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ABSTRACT

Most previous work 1n the area of main memory database sys-
tems has focused on the problem of developing query processing
techmques that work well with a very large buffer pool In this
paper, we address query processing 1ssues for memory resident rela-
tional databases, an environment with a very different set of costs
and prnionties We present an architecture for a main memory
DBMS, discussing the ways 1n which a memory resident database
differs from a disk-based database We then address the problem of
processing relational quenes in this architecture, considering alterna-
uve algonthms for selection, projection, and join operations and
studying their performance We show that a new index structure, the
T Tree, works well for selection and join processing i memory
resident databases We also show that hashing methods work well
for processing projectuons and jomns, and that an old join method,
sort-merge, stll has a place 1n main memory

1 Introduction

Today, medium to high-end computer systems typically have
memory capacities 1n the range of 16 to 128 megabytes, and 1t 18 pro-
jected that chip densities will continue their current trend of doubling
every year for the foreseeable future [Fis86] As a result, 1t 1s
expected that main memory sizes of a gigabyte or more will be feasi-
ble and perhaps even fairly common within the next decade Some
researchers believe that many applications with memory require-
ments which currently exceed those of today’s technology will thus
become memory resident applicattons 1n the not-too-distant future
[GLV83], and the database systems area 1s certain to be affected 1n
some way by these trends Previous studies of how large amounts of
memory will affect the design of database management systems have
focused almost entirely on how to make use of a large buffer pool
[DKO84, DeG8S5, EIB84, Sha86]

With memory sizes growing as they are, 1t 1s quite likely that
databases, at least for some applications, will eventually fit entirely
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1n main memory For those applications whose storage requirements
continue to exceed memory capaciies, there may sull be often-
referenced relations that will fit in memory, 1n which case 1t may pay
to partittion the database into memory resident and disk resident por-
tions and then use memory-specific techmques for the memory
resident portion (much like IMS Fastpath and IMS [Dat81]) In
addition to traditional database applications, there are a number of
emerging apphcations for which main memory s1zes will almost cer-
tainly be sufficient — applications that wish to be able to store and
access relational data mostly because the relational model and 1ts
associated operations provide an attractive abstraction for their
needs Horwitz and Teitelbaum have proposed using relational
storage for program informatton 1n language-based editors, as adding
relations and relational operations to attnbute grammars provides a
nice mechamsm for specifying and building such systems [HoT85]
Linton has also proposed the use of a database system as the basis for
construcing  program  development environments [Lin84]
Snodgrass has shown that the relational model provides a good basis
for the development of performance momtonng tools and their inter-
faces [Sno84] Finally, Warren (and others) have addressed the rela-
tionship between Prolog and relational database systems [War81],
and having efficient algonthms for relational operations i main
memory could be useful for processing quernies in future logic pro-
gramming language implementations

Motivated by these considerations, we are addressing the ques-
tion of how to manage large memory resident relational databases
Whereas traditional database algonthms are usually designed to
mimmize disk traffic, a main memory database system must employ
algonthms that are dnven by other cost factors such as the number of
data compansons and the amount of data movement. We are study-
ing these 1ssues, evaluating both old and new algornithms to deter-
mne which ones make the best use of both CPU cycles and memory
(Note that while memory can be expected to be large, 1t will never be
free ) We have focused mostly on query processing 1ssues to date,
but we also plan to examine concurrency control and recovery 1ssues
in our research — main memory databases will sull be multi-user
systems, and many applications will require their data to be stored
safely on disk as well as 1n main memory

The remainder of this paper 1s organized as follows Section 2
describes our main memory DBMS architecture, pointing out ways
in which the orgamzation of main memory databases can profitably
differ from disk-based databases Sections 3 presents our work on
algorithms for implementing selection, projection, and join opera-
tions Both algonthms and performance results are given for each of
these operations Finally, Section 4 presents our conclusions and
discusses their impact on query optimization



2 Maim Memory DBMS Architecture

In this section, we present the design of a main memory data-
base management system (MM-DBMS) that we are building as part
of a research project at the Untversity of Wisconsin-Madison The
key aspects of the design are the structure of relations, indices, and
temporary lists (for holding query results and temporary relations)
Ideas for approaching the problems of concurrency control and
recovery are 1n the development stages The design 15 presented
under the assumption that the entire database resides in main
memory, 1gnoring (for now) the case of a partitioned database

21 Relations

Every relation in the MM-DBMS will be broken up nto partt-
tions, a partition 1s a umt of recovery that 1s larger than a typical disk
page, probably on the order of one or two disk tracks In order to
allow more freedom of design of these partitions, the relations will
not be allowed to be traversed directly, so all access to a relation 1s
through an index (Note that this requires all relations to have at
least one index ) Although physical contiguity 1s not a major perfor-
mance 1ssue 1n main memory (indeed, the tuples of a relation could
be scattered across all of memory), keeping the tuples grouped
together 1n a partiion aids in space management and recovery, as
well as being more efficient 1n a mulu-level cache environment (Ina
single-level cache, cache block sizes are typically smaller than the
size of a tuple, but 1n a multi-level cache where there are several
cache block sizes, the larger sized cache blocks could hold most or
all of a partition )

The tuples 1n a partition will be referred to directly by memory
addresses, so tuples must not change locations once they have been
entered into the database For a vanable-length field, the tuple itself
will contain a pointer to the field in the partition’s heap space, so
tuple growth will not cause tuples to move ! Since tuples 1n memory
can be randomly accessed with no loss 1n performance, 1t 18 possible
for the MM-DBMS to use potnters where 1t would otherwise be
necessary to copy data in a disk-based DBMS For example, 1f
foreign keys (attnibutes that reference tuples 1n other relations) are
identified 1n the manner proposed by Date [Dat85], the MM-DBMS
can substitute a tuple pointer field for the foreign key field (This
field could hold a single pointer value in the case of a one to one
relationship, or 1t could hold a list of pointers 1f the relationship 1s

one to many ) When the foreign key field’s value 1s referenced, the
MM-DBMS can simply follow the pointer to the foreign relation

tuple to obtain the desired value This will be more space efficient,
as pointers will usually be as small as or smaller than data values
(especially when the values are stnngs) This will also enhance
retrieval performance by allowing the use of precomputed joins
Consider the following example

Employee Relation (Name, Id, Age, Dept_Id)

Department Relation (Name, Id)

Query 1 Retneve the Employee name, Employee age, and Depart-
ment name for all employees over age 65

Most conventional DBMSs lack precomputed joins and would
require a join operation to answer this query Even with precom-
puted jons, a conventional DBMS would need to have the Depart-
ment tuples clustered with the Employee tuples or 1t could pay the
price of a disk access for every Department tuple retneved In the
MM-DBMS, using precomputed joins 1s much easier Assuming
that the Emp Dept_id field has been 1dentified as a foreign key that

! In rare cases where a tuple causes the heap space to overflow, it will have to
be moved to another partition, 1 which case a forwarding address will be left in its
old position
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references Department tuples, the MM-DBMS will substtute a
Department tuple pointer in 1ts place, The MM-DBMS can then sim-
ply perform the selection on the Employee relation, following the
Department pointer of each result tuple

Assuming that the Department Relation does not have pointers
to the Employee Relation, retneving data in the other direction
would still require a join operation, but the join’s companson can be
done on pointers rather than on data Using the relations from the
example above, consider the following query

Query 2 Retneve the names of all employees who work 1n the Toy
or Shoe Departments

To process this query, a selection will be done on the Department
relation to retnieve the "Shoe" and "Toy" Department tuples, and the
result will then be joined with the Employee relation For the join,
companisons will be performed using the tuple pomnters for the
selection’s result and the Department tuple pointers in the Employee
relatton While this would be equivalent in cost to joimng on
Dept_Id 1n this example, 1t could lead to a sigmficant cost savings 1f
the join columns were string values 1nstead

22 Indices

Since relations are memory resident, 1t 1s not necessary for a
main memory index to store actual attnbute values Instead, pointers
to tuples can be stored 1n their place, and these pointers can be used
to extract the attribute values when needed Thus has several advan-
tages First, a single tuple pointer provides the index with access to
both the attribute value of a tuple and the tuple 1tself, reducing the
size of the index Second, this eliminates the complexity of dealing
with long fields, vanable length fields, compression techmques, and
calculating storage requirements for the index Third, moving
pointers will tend to be cheaper than moving the (usually longer)
attribute values when updates necessitate index operations Finally,
since a single tuple pointer provides access to any field 1n the tuple,
multi-attribute 1ndices will need less 1n the way of special mechan-
isms Figure 1 shows an example of two indices built for the
Employee relauon (The indices are shown as sorted tables for sim-
plicity)

The MM-DBMS design has two types of dynamic index struc-
tures, each serving a different purpose The T Tree [LeC85], a rela-
tively new index structure designed for use 1n main memory, 1s used
as the general purpose index for ordered data It 1s able to grow and
shrink gracefully, be scanned in erther direction, use storage
efficiently, and handle duphcates with little extra work Modified
Linear Hashing, a vanant of Linear Hashing [L1t80] that has been
modified for use in main memory [LeC85], 1s used for unordered
data Several other index structures were constructed to aid 1n the
examination of join and project methods shown later 1n this paper
The array index structure [AHK85] was used to store ordered data It
1s easy to build and scan, but 1t 1s useful only as a read-only index
because 1t does not handle updates well Chained Bucket Hashing
[AHU74] was used as the temporary index structure for unordered
data, as 1t has excellent performance for stauc data (Ongmally,
Chained Bucket Hashing was gomng to be used for static structures 1n
the MM-DBMS, but 1t has since been replaced by Modified Linear
Hashing, because 1t was discovered that the two have simalar perfor-
mance when the number of elements remains static }

23 Temporary hsts

The MM-DBMS uses a temporary hst structure for storing
intermediate result relattons A temporary hist 1s a list of wple
pointers plus an associated result descriptor The pointers point to
the source relation(s) from which the temporary relation was formed,



and the result descriptor identifies the fields that are contained 1n the
relation that the temporary hist represents The descriptor takes the
place of projection —— no width reduction 1s ever done, so there 1s lit-
tle motivation for computing projections before the last step of query
processing unless a4 significant number of duplicates can be elim-
mated Unlike regular relations, a temporary list can be traversed
directly, however, 1t 15 also possible to have an index on a temporary
list

As an example, 1f the Employee and Department relatons of
Figure 1 were jomned on the Department Id fields, then each result
tuple 1n the temporary list would hold a pair of tuple ponters (one
poinuing to an Employee tuple and one pomnting to a Department
tuple), and the result descriptor would list the fields 1n each relation
that appear 1n the result Figure 1 also shows the result list for such
an equyjoin on Department Id (Query 1)

Employee Relation Employee
Ptr | Name Id | Age | Dept_id Indices
124 | Dave 23 | 24 | 459 Name | Id
105 | Suzan 12 | 27 459 102 105
137 | Yaman | 44 | 54 411 124 102
110 | Jane 43 | 47 411 110 124
102 | Cindy 22 | 22 409 105 110
137 137
Department Result
Relation Relation Result
Ptr | Name | Id (124, 243) Descriptor
243 | Toy 459 (105, 243) Emp Name
201 | Shoe | 409 (137, 213) Emp Age
213 Linen 411 (110, 213) Dept Name
287 | Pamnt | 455 (102, 201)

Figure 1 — Relation and Index Design

24 Concurrency Control and Recovery

The MM-DBMS 1s intended to provide very high performance
for the applications that 1t 1s capable of serving, many of which will
require their data to be stored safely on disk as well as 1n memory
Thus, the MM-DBMS must have a fast recovery mechamism The
system 18 intended for multiple users, so 1t must also provide con-
currency control While we have not yet fimshed the design of these
subsystems, we wish to point out some of the major 1ssues that are
guiding therr design

One proposed solution to the recovery problem 1s to use
battery-backup RAM modules {LeR85], but this does not protect
memory from the possibility of a media fallure — a malfunctioning
CPU or a memory fatlure could destroy a several gigabyte database
Thus, disks will still be needed to provide a stable storage medium
for the database Given the s1ze of memory, applications that depend
on the DBMS will probably not be able to afford to wait for the
enure database to be reloaded and brought up to date from the log
Thus, we are developing an approach that will allow normal process-
g to continue immediately, although at a slower pace until the
working sets of the current transactions are read 1nto main memory

Our approach to recovery tn the MM-DBMS 1s based on an
active log device Dunng normal operation, the log device reads the
updates of commutted transactions from the stable log buffer and
updates the disk copy of the database The log device holds a change
accumulation log, so 1t does not need to update the disk version of
the database every time a partison 1s modified The MM-DBMS
writes all log information directly into a stable log buffer before the
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actual update 1s done to the database, as 1s done 1n IMS FASTPATH
[IBM79] If the transaction aborts, then the log entry 1s removed and
no undo 1s needed If the transaction commuts, then the updates are

propagated to the database After a crash, the MM-DBMS can
continue processing as soon as the working sets of the current tran-

sactions are present 1n main memory The process of reading in a
working set works as follows Each partition that participates 1n the
working set 1s read from the disk copy of the database The log dev-
1ce 18 checked for any updates to that partition that have not yet been
propagated to the disk copy Any updates that exist are merged with
the partiion on the fly and the updated partition 1s placed in
memory Once the working set has been read in, the MM-DBMS
should be able to run at close to 1ts normal rate while the remainder
of the database 1s read in by a background process A related propo-
sal for main memory database recovery has been developed 1n paral-
lel with ours [Eic86], since both schemes are 1n their development
stages, however, 1t would be premature to compare them here

;{able fo} Bﬁﬁg ﬁl

Log Device ]

Memory
Resident
Database

CrPU DBMS [&>

Disk
Copy
Database

Figure 2 — Recovery Components

Concurrency control costs are different for a2 memory resident
database Transactions will be much shorter 1n the absence of disk
accesses In this environment, 1t will be reasonable to lock large
items, as locks will be held for only a short ume Complete senali-
zation would even be possible 1f all transactions could be guaranteed
to be reasonably short, but transaction interleaving 1s necessary for
fairness 1f some transactions will be long  We expect to set locks at
the partitton level, a fairly coarse level of granulanty, as tuple-level
locking would be prohibitively expenstve here (A lock table 1s basi-
cally a hashed relation, so the cost of locking a tuple would be com-
parable to the cost of accessing 1t — thus doubling the cost of tuple
accesses 1f tuple-level locking 1s used ) Recall that the size of a par-
tition 1s expected to be on the order of one or several disk tracks
(since thus 1s the umt of recovery) Partition-level locking may lead
to problems with certain types of transactions that are inherently
long (e g , conversational transactions) We will address these 1ssues
1n future work

3 Query Processing in Main Memory DBMS

The direct addressability of data in a memory resident database
has a profound impact on query processing With the notion of clus-
tering removed, the methods for selection, join and projection
acquire new cost formulas Old and new algonthms for these query
processing operations were tested to determine which algonthms
perform best 1n a main memory environment

31 The Test Environment

All of the tests reported here were run on a PDP VAX 11/750
running with two megabytes of real memory (as opposed to virtual
memory) " Each of the algonthms was implemented 1n the C pro-
grammung language, and every effort was made to ensure that the
quality of the implementations was umform across the algonthms
The validity of the execution times reported here was venfied by



recording and examining the number of comparisons, the amount of
data movement, the number of hash function calls, and other miscel-
laneous operations to ensure that the algonthms were doing what
they were supposed to (1 e, neither more nor less) These counters
were compiled out of the code when the final performance tests were
run, so the executton times presented here reflect the runming times
of the actual operations with very little ume spent 1n overhead (e g ,
dnver) routines Timing was done using a routine simular to the

‘getrusage’ facility of Umix 2

32 Selection

This section summanzes the results from a study of index
mechamsms for main memory databases [LeC85] The index struc-
tures tested were AVL Trees [AHU74], B Trees [Com79]3, arrays
[AHK85], Chained Bucket hashing [Knu73], Extendible Hashing
[FNP79], Linear Hashing [L1t80], Modified Linear Hashing [LeC85],
and one new method, the T Tree [LeC85] (Modified Linear Hashing
uses the basic principles of Linear Hashing, but uses very small
nodes in the directory, single-item overflow buckets, and average
overflow chain length as the critena to control directory growth ) All
of these 1ndex structures, except for the T Tree, are well-known, and
their algonthms are described 1n the literature Thus, we describe
only the T Tree here

321 The T Tree Index Structure

The T Tree 1s a new balanced tree structure that evolved from
AVL and B Trees, both of which have certain positive qualities for
use in mamn memory The AVL Tree was designed as an internal
memory data structure It uses a binary tree search, which 1s fast
since the binary search 1s iatrinsic to the tree structure (1 e, no anth-
metic calculations are needed) Updates always affect a leaf node,
and may result 1n an unbalanced tree, so the tree 1s kept balanced by
rotation operations The AVL Tree has one major disadvantage —
its poor storage utilization Each tree node holds only one data item,
so there are two pointers and some control information for every data
item The B Tree 1s also good for memory use — 1ts storage utiliza-
tion 1s better since there are many data items per pointer?, searching
1 fairly fast since a small number of nodes are searched with a
binary search, and updating 1s fast since data movement usually
involves only one node

The T Tree 15 a binary tree with many elements per node (Fig-
ure 3) Figure 4 shows a node of a T Tree, called a T Node Since
the T Tree 1s a binary tree, 1t retains the intrinsic binary search nature
of the AVL Tree, and, because a T node contains many elements, the
T Tree has the good update and storage charactenstics of the B Tree
Data movement 15 required for insertion and deletion, but 1t 1s usu-
ally needed only within a single node Rebalancing 1s done using
rotations stmular to those of the AVL Tree, but 1t 1s done much less
often than 1n an AVL Pree due to the possibility of intra-node data
movement

To aid 1 our discusston of T Trees, we begin by introducing
some helpful terminology There are three different types of T-
nodes, as shown 1n Figure 4 A T-node that has two subtrees 1s

2Unix 15 a trademark of AT&T Bell Laboratones

3 We refer to the onginal B Tree, not the commonly used B+ Tree Tests re-
ported 1n [LeC85] showed that the B+ Tree uses more storage than the B Tree and
does not perform any better 1n main memory

4 A B Tree mternal node contamns (N + 1) node pomters for every N data
items while a B Tree leaf node contains only data items Since leaf nodes greatly
outnumber 1nternal nodes for typical values of N, there are many data items per node
pomter
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Figure 3 — A T Tree
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Figure 4 — T Nodes

called an internal node A T-node that has one NIL child pointer and
one non-NIL child pointer 1s called a half-leaf A node that has two
NIL child pointers 1s called a leaf For a node N and a value X, 1f X
lies between the mimmum element of N and the maximum element
of N (inclusive), then we say that node N bounds the value X Since
the data 1n a T-node 1s kept 1n sorted order, 1ts leftmost element 1s the
smallest element 1n the node and 1ts nghtmost element 1s the largest.
For each internal node A, there 1s a corresponding leaf (or half-leaf)
that holds the data value that 1s the predecessor to the minimum
value 1n A, and there 1s also a leaf (or half-leaf) that holds the succes-
sor to the maximum value 1n A The predecessor value 1s called the
greatest lower bound of the internal node A, and the successor value
15 called the least upper bound

Associated with a T Tree 1s a muimmum count and a maximum
count Internal nodes nodes keep their occupancy (z e the number of
data items 1n the node) 1n this range The mimmum and maximum
counts will usually differ by just a small amount, on the order of one
or two 1tems, which turns out to be enough to sigmficantly reduce the
need for tree rotations With a mix of mserts and deletes, this httle
bit of extra room reduces the amount of data passed down to leaves
due to msert overflows, and 1t also reduces the amount of data bor-
rowed from leaves due to delete underflows Thus, having flexibility
in the occupancy of internal nodes allows storage utilization and
mnsert/delete time to be traded off to some extent Leaf nodes and
half-leaf nodes have an occupancy ranging from zero to the max-
imum count

Searching in a T Tree 1s stmilar to searching 1n a binary tree
The main difference 1s that compansons are made with the mimmum
and maximum values of the node rather than a single value as 1n a
binary tree node The search consists of a binary tree search to find
the node that bounds the search value and then a binary search of the
node to find the value, 1f such a node 1s found

To msert mto a T Tree, one first searches for a node that
bounds the nsert value If such a node 1s found, the item 1s inserted

there If the insert causes an overflow, the mimmum element’ of that

SMoving the mmnimum element requires less total data movement than moving
the maximum element Similarly, when a node underflows because of a deletion,
borrowing the greatest lower bound from a leaf node requires less work than bor-
rowing the least upper bound These details are explamned in [LeC85]



node 1 transferred to a leaf node, becoming the new greatest lower
bound for the node 1t used to occupy If no bounding node can be
found, then the leaf node where the search ended 1s the node where
the insert value goes If the leaf node is full, a new leaf 1s added and
the tree 1s rebalanced

To delete from a T Tree, one first searches for the node that
bounds the delete value Then, one searches the node for the delete
value If a bounding node 1s not found, or the delete value within the
bounding node 18 not found, the delete retums unsuccessful Other-
wise, the 1tem 1s removed from the node If deleting from the node
causes an underflow, then the greatest lower bound for this node 1s
borrowed from a leaf If this causes a leaf node to become empty,
the leaf node 1s deleted and the tree 1s rebalanced If there 1s no leaf
to borrow from, then the node (which must be a leaf) 1s allowed to
underflow

322 The Index Tests

Each index structure (arrays, AVL Trees, B Trees, Chained
Bucket Hashing, Extendible Hashing, Linear Hashing, Modified
Linear Hashing, and T Trees) was tested for all aspects of index use
creation, search, scan, range queries (hash structures excluded),
query muxes (intermuxed searches, inserts and deletes), and deletion
Each test used index structures filled with 30,000 umque elements
(except for create, which inserted 30,000 elements) The indices
were configured to run as umque 1ndices — no duplicates were per-
mitted The index structures were constructed in a "main memory”
style, that 1s, the indices held only tuple pornters instead of actual
key values or whole tuples We summanze the results of three of the
tests from [LeC85] searching, a query mux of searches and updates,
and storage cost measurements In order to compare the perfor-
mance of the index structures 1n the same graphs, the number of van-
able parameters of the vanous structures was reduced to one — node
size In the case of Modified Linear Hashing, single-1tem nodes were
used, so the "Node Size" axis in the graphs refers to the average
overflow bucket chain length Those structures without variable
node sizes simply have straight lines for their execution tmes The
graphs represent the hashing algonthms with dashed lines and the
order-preserving structures with solid lines

Search

Graph 1 shows the search times of each algonthm for vanous
node sizes The array uses a pure binary search The overhead of the
anthmetic calculation and movement of pointers 1s noticeable when
compared to the "hardwired" binary search of a binary tree In con-
trast, the AVL Tree needs no anthmetic calculations, as 1t just does
one compare and then follows a pointer The T Tree does the major-
ity of 1ts search 1n a manner similar to that of the AVL Tree, then,
when 1t locates the correct node, 1t switches to a binary search of that
node Thus, the search cost of the T Tree search 1s shghtly more
than the AVL Tree search cost, as some time 1s lost 1n binary search-

ing the final node The B Tree search ume 1s the worst of the four
order-preserving structures, because 1t requires several binary

searches, one for each node 1n the search path

The hashing schemes have a fixed cost for the hash function
computation plus the cost of a linear search of the node and any asso-
ciated overflow buckets For the smallest node sizes, all four hash-
ing methods are basically equivalent The differences hie in the
search trmes as the nodes get larger Linear Hashing and Extendible
Hashing are just about the same, as they both search multiple-item
nodes Modified Linear Hashing searches a linked list of single-item
nodes, so each data reference requires traversing a pomnter This
overhead 1s noticeable when the chain becomes long (Recall that
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"Node Size" 1s really average chain length for Modified Linear Hash-
g )

Query Mix

The query mix test 13 most important, as 1t shows the index

structures 1n a normal working environment Tests were performed
for three query muxes using different percentages of interspersed

searches, mserts and deletes
1) 80% searches, 10% 1nserts, 10% deletes

2) 60% searches, 20% nserts, 20% deletes
3) 40% searches, 30% 1nserts, 30% deletes

The query mix of 60 percent searches, 20 percent nserts and 20 per-
cent deletes (Graph 2) was representative of the three query mux
graphs The T Tree performs better than the AVL Tree and the B
Tree here because of 1ts better combined search / update capability

The AVL tree 1s faster than the B Tree because 1t 1s able to search
faster than the B Tree, but the execution times are simlar because of
the B Tree’s better update capability For the smallest node sizes,
Modified Linear Hashing, Extendible Hashing, and Chained Bucket
Hashing are all basically equivalent They have similar search cost,
and when the need to resize the directory 1s not present, they all have
the same update cost Linear Hashing, on the other hand, was much
slower because, trying to mamtain a particular storage utilization
(number of data bytes used / total number of data bytes available), 1t
did a sigmificant amount of data reorgamzation even though the
number of elements was relatively constant As for the array index,
1ts performance was two orders of magmtude worse than that of the
other 1ndex structures because of the large amount of data movement
required to keep the array in sorted order (Every update requires
moving half of the array, on the average )

Storage Cost

Space considerations preclude the inclusion of the storage
results graph, but we summarize them here The array uses the
mimmum amount of storage, so we discuss the storage costs of the
other algorithms as a ratio of their storage cost to the array storage
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cost First, we consider the fixed values the AVL Tree storage fac-
tor was 3 because of the two node pomnters 1t needs for each data
item, and Chamned Bucket Hashing had a storage factor of 23
because 1t had one pointer for each data item and part of the table
remamed unused (the hash function was not perfectly umform)
Modified Linear Hashing was similar to Chained Bucket Hashing for
an average hash chain length of 2, but, for larger hash chains, the
number of empty slots 1n the table decreased and eventually the table
became completely full Finally, Linear Hashing, B Trees, Extendi-
ble Hashing and T Trees all had nearly equal storage factors of 15
for medium to large size nodes Extendible Hashing tended to use
the largest amount of storage for small nodes sizes (2,4 and 6) This
was because a small node size increased the probability that some
nodes would get more values than others, causing the directory to
double repeatedly and thus use large amounts of storage As 1ts node
size was 1ncreased, the probability of this happemng became lower

323 Index Study Results

Table 1 summanzes the results of our study of main memory
index structures We use a four level rating scale (poor, fair, good,
great) to show the performance of the index structures 1n the three
categories An important thing to notice about the hash-based
ndices 1s that, while Extendible Hashing and Modified Linear Hash-
ing had very good performance for small nodes, they also had high
storage costs for small nodes (However, the storage utilization for
Modified Linear Hashing can probably be improved by using
multiple-1tem nodes, thereby reducing the pointer to data item ratio,
the version of Modified Linear Hashing tested here used single-item
nodes, so there was 4 bytes of pointer overhead for each data 1tem )
As for the other two hash-based methods Chained Bucket Hashing
had good search and update performance, but it also had fatrly high
storage costs, and 1t 15 only a stauc structure, and finally, Linear
Hashing 1s just too slow to use in main memory Among the hash-
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based methods tested, Modified Linear Hashing provided the best
overall performance

Looking at the order-preserving index structures, AVL Trees
have good search execution times and fair update execution times,
but they have high storage costs Arrays have reasonable search
times and low storage costs, but any update activity at all causes it to
have execution umes orders of magnitude hgher than the other
index structures AVL Trees and arrays do not have sufficiently
good performance / storage charactenstics for consideration as main
memory indices T Trees and B Trees do not have the storage prob-
lems of dynamc hashing methods, they have low storage costs for
those node s1zes that lead to good performance The T Tree seems to
be the best of choice for an order-preserving index structure, as 1t
performs umformly well 1n all of the tests

Data Structure Search | Update | Storage Cost
Array good poor good

AVL Tree good fair poor

B Tree fair good good

T Tree good good good
Chained Bucket Hash | great great fair
Extendible Hash great great poor

Linear Hash great poor good

Mod Linear Hash great great fair/good

Table 1 — Index Study Results

33 Jom

Previous jom studies involving large memonies have been
based on the large buffer pool assumption {Sha86], [DKO84],
[DeG85] (Others have studied hash joins as well i a normal disk
environment [Bab79], [VaG84], [Bra84), but their results are less
applicable here ) Three main join methods were tested in [DeG85]
Nested Loops with a hashed index, Sort Merge [BIE77], and three
hasming methods, Simple Hash, Hybnd Hash and GRACE Hash
[DKO84] The results showed that when both relations fit n
memory, the three hash algonthms became equivalent, and the
nested loops join with a hash index was found to perform just as well
as the other hash algonthms (and outperformed Sort Merge) They
also studied the use of semijoin processing with bit vectors to reduce
the number of disk accesses involved mn the join, but this semijoin
pass 1s redundant when the relations are memory resident The
variety of join relabon compositions (e g, sizes, join selectivities,
Jom column value distributions) used 1n their study was small, and
may not completely reflect all possibilities (performance-wise)

In this study, we examine the performance of a number of can-
didate join methods for the MM-DBMS We use a wide selection of
relation compositions so as to evaluate the algorithms under a wide
vanety of possible conditions

331 Relation Generation

In order to support our intent to test a vanety of relation com-
positions, we constructed our test relations so that we could vary
several parameters The variable parameters were

(1) The relation cardinality ([R})

(2) The number of join column duplicate values (as a percentage of
|R]) and their distnbution

The semijoin selectivity (the number of values 1n the larger
relation that participate 1n the join, expressed as a percentage of
the larger relation)

3



In order to get a vanable semyjoin selectivity, the smaller rela-
tion was built with a specified number of values from the larger rela-
tion To get a vanable number of duplicates, a specified number of
unique values were generated (either from a random number genera-
tor or from the larger relation), and then the number of occurrences
of each of these values was determined using a random sampling
procedure based on a truncated normal distribution with a vanable
standard deviation Graph 3 shows the three duplicate distributions
used for the tests — a skewed distribution (where the standard devia-
tion was 0 1), a moderately skewed distribution (the 0 4 curve 1n the
graph), and a near-umiform distnbution (the 0 8 curve 1n the graph)
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Graph 3 — Distribution of Duplicate Values

The results for the 0 4 and 0 8 cases were similar, so results are given
here only for the two extreme cases

3.32 The Join Algorithms

For memory resident databases, all of the hash-based algo-
rithms tested 1n [DeG85] were found to perform equally well
Therefore, the hash-based nested loops algorithm 1s the only hash-
based algonthm that we examune here For our tests, we imple-
mented and measured the performance of a total of five join algo-
nthms Nested Loops, a simple main-memory version of a nested
loops join with no index, Hash Join and Tree Join, two vanants of
the nested loops join that use indices, and Sort Merge and Tree
Merge, two vanants of the sort-merge join method of [BIE77] We
briefly describe each of these methods 1n turn  Recall that relations
are always accessed via an index, unless otherwise specified, an
array index was used to scan the relations 1n our tests

The pure Nested Loops join 15 an O(N?) algonthm It uses one
relation as the outer, scanning each of its tuples once For each outer
tuple, 1t then scans the entire 1nner relation looking for tuples with 2
matching join column value The Hash Jomn and Tree Join algo-
rithms are stmilar, but they each use an index to limit the number of
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tuples that have to be scanned 1n the inner relaton The Hash Join
builds a Chain Bucket Hash index on the join column of the inner
relation, and then 1t uses this index to find matching tuples during the
join The Tree Join uses an existing T Tree index on the inner rela-
tion to find matching tuples We do not include the possibility of
building a T Tree on the 1nner relation for the join because 1t turns
out to be a viable alternative only 1f the T tree already exists as a reg-
ular index — 1f the cost to build the tree 1s included, a Tree Join will
always cost more than a Hash Jom, as a T tree costs more to build
and a hash table 1s faster for single value retrieval [LeC85] On the
other hand, we always include the cost of building a hash table,
because we feel that a hash table index 1s less likely to exist thana T
Tree index The cost of creating a hash table with 30,000 elements 1s
about 5 seconds 1n our environment [LeC85]

The merge jom algonthm [BIE77] was implemented using two
index structures, an array index and a T Tree index For the Sort
Merge algonthm tested here, array indexes were built on both rela-
tions and then sorted The sort was done using quicksort with an
wnsertion sort for subarrays of ten elements or less © For the Tree
Merge tests, we built T Tree indices on the join columns of each
relation, and then performed a merge join using these indices How-
ever, we do not report the T Tree construction times 1n our tests — it
turns out that the T Merge algonthm 1s only a viable alternative 1f
the indices already exist. Preliminary tests showed that the arrays
can be built and sorted 1n 60 percent of the tume to bwild the trees,
and also that the array can be scanned 1n about 60 percent of the time
1t takes to scan a tree

333 Join Tests

The join algonthms were each tested with a vanety of relation
compositions in order to determine their relative performance Six
tests were performed 1n all, and they are summanzed below In our
description of the tests, [R1{ denotes the outer relation and |R2|
denotes the inner relation

(1) Vary Cardinality Vary the sizes of the relatons with [R1] =

|R2|, 0% duplicates, and a semyjoin selectivity of 100%

Vary Inner Cardinality Vary the s1ze of R2 (|R2{ = 1-100% of
R1[) with [R1| = 30,000, 0% duplicates, and a semijoin selec-
tivity of 100%

Vary Outer Cardinality Vary the size of R1 (|R1| = 1-100% of
[R2[) with [R2| = 30,000, 0% duplicates, and a semyjoin selec-
tivity of 100%

Vary Duplicate Percentage (skewed) Vary the duplicate per-
centage of both relations from 0-100% with [R1| = |[R2| =
20,000, a semyoin selecuvity of 100%, and a skewed duplicate
distnbution

(2)

3

@)

(5) Vary Duplicate Percentage (uniform) Vary the duplicate per-
centage of both relations from 0-100% with [R1]| = |[R2] =
20,000, a semijoin selectivity of 100%, and a umform duplicate

distribution

Vary Semiyjoin Selectivity Vary the semijoin selectivity from
1-100% with [R1| = [R2| = 30,000 and a duplicate percentage of
50% with a umiform duphcate distribution

6)

5 We ran a test to determune the optimal subarray size for switching from
quicksort to'insertion sort, the optimal subarray size was 10



334 Join Test Results

We present the results of each of the join tests mn thus section
The results for the Nested Loops algonthm will be presented
separately at the end of the section, as 1ts performance was typically
two orders of magmtude worse than that of the other join methods

Test 1 — Vary Cardinahty

Graph 4 shows the performance of the join methods for rela-
tions with equal cardinalittes The relations are joined on keys (1€,
no duplicates) with a semyoin selectivity of 100% (1e, all tuples
partictpate 1n the join) If both indices are available, then a Tree
Merge gives the best performance It does the least amount of work,
as the T Tree indices are assumed to exist, and scanmng them 1n
order limits the number of compansons required to perform the join
The number of comparisons done 1s approximately (|R1] + [R2| * 2),
as each element 1n R1 1s referenced once and each element 1n R2 15
referenced twice (The presence of duplicates would increase the
number of times the elements 1n R2 are referenced) If 1t 1s not that
case that both tndices are available, it 15 best to do a Hash Join It
turns out that, 1n this case, 1t 1s actually faster to build and use a hash
table on the inner relation than to simply use an existing T Tree
mdex A Hash table has a fixed cost, independent of the index size,
to look up a value The number of compansons done 1n a Hash Join
1s approximately ([R1} + (|[R1| * k)) where k 1s the fixed lookup cost,
whereas the number of compansons 1n a Tree Join 1s roughly (IR1| +
(R1] * Logy(R2D))) The value of k 15 much smaller than
Log,(IR2)))) but larger than 2 Finally, the Sort Merge algorithm has

the worst performance of the algornithms 1n this test, as the cost of
building and sorting the arrays for use 1n the merge phase 1s too high
((IR1] * Log,(IR1])) + (R2} * Log,(IR2()) + (IR1] + R2[))
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Test 2 — Vary Inner Cardinahty

Graph 5 shows the performance of the join methods as R2’s
cardinality 18 vaned from 1-100% of the cardmality of R1 In thus
test, R1’s cardinality 1s fixed at 30,000, the join columns were again
keys (1e, no duphcates), and the semtjoin selectvity was agan
100% The results obtained here are simular to those of Test 1, with
Tree Merge performing the best if T Tree indices exist on both join
columns, and Hash Join performing the best otherwise In this test,
each of the the index joins were basically doing |R1| searches of an
1ndex of (increasing) cardinality |R2|
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Test 3 — Vary Outer Cardinahty

The parameters of Test 3 were 1dentical to those of Test 2
except that [R1| was vaned instead of |[R2| The results of thus test are
shown 1n Graph 6 The Tree Merge, Hash Join, and Sort Merge
algonthms perform much the same as they did in Test 2 In this
case, however, the Tree Join outperforms the others for small values
of [R1l, beaung even the Tree Merge algonthm for the smallest (R1|
values This 18 mmtwitive, as this algorithm behaves like a sumple
selecuon when [R1| contains few tuples Once [R2| increases to
about 60% of |R1|, the Hash Join algonthm becomes the better
method again because the speed of the hash lookup overcomes the
mtial cost of building the hash table, both of which combined are
cheaper than the cost of many T Tree searches for large values of
[R1| Note 1f a hash table index already existed for R2, then the
Hash Join would be faster than the Tree Join (recall that bwlding the
hash table takes about 5 seconds)
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Test 4 — Vary Duphcate Percentage (skewed)

For test 4, [R1] and {R2| were fixed at 20,000, the semioin
selecuvity was kept at 100%, and the duplicate percentage for both
relations was varied from 1 to 100% The results of this test are
shown 1n Graph 7 The duphicate distnbution was skewed, so there
were many duplicates for some values and few or none for others
(The duplicate percentages of the two relahons were different 1n this
test — a result of the relation construction procedure In order to
achieve 100 percent semyoin selectivity, the values for R2 were
chosen from R1, which already contained a non-umiform distribution
of duphicates Therefore, number of duplicates 1n R2 1s greater than
that of R1 The duplicate percentages 1n Graph 7 refer to R1) Once
the number of duplicates becomes sigmificant, the number of match-
ing tuples (and hence result tuples) becomes large, resulting 1n many
more tuples being scanned The Sort Merge method 1s the most
efficient of the algonthms for scanning large numbers of tuples —
once the skewed duplicate percentage reaches about 80 percent, the
cost of building and sorting the arrays ts overcome by the efficiency
of scanmng the relations via the arrays, so 1t beats even Tree Merge
1n this case Although the number of compansons 1s the same, as
both Tree Merge and Sort Merge use the same Merge Join algorithm,
the array index can be scanned faster than the T Tree index because
the array index holds a list of contiguous elements whereas the T
Tree holds nodes of contiguous elements joned by pointers Test
results from [LeC85] show that the array can be scanned 1n about 2/3
the tume 1t takes to scan a T Tree The Index Join methods are less
efficient for processing large numbers of elements for each join
value, so they begin to lose to Sort Merge when the skewed duplicate
percentage reaches about 40 percent

Test 5 — Vary Duphcate Percentage (umform)

Test 5 1s 1dentical to Test 4 except that the distnbution of
duplicates was umform The results of Test 5 are shown 1n Graph 8
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(Note that the duphcate percentages of R1 and R2 are the same here,
because R2 was created with a umform distribution of R1 values )
Here, the Tree Merge algonthm remained the best method until the
duplicate percentage exceeded about 97 percent because the output



of the join was much lower for most duplicate percentages When
the duplicate percentages were low (0-60 percent), the join algo-
nithms had behavior similar to that of earlier tests Once the dupli-
cate percentage became high enough to cause a high output join (at
about 97 percent), Sort Merge again became the fastest join method

Test 6 — Vary Semyjoin Selectivity

In the previous tests, the semujoin selectivity was held constant
at 100% In Test 6, however, 1t was varied, and the results of this
test are shown 1n Graph 9 For thss test, |R1| = [R2| = 30,000 ele-
ments, the duplicate percentage was fixed at 50% 1n each relation
with a umform distribution (so there were roughly two occurrences
of each join column value 1n each relation), and the semyjoin selec-
tivity was vaned from 1-100% The Tree Join was affected the most
by the increase 1n matching values, a brief description of the search
procedure will explain why When the T Tree 1s searched for a set of
tuples with a single value, the search stops at any tuple with that
value, and the tree 1s then scanned 1n both directions from that posi-
tion (since the list of tuples for a given value 1s logically contiguous
in the tree) If the imtial search does not find any tuples matching
the search value, then the scan phase 1s bypassed and the search
returns unsuccessful When the percentage of matching values 1s
low then, most of the searches are unsuccessful and the total cost 1s
much lower than when the majonty of searches are successful A
simular case can be made for the Hash Jotn 1n that unsuccessful
searches sometimes require less work than successful ones — an
unsuccessful search may scan an empty hash chain instead of a full
one The increase in the Tree Merge execution time 1n Graph 9 was
due mostly to the extra data comparisons and the extra overhead of
recording the increasing number of matching tuples Sort Merge 1s
less affected by the increase in matching tuples because the sorting
time overshadows the time required to perform the actual merge join
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335 Join Test Result Summary

If the proper pair of tree 1ndices 1s present, the Tree Merge join
method was found to perform the best in almost all of the situations
tested It turned out never to be advantageous to build the T Tree
indices for thus join method, however, as 1t would then be slower
then the other three methods In situations where one of the two
relations 1s missing a join column index, the Hash Join method was
found to be the best choice There are only two exceptions to these
statements
(1) If an index exists on the larger relation and the smaller relation
1s less than half the size of the larger relation, then a Tree Join
(T Tree index join) was found to execute faster than a Hash
Join In this situation, the tuples 1n the smaller relation can be
looked up 1n the tree index faster than a hash table can be built
and scanned This would also be true for a hash index if 1t
already existed

(2) When the semijoin selecuvity and the duplicate percentage are
both high, the Sort Merge join method should be used, particu-
larly 1f the duphlicate distribution 1s highly skewed A Tree
Merge jomn 15 also satisfactory 1s this case, but the required
indices may not be present If the indices must be built, then
the Tree Merge join will be more costly than the Hash Join for
duplicate percentages less then 60 1n the skewed case and 80 in
the umform case

It should be mentioned that only equijoins were tested Non-
equijoins other than "not equals” can make use of ordenng of the
data, so the Tree Join should be used for such (<, <, >, 2) joins

As mentioned earlier, we also tested the nested loops join
method Due to the fact that its performance was usually several
orders of magmtude worse than the other join methods, we were
unable to present them on the same graphs Graph 10 shows the cost
of nested loops join for a portion of Test 1, with |[R1| = |R2]| vaned
from 1,000 to 20,000 It 1s clear that, unless one plans to generate
full cross products on a regular basis, nested loops join should sim-
ply never be considered as a practical join method for a mamn
memory DBMS

The precomputed join described 1n Section 2 1 was not tested
along with the other join methods Intuttively, 1t would beat each of
the join methods 1n every case, because the joining tuples have
already been paired Thus, the tuple pointers for the result relation
can simply be extracted from a single relation

34 Projection

In our discussion of the MM-DBMS 1n Section 2, we explained
that much of the work of the projection phase of a query 1s implicitly
done by specifying the attributes 1n the form of result descriptors
Thus, the only step requining any sigmuficant processing 1s the final
operation of removing duplicates For duplicate elimination, we
tested two candidate methods Sort Scan [BBD83] and Hashing
[DKO84] Agamn, we implemented both methods and compared their
performance

In these tests, the composition of the relation to be projected
was varied 1n ways similar to the those of the join tests — both the
relation cardinality and 1ts duplicate percentage were varied Since
preliminary tests showed that the distnbution of duplicates had no
effect on the results, we do not vary the distribution in the tests
presented here
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Graph 11 shows the performance of the two duplicate elimina-
tion algonthms for relations of various sizes For thus test, no dupli-
cates were actually introduced 1n the relation, so the starting size of
the relation and 1ts final size were the same The nsertion overhead
n the hash table 15 linear for all values of [R| (since the hash table
si1ze was always chosen to be |R}/2), while the cost for sorting goes as
O(|Rj log [R[) As the number of tuples becomes large, this sorting
cost dominates the performance of the Sort Scan method In addi-
tion, these tests were performed using single column relations — the
number of compansons 1s much higher 1n the sort process, and this
cost would only be exacerbated 1f more columns participated in the
projection Thus, the Hashing method 1s the clear winner in this test

Graph 12 shows the results for a relation with 30,000 elements
but a varying number of duplicates As the number of duplicates
increases, the hash table stores fewer elements (since the duplicates
are discarded as they are encountered) The Hashing method 1s thus
able to run faster than 1t would with all the elements (since 1t has
shorter chains of elements to process for each hash value) Sorting,
on the other hand, realizes no such advantage, as 1t must still sort the
entire list before eliminating tuples during the scan phase The large
number of duplicates does affect the sort to some degree, however,
because the nsertion sort has less work to do when there are many
duplicates — with many equal values, the subarray 1n quicksort 1s
often already sorted by the tume 1t 15 passed to the insertion sort

4 Conclusions and Future Work

In this paper, we have addressed query processing 1ssues and
algonthms for a main memory database management system We
sketched an architecture for such a system, the MM-DBMS architec-
ture, pomnting out the major differences between disk-based data-
bases and memory resident databases We then addressed the prob-
lem of processing relational quenes in the MM-DBMS architecture,
studying algorithms for the selection, join, and projection operations
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A number of candidate algonthms were implemented for each opera-
tion, and their performance was experimentally compared We
found that, for selection, the T Tree provides excellent overall per-
formance for quenes on ordered data, and that Modified Linear
Hashing 1s the best index structure (of those examined) for unordered
data For joins, when a precomputed join does not exist, we found
that a T Tree based merge join offers good performance if both
idices exist, and that hashing tends to offer the best performance
otherwise A main memory vanant of the sort merge algorithm was
found to perform well for high output joins Finally, it was shown
that hashing 1s the dominant algonthm for processing projections n
main memory

In hght of these results, query optimization in MM-DBMS
should be simpler than 1n conventional database systems, as the cost
formulas are less complicated [SAC79] The 1ssue of clustering and
projection for size reduction has been removed from consideration,
thereby simphifying the choice of algonthms (Projection may be
needed to reduce the number of duplicate entnies n a temporary
result, but 1t 1s never needed to reduce the size of the result tuples,
because tuples are never copied, only pointed to) There are three
possible access paths for selection (hash lookup, tree lookup, or
sequential scan through an unrelated index), three main join methods
(precomputed join, Tree Merge join, and Hash Join) and one method
for eliminating duplicates (Hash) Moreover, the choice of which
algonthm 15 simplified because there 1s a more defimte ordering of
preference a hash lookup (exact match only) 1s always faster than a
tree lookup which 1s always faster than a sequential scan, a precom-
puted join 1s always faster than the other join methods, and a Tree
Merge join 1s nearly always preferred when the T Tree indices
already exist
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