestamp of the records in the 

transaction’s cache before performing the visibility check.  

To update the end timestamp of a cached record Rc, recall that Rc 

is prefixed with a field NoticePtr that is either null or points to the 

notice used when the record was read. If NoticePtr is not null, we 

copy the notice’s begin timestamp if it is of type E. Otherwise, the 

notice is of type BE and we we copy from its BTsCopy field. 

For a serializable update transaction, we must also validate the 

transactions scans to detect phantoms. In a memory-only scenario, 

we accomplish this by repeating the scan against the main-memory 

index and checking whether any new records have appeared. 

Repeating a scan in the cold store could be very expensive, so we 

want to avoid doing so. By design, we insert newly inserted records 

and new versions resulting from an update of a cold record directly 

                                                                 
2 We assume the read is necessary and that the access filters are 

accurate. 

into the hot table. This means that a scan of the hot table is enough 

to detect phantoms.  

However, a serializable transaction may still fail in the following 

scenario: 

1. TxS (Serializable) scans the table. TxS is still active. 

2. TxI (Insert) inserts a new record to the hot store and commits. 

3. TxM (Migrate) migrates the newly inserted record to the cold 

store and commits. 

4. TxS validates by repeating the scan over the hot table. The 

newly inserted record will not be visible anymore because the 

version in the hot store has been migrated. 

To solve this problem we enforce an additional constraint on 

migrating records. When the migration transaction starts, it first 

computes TsBoundSer, the begin timestamp of the oldest 

serializable transaction that is still active (uncommitted) in the 

system. The migration transaction does not migrate any record with 

a begin timestamp later than TsBoundSer. This ensures that a newly 

inserted record in the hot store will remain there until the 

serializable transaction validates. This additional constraint is not 

likely to delay migration of very many records so its effect is 

minimal. However, it is necessary for correctness. 

5.8 Discussion 
Any cold-data management framework should limit accesses to 

slower cold storage to an absolute minimum. This section briefly 

discusses how the Siberia achieves this goal within Hekaton. A 

read of a cold record2 requires a single cold store read to bring the 

record into memory (the transaction’s private cache); after that all 

processing is done in memory. An update or delete of a cold record 

requires (a) a single cold store read to bring the existing record into 

memory (also to verify its existence) and (b) a single cold store 

delete to remove the record from secondary storage (in case of an 

update the new version is placed in memory). The migration of a 

record from hot to cold storage requires a single insert into the cold 

store. Insert operations place a new record in memory, thus do not 

incur an access to cold storage. Since the update memo and private 

cache ensure all validation and postprocessing occur in memory, no 

extra cold storages accesses are necessary. 

Figure 8: In-memory overhead of the Siberia framework. 
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6. Experiments 
To evaluate the Siberia framework, we prototyped it within the 

Microsoft SQL Server Hekaton engine. This section reports 

experimental evaluation of the cold data access techniques 

described in this paper. 

6.1 Setup 

6.1.1 Machine Configuration 
Our experiment machine is an Intel Xeon W3550 (at 3.07 GHz) 

with 24 GB of RAM and 8MB L3 cache.  The machine contains 

four cores that we hyper-thread to eight logical processors.  All cold 

data is stored on a Samsung 840 SSD with 500GB capacity.  Tests 

using the SQLIO utility [22] revealed that this drive is capable of 

sustaining 140K IOPs for 512 byte random reads (at queue depth 

32).  All I/O in our experiments is un-buffered. 

6.1.2 Workload 
We use two workloads in our experiments: 

YCSB Benchmark. The YCSB cloud benchmark [23] consists of 

a 20GB single-table database. Each record is 1KB consisting of ten 

100 byte columns. YCSB consists of single-step transactions that 

either read or upate a record. We run three workload types from the 

benchmark: (1) Read-heavy: 90% reads and 10% updates; (2) 

Write-heavy: 50% reads and 50% updates; (3) Read-only: 100% 

reads.  YCSB uses a scrambled Zipfian distribution to generate key 

accesses for a workload. We vary distribution skew between 0.5 

(lower skew) and 1.5 (higher skew).  

Multi-step read/update workload. This workload consists of a 

single Hekaton table containing 20M records. Each record has a 

size of 56 bytes (including header), meaning the database occupies 

roughly 1.04 GB of memory; this is safely outside of the L3 cache 

of our experiment machine. We employ two types of transactions 

in our workload. (1) Read-only: a transaction consisting of four 

reads of four distinct records. (2) Update-only. a transaction 

consists of four updates of four distinct records While simple, this 

single-table workload allows us to closely control the experiment 

parameters to understand Siberia’s performance. 

Unless otherwise noted, 70% of the database resides in the cold 

store. The workload is generated by 32 clients.  Each client maps 

to a single thread and calls directly into the Hekaton engine. To 

introduce realistic client processing and communication delay, each 

client waits 500 microseconds before issuing its next transaction. 

We chose 500 microseconds since it roughly estimates the round-

trip time for an inter-datacenter network message [2].  

6.1.3 Cold Stores 
Our experiments use two cold store implementations. 

 Memory-only:  The cold store is in-memory Hekaton table.  

We use this store to provide pinpoint measurements of in-

memory overhead of the Siberia machinery. 

 Direct-mapped file:   The cold store maps a record id to a 

direct offset in a file on flash. All I/O against the file is 

unbuffered.  Unless explicitly mentioned, the direct-mapped 

file is the default cold store for all experiments. 

As mentioned previously in Section 4.1.1, an important aspect of 

Siberia is its flexibility in interfacing with various cold storage 

implementations (e.g., a traditional DBMS table, a file on 

secondary storage, or a key-value store [14]).  However, we 

experiment with two simple cold stores to avoid observing 

overhead of a second system stack. As noted previously in Section 

1, it is not our focus to study the optimal medium and architecture 

for cold storage; we are concerned with the overhead of integrating 

the cold data migration and access machinery within Hekaton. Our 

Bloom access filters are allotted 0.1% of the database memory 

budget. Since our filters are adaptive to skew (see Section 4.2), this 

budget provides sufficient accuracy. 

6.2 In-Memory Performance 
This experiment measures the pure in-memory overhead of the 

Siberia machinery by running the read-only workload on (1) 

Hekaton without the Siberia implementation and (2) Hekaton with 

Siberia using the memory-only cold store. We run the workload two 

ways: (a) with no client time delay where the workload runs as a 

stored procedure compiled against the Hekaton engine; this 

measurement represents the performance of only the core Hekaton 

engine and (b) with a 500 microsecond client delay; representing a 

more realistic client/server transaction processing scenario, e.g., 

when Hekaton runs inside SQL Server connected to a client on a 

separate node.  

Figure 8 reports the throughput loss when running Hekaton with 

Siberia for decreasing hot data access rates (for Hekaton without 

Siberia, the workload accesses random keys in the table, while 

Hekaton with Siberia accesses hot/cold keys at the specified rate).  

As expected, for the no client delay case the overhead rises as the 

cold access rate increases. Each cold store probe consists of two 

extra in-memory table probes: one to check the Bloom filter and 

another to access cold storage. However, the performance loss ratio 

is less than one-to-one in the amount of extra probes need to access 

cold records (e.g., a 5% cold access rate leads to 7% throughput 

loss, while 50% cold accesses leads to a 37% loss). This is likely 

due to CPU caching effects, especially for the Bloom table that 

stays relatively small.  The story is different for the 500 usec client 

delay case. With realistic client delay the in-memory overhead of 

the Siberia framework accounts for roughly 1% loss in throughput 

for realistic cold data access rates of up to 15%.  For extreme cold 

access rates the throughput loss is only 3%, thus the in-memory 

Siberia machinery accounts for a very low performance loss 

overall. 

6.3 Migration 
This experiment studies the overhead of running live migration 

while transactions are actively running within Hekaton. We 

continuously run transactions on our database for 60 seconds while 

a migration worker migrates 10% of the database to cold storage 

Figure 9: Migration overhead. 
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(each migration transaction contains a batch of 100 records); this is 

sufficient to keep migration running for the whole experiment. We 

perform three experiments. (a) Using the read-only workload that 

accesses 0% cold records (black line with square markers); this run 

does not touch records in the cold store nor "in transit" migrating 

records in order to measure the overhead of the migration thread 

without interference from cold accesses. (b) Using the read-only 

workload that reads 5% cold keys (grey line with triangle markers). 

(c) Using the update-only workload that touches 5% cold keys 

(light grey line with circle markers). For experiment (b) and (c), the 

5% includes cold records, recently migrated records (due to the 

migrating thread), and in-transit migrating records. For each 

experiment, we compare against the same workload running 

without active migration. 

Figure 9 reports the numbers for this experiment over the 60 second 

experiment period in 5 second increments (x-axis). Overall, 

performance of the system remains stable when live migration is 

active; this is important as users will not experience sporadic 

performance degradation. Experiment (a) reveals that the overhead 

of active migration is at most 2% when transactions do not access 

cold data; this overhead is due to both the migration thread stealing 

cycles as well as creating garbage (old record version) in the hot 

store. Experiment (b) reveals that read transactions experience a 7% 

overhead when accessing cold data while migration is active. On 

top of the 2% ambient overhead from the migration thread, these 

transactions also require an additional probe of the update memo 

on the cold data access path (since the migration creates fresh 

memo notices) as well as copying timestamps from the update 

memo if it accesses a cold record that was freshly migrated. 

Experiment (c) reveals that update transactions initially incur an 8% 

overhead to both read then update the cold record. However as time 

moves forward the overhead slowly diminishes since more records 

are found in the hot store due to updates automatically writing new 

versions to the hot store. 

6.4 Effect of the Update Memo 
This experiment studies the overhead of the update memo on the 

path to accessing a cold record. The experiment consists of all read-

only transactions, where each read touches a cold record in the 

memory-only cold store (there are no hot accesses).  We run each 

workload in three different configurations: (a) with no entries in the 

update memo, meaning each read avoids probing the update memo 

altogether; (b) the update memo is populated, but the read does not 

find a matching entry in the memo; (c) the update memo is 

populated and the read finds a matching entry in the memo. 

  

Figure 11 : Read-only workload results for decreasing hot data hit rates. Figure (a) plots throughput (left axis) as 

lines and latency (right axis) as bars. 
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Figure 12 : Update-only workload results for decreasing hot data hit rates. Figure (a) plots throughput 

(left axis) as lines and latency (right axis) as bars. 
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Table 1 reports the average transaction latency (in microseconds) 

for reading a cold record for each configuration. Without a memo 

probe, a transaction accessing only cold records takes 

approximately 11.14 microseconds (including transaction setup 

and teardown time).  Accessing the memo without a match takes 

13.89 microseconds (a 24% increase) while accessing the probe 

with a match takes 15.14 microseconds (a 35% increase).  Clearly, 

the overhead of accessing the memo is expensive, since this 

involves allocating a memo stub for a probe and performing the 

table probe for the update memo. This means memo cleaning is 

necessary for good performance. 

6.5 Synthetic End-to-End Workload 
This experiment tests end to end workloads of Siberia for varying 

hot data hit rates (each transaction selects a hot/cold record id based 

on the access rate). We run the workloads on both cold store 

configuration (denoted “in-memory” and “file”) to test the relative 

performance loss when I/O is on the critical path. Since the direct 

map file I/O is sequential, we run the workloads using both 64 and 

32 worker threads in order to experiment with different traffic 

patterns to the I/O subsystem. For all runs, migration is inactive to 

ensure the workload is achieving its exact hot/cold hit rate.  The 

update cleaner process is active for the duration of the workload. 

6.5.1 Read-Only Transactions 
Figure 11(a) reports the throughput and latency results for 

decreasing hot data hit rates (increasing cold data hit rates), while 

Figure 11(b) reports the IOPs for the direct-mapped file cold store 

configuration along with the relative performance loss compared 

against the in-memory cold store (representing an “optimal” cold 

storage implementation).  

In terms of latency, using 64 threads a 5% cold access rate leads to 

a latency increase of 36 usec (for 32 threads it is 28 usec) – a minor 

fraction of a transaction’s end-to-end processing time (including 

network and client processing time).  For 32 threads the throughput 

loss is linear to the amount of cold records accessed as we observe 

that 50% cold accesses lead to 50% less throughput.  This is 

because the system is not I/O bound (IOPs are below the flash 

drive’s capability). At 64 threads, the workload is IO bound at a 

cold access rate of 35%, thus throughput loss is more than linear.  

We also observe in Figure 11(b) that as cold access rates increase, 

the throughput loss is greater for 64 threads than for 32 threads.  

This is likely due to the fact that as the number of workers increase, 

I/O queue length increases thereby increasing the time a transaction 

waits on I/Os. Longer waits naturally lead to increased transaction 

latency, as we observe in Figure 11(a), which in turn affects 

throughput since fewer transactions complete per second. 

This experiment clearly shows that for high cold data access rates, 

having I/O on the critical path of a main-memory database 

adversely affects performance.  However, the main takeaway from 

this experiment is that for realistic cold data access rates, the 

performance loss is acceptable: for 5% cold data access rates, the 

throughput loss between the direct-mapped file and in-memory 

cold store is 7%; for a 10% cold access rate, the throughput loss is 

roughly 14%. 

6.5.2 Update-Only Transactions 
Figure 12 reports the experimental results for the update-only 

workload. The general trends are similar to that of the read-only 

workload. Throughput is slightly lower overall since each update 

requires a read prior to installing a new record version. Since 

updates of cold records go to the hot store, a cold read accounts for 

a large portion of the update cost. In addition, garbage collection is 

necessary to both clean the update memo and collect old in-memory 

versions.  

Similar to the read-only workload, for realistic cold data update 

rates the performance degradation is acceptable at 8% throughput 

loss for 5% cold data updates and 13% throughput loss for 10% 

cold data update rates. 

6.6 YCSB Workload 
Figure 13 reports the results of the YCSB write-heavy workload. 

We report throughput (y-axis) for various workload skew (x-axis) 

Figure 13: YCSB write-heavy workload. 
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Figure 14: YCSB read-heavy workload. 
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Figure 15: YCSB read-only workload. 
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Table 1: Effect of the update memo.  

 Empty Memo Probe (no hit) Probe (hit) 

Latency 11.14 usec 13.89 usec 15.14 usec 

 



and different memory to database size ratios (e.g., a ratio of 1:X 

means the database is X times the memory size). For a 1:1 ratio, all 

accesses are in memory and performance stays relatively constant. 

For high workload skew, accesses mostly hit memory-resident 

records and performance for all ratios stays close to the in-memory 

case (the 1:1 ratio). As expected, for less skewed access 

performance starts to degrade as more accesses hit cold storage. 

When database size is 8x of memory, the system becomes heavily 

bottlenecked on updates of records on cold storage. Performance 

for other ratios degrades less severely since more records are 

memory-resident.  

Figure 14 and 15 report the results of the YCSB read-heavy 

workload and read-only workloads. As expected, performance at 

the 1:1 ratio is better than the write-heavy workload due to less 

contention during updates (e.g., write-write conflicts). Performance 

for these workloads also degrades as access skew decreases and 

memory to database size ratios increase. For read-heavy workloads, 

we observe a smaller abort rates for transactions at higher skew 

rates compared to the write-heavy workloads. This is due to less 

conflict on the update path and leads to less dramatic performance 

drop-off at higher access skews. We note that similar trends for the 

YCSB workload were reported independently by [3], though 

absolute performance is not comparable due to different hardware 

configurations.  

7. RELATED WORK 
Buffer pool. Buffer pool caching is a tried-and-true method from 

traditional DBMS architectures that maps buffer pool pages to on-

disk pages. This technique is not ideal for our scenario.  Like most 

main-memory systems [6, 8], Hekaton does not use page-based 

indirection for efficiency reasons; there are only records and thus 

no buffer pool. In addition, buffer pool management incurs an 

unnecessarily large CPU overhead when the majority of accesses 

are to in-memory data [7], as is the case in our scenario. 

Main memory OLTP engines. There has been much work 

recently exploring OLTP engine architectures optimized for main-

memory access. Research prototypes in this space include H-Store 

[8, 19], HYRISE [6], and HyPer [9]. Commercial main-memory 

systems are currently on the market and include IBM’s solidDB 

[15], Oracle’s TimesTen [10], Microsoft’s Hekaton [4], and 

VoltDB [20]. Most of these systems such as HyPer, solidDB, 

TimesTem, and VoltDB assume that the entire database fits in 

memory, completely dropping the concept of secondary storage. In 

this work, we diverge from this “memory-only” philosophy by 

considering a scenario where a main-memory optimized engine 

may occasionally access data in cold storage.  

Cold data management in main-memory systems. A number of 

researchers have explored management of cold data within main-

memory database systems.  Our previous paper studied how to 

identify hot and cold data at record granularity [13]; this paper 

studies how to migrate and access cold data in a transactionally-

consistent manner inside the Hekaton engine. 

HyPer [9] is a main-memory hybrid OLTP and OLAP system. 

HyPer achieves high performance for OLTP workloads by 

partitioning tables. Partitions are further broken into “chunks” that 

are stored in “attribute vectors” with each attribute vector stored on 

a different virtual memory (VM) page. This approach enables the 

system to take VM snapshots for OLAP functionality. HyPer’s 

cold-data management scheme [5] is capable of identifying cold 

transactional data at the VM page level, separating it from the hot 

data, and compressing it in a read-optimized format for OLAP 

queries. HyPer relies on virtual memory paging for databases with 

sizes larger than physical memory. In contrast, our work explores 

migrating and accessing cold data at record granularity. 

Stoica et al [18] propose a cold data management approach similar 

to HyPer that separates hot and cold data into separate memory 

locations.  The goal of this work is to place cold data in a memory 

location where it is most likely to be paged out by the operating 

system. Cold data is identified at the granularity of a record, similar 

to our approach in Siberia [13]. However, cold data migration and 

access is done at the granularity of a VM page, whereas we consider 

cold data access at record granularity. 

The approach of clustering cold records on separate pages and 

relying on the operating system to page them in and out of memory 

is a poor fit for Hekaton. Hekaton indexes chain records together 

by pointers embedded in records. An index chain could include 

records both on hot and cold pages. Consequently, even an access 

of a hot record may have to pass through cold records on its way to 

the target record, forcing cold pages to be brought into memory. If 

a table has multiple indexes, clustering records on pages to 

minimize  “just passing through” accesses is a challenging problem. 

Calvin [21] is a distributed main-memory database system that uses 

a deterministic execution strategy. Calvin is capable of accessing 

data on secondary storage, however, it cannot simply schedule a 

new transaction while waiting for I/O. Instead, it employs a “warm 

up” phase before execution that attempts to retrieve (from disk) all 

records a transaction might access. 

Anti-caching [3] is an approach for migrating and accessing cold 

data in H-Store.  The basic idea is to move cold records to external 

storage leaving only a stub in memory.  Indexes remain in memory 

so all index keys (both hot and cold) must stay in memory. Hot and 

cold records are identified using LRU but with sampling to reduce 

the overhead of maintaining LRU chains. 

Anti-caching is built for the H-store single-threaded execution 

model that executes one transaction at a time.  A thread executing 

transaction T1 that encounters a disk-resident record goes into a 

“pre-pass” phase that speculatively runs the transaction in attempt 

to find all disk-resident records it might need (without issuing the 

I/O).  The transaction then aborts and the thread goes on to execute 

other transactions while waiting for asynchronous I/Os to retrieve 

and install records for T1.  T1 is restarted after its data is brought 

into memory. Anti-caching has two serious drawbacks.  

Limited space savings. Indexes and index keys for cold records 

remain in memory. For tables with multiple indexes, especially if 

they have multi-column keys, this may severely limit the space 

savings. Furthermore, the LRU chains also consume valuable 

space. We opt to completely separate both hot and cold data; only 

hot records remain in memory, while cold records (keys and 

payloads) are kept in cold storage. 

Repeated execution. If any of the records required by a transaction 

reside in the cold store, the transaction goes through a pre-pass 

execution to determine what records to bring in. Once the records 

have been read in, the transaction is restarted. Unfortunately, a 

single pre-pass execution may not be enough. Consider a query that 

joins three tables R, S, and T and the join structure is a chain (R 

→S → T). This may require up to three pre-pass execution. The 

first execution causes missing R records to be brought in. In the 

second we have the join keys from R but some required S records 

may be missing. In the third execution some T records may be 

missing. Finally, in the fourth execution all the required records are 



in memory and the query finally executes successfully. This wastes 

a lot of resources and leads to unpredictable performance. Our 

design does not suffer from this problem: execution of a transaction 

resumes as soon as the required record has been brought into 

memory. 

8. CONCLUSION 
This paper described the Siberia architecture and functionality that 

enables migrating, reading, and updating data on cold storage in the 

Hekaton main-memory database engine. Our approach completely 

separates hot and cold data into an in-memory hot store and 

persistent cold store (e.g., flash or disk). Siberia does not require a 

transactional cold store, thus its design is flexible enough to work 

with a wide array of cold storage implementations. Siberia is space-

efficient; besides compact Bloom filters, no information about cold 

data is kept in memory. Siberia dovetails with Hekaton's optimistic 

multi-version concurrency control scheme and allows transactions 

to read and update data in both hot and cold stores without 

restriction. This functionality is enabled by our update memo 

design that temporarily stores timestamp information for records 

recently inserted into or deleted from the cold store. The update 

memo completely removes extraneous accesses to cold storage by 

ensuring that Hekaton postprocessing and validation of cold data is 

done completely in memory. Experiments on Siberia implemented 

in Hekaton reveal that for cold data acccess rates appropriate for 

main-memory optimized databases, we incur an acceptable 7-14% 

throughput loss. 

9. REFERENCES 
[1] K. Alexiou, D. Kossmann, P.Å. Larson. Adaptive Range 

Filters for Cold Data: Avoiding Trips to Siberia. PVLDB 

6(14): 1714-1725 (2013). 

[2] J. Dean. Challenges in Building Large-Scale Information 

Retrieval Systems. In WSDM 2009 (keynote). Slides 

available at: 
http://research.google.com/people/jeff/WSDM09-keynote.pdf 

[3] J. DeBrabant, A. Pavlo, S. Tu, M. Stonebraker, and S. 

Zdonik. Anti-Caching: A New Approach to Database 

Management System Architecture. PVLDB 6(14): 1942-1953 

(2013).  

[4] C. Diaconu, C. Freedman, E. Ismert, P.Å. Larson, P. Mittal, 

R. Stonecipher, N. Verma, and M. Zwilling, Hekaton: SQL 

Server’s Memory-Optimized OLTP Engine. In SIGMOD, 

2013. 

[5] F. Funke, A. Kemper, and T. Neumann. Compacting 

Transactional Data in Hybrid OLTP & OLAP Databases. 

PVLDB 5(11): 1424– 1435 (2012). 

[6] M. Grund, J. Krüger, H. Plattner, A. Zeier, P. Cudre-

Mauroux, and S. Madden. HYRISE - A Main Memory 

Hybrid Storage Engine. PVLDB 4(2): 105-116 (2010). 

[7] S. Harizopoulos, D.J. Abadi, S. Madden, and M. 

Stonebraker. OLTP Through the Looking Glass, and What 

We Found There. In SIGMOD, 2008. 

[8] R. Kallman et al. H-store: a high-performance, distributed 

main memory transaction processing system. PVLDB 1(2): 

1496-1499 (2008). 

[9] A. Kemper and T. Neumann. HyPer: A Hybrid OLTP & 

OLAP Main Memory Database System Based on Virtual 

Memory Snapshots. In ICDE, 2011. 

[10] T. Lahiri, M.A. Neimat, and S. Folkman. Oracle TimesTen: 

An In-Memory Database for Enterprise Applications. IEEE 

Data Engineering Bulletin 36(2): 6-13 (2013). 

[11] P.Å. Larson, S. Blanas, C. Diaconu, C. Freedman, J. M. 

Patel, M. Zwilling. High-Performance Concurrency Control 

Mechanisms for Main-Memory Databases. PVLDB 5(4): 

298-309 (2011). 

[12] J. Lee, M. Muehle, N., May, F. Faerber, V. Sikka, H. 

Plattner, J. Krueger, and M. Grund. High-Performance 

Transaction Processing in SAP HANA. IEEE Data 

Engineering Bulletin 36(2): 28-33 (2013). 

[13] J. Levandoski, P.Å. Larson, and R.Stoica. Classifying Hot 

and Cold Data in a Main Memory OLTP Engine. In ICDE, 

2013.  

[14] J. Levandoski, D. B. Lomet, and S Sengupta, The Bw-Tree: 

A B-tree for New Hardware Platforms. In ICDE, 2013. 

[15] J. Lindström, V. Raatikka, J. Ruuth, P. Soini, K. Vakkila. 

IBM solidDB: In-Memory Database Optimized for Extreme 

Speed and Availability. IEEE Data Engineering Bulletin 

36(2): 14-20 (2013). 

[16] M. M. Michael. High performance dynamic lock-free hash 

tables and list-based sets. In SPAA, 2002.  

[17] L. Sidirourgos and P.Å. Larson, Adjustable and Updatable 

Bloom Filters. Available from the authors. 

[18] R. Stoica and A. Ailamaki. Enabling Efficient OS Paging for 

Main-memory OLTP Databases. In DaMon, 2013. 

[19] M. Stonebraker et al. The End of an Architectural Era (Its 

Time for a Complete Rewrite). In VLDB, 2007. 

[20] M. Stonebraker and A. Weisberg. The VoltDB Main 

Memory DBMS. IEEE Data Engineering Bulletin 36(2): 21-

27 (2013). 

[21] A. Thomson, T. Diamond, S.-C. Weng,  K. Ren,  P. Shao, 

and D. J. Abadi. Calvin: Fast Distributed Transactions for 

Partitioned Database Systems. In SIGMOD, 2012. 

[22] SQLIO Disk Benchmark Tool: http://aka.ms/Naxvpm 

[23] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and 

R. Sears. Benchmarking Cloud Serving Systems with YCSB. 

In SoCC, 2010. 

 

 

 


