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Abstract 

Bitmap indexing has been touted as a promising approach for pro- 
cessing complex adhoc queries in read-mostly environments, like 
those of decision support systems. Nevertheless, only few possible 
bitmap schemes have been proposed in the past and very little is 
known about the space-time tradeoff that they offer. In this paper, 
we present a general framework to study the design space of bitmap 
indexes for selection queries and examine the disk-space and time 
characteristics that the various alternative index choices offer. In 
particular, we draw a parallel between bitmap indexing and num- 
ber representation in different number systems, and define a space 
of two orthogonal dimensions that captures a wide array of bitmap 
indexes, both old and new. Within that space, we identify (analyt- 
ically or experimentally) the following interesting points: (1) the 
time-optimal bitmap index; (2) the space-optimal bitmap index; (3) 
the bitmap index with the optimal space-time tradeoff (knee); and 
(4) the time-optimal bitmap index under a given disk-space con- 
straint. Finally, we examine the impact of bitmap compression and 
bitmap buffering on the space-time tradeoffs among those indexes. 
As part of this work, we also describe a bitmap-index-based evalua- 
tion algorithm for selection queries that represents an improvement 
over earlier proposals. We believe that this study offers a useful 
first set of guidelines for physical database design using bitmap in- 
dexes. 

1 Introduction 

While the query performance issues of on-line transaction process- 
ing (OLTP) systems have been extensively studied [7] and are pretty 
much well-understood, the state-of-the-art for Decision Support 
Systems (DSS) is still evolving as indicated by the growing ac- 
tive research in this area [3]. Current database systems, which are 
optimized mainly for OLTP applications, are not suitable for DSS 
applications due to their different requirements and workload [6]. 
In particular, DSS operate in read-mostly environments, which are 
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dominated by complex adhoc queries that have high selectivity fac- 
tors (i.e., large foundsets). 

A promising approach to process complex queries in DSS is 
the use of bitmap indexing [8, 9, lo]. Bitmap manipulation tech- 
niques have already been used in some commercial products [12] 
to speed up query processing: a notable example is Model 204, 
a pre-relational DBMS from Computer Corporation of America 
[S]. More recently, various DBMS vendors, including Oracle, Red- 
Brick, and Sybase, have introduced bitmap indexes into their prod- 
ucts to meet the performance requirements of DSS applications 
[5, 61. In its simplest form, a bitmap index on an indexed attribute 
consists of one vector of bits (i.e., bitmap) per attribute value, where 
the size of each bitmap is equal to the cardinalit of the indexed re- 
lation The bitmaps are encoded such that the it x record has a value 
of TJ in the indexed attribute if and only if the ith bit in the bitmap 
associated with the attribute value IJ is set to 1, and the it’” bit in 
each of the other bitmaps is set to 0. This is called a Value-List 
index [lo]. An example of a Value-List index for a 12-record re- 
lation R is shown in Figure 1, where each column in Figure l(b) 
represents a bitmap B” associated with an attribute value ‘u. 

I 
2 
3 
4 
5 
6 
I 
8 
9 
IO 
II 
12 

XA (RI 
3 

2 
I 
2 
8 
2 
2 
0 
7 
5 
6 

-+ 

B* 8’ B6 B5 B4 B3 B2 B’ B” 
0 0 0 0 0 I 0 0 0 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 I 0 
0 0 0 0 0 0 1 0 0 
1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 I 0 0 
0 0 0 0 0 0 I 0 0 
0 0 0 0 0 0 0 0 I 
0 I 0 0 0 0 0 0 0 
0 0 0 I 0 0 0 0 0 
0 0 

:, 
0 0 0 0 0 0 

0 0 0 

($ 

0 0 0 0 

Figure 1: Example of a Value-List Index. (a) Projection of indexed 
attribute values with duplicates preserved. (b) Value-List Index. 

Consider a high-selectivity-factor query with selection predi- 
cates on two different attributes. A conventional OLTP optimizer 
would generate one of the following three query plans: (Pl) a full 
relation scan, (P2) an index scan (using the predicate with lower 
selectivity factor) followed by a partial relation scan to filter out 
the non-qualifying tuples, or (P3) an index scan for each selection 
predicate, followed by a “merge” of the results from the two in- 
dex scans. Due to the compact sizes of bitmaps (especially for 
attributes with low cardinality) and the efficient hardware support 
for bitmap operations (AND, OR, XOR, NOT), plan (P3) using 
bitmap indexes is likely to be more efficient than a plan that re- 

355 



quires a partial or full relation scan (plans (PI) and (P2)). A simple 
cost analysis shows that evaluating plan (P3) with bitmap indexes 
is more efficient than using the conventional RID-list based indexes 
for queries with selectivity factor above some threshold. Let N and 
n be the relation and query result cardinalities, respectively. As- 
sume that each RID is 4 bytes long and that one bitmap is scanned 
per predicate. In terms of the number of bytes read, using bitmap 
indexes for 

R 
Ian (P3) is more efficient than using RID-list based 

indexes if 2K < 4(2n); i.e., % 2 &. Furthermore, operations on 
bitmaps are more CPU-efficient than merging RID-lists. 

Various bitmap indexes [8,9,10, 13, 141 have been designed for 
different query types, including range queries, aggregation queries, 
and OLAP-style queries. However, as there is no overall best bitmap 
index over all kinds of queries, maintaining multiple types of bitmap 
indexes for an attribute may be necessary in order to achieve the de- 
sired level of performance. While the gains in query performance 
using a multiple-index approach might be offset by the high update 
cost in OLTP applications, this is not an issue in the read-mostly 
environment of DSS applications. Indeed, the multiple-index ap- 
proach is adopted by Sybase IQ, a DBMS specifically designed for 
data warehousing applications, which supports five different types 
of bitmap indexes, and requires the database to be fully inverted 
[l]. Maintaining multiple indexes for an attribute, however, further 
increases the disk space requirement of data warehouse applica- 
tions. Understanding the space-time tradeoff of the various bitmap 
indexes is therefore essential for a good physical database design. 

In this paper, we study the space-time tradeoff of bitmap in- 
dexes for the class of selection queries, i.e., queries with predi- 
cates of the form “A op u”, where A refers to the indexed attribute, 
op is one of six comparison operators { I,>, <, >, =, #}, and ‘u 
is the predicate constant. We refer to selection predicates where 
op E {=, #} as equality predicates, and to selection predicates 
where op E { 5, 2, <, >} as range predicates. Information on 
bitmap indexes for other types of queries (e.g., star-join and group- 
by queries) can be found elsewhere [9, IO]. 

The main contributions in this paper are as follows: 

l The presentation of a general framework to study the design 
space of bitmap indexes for selection queries. The frame- 
work not only captures the existing proposed ideas but re- 
veals several other design alternatives as well. 

l An analysis of the space-time tradeoff of bitmap indexes; 
in particular, we identify analytically or experimentally four 
interesting points in a typical space-time tradeoff graph, as 
shown in Figure 2: 

(A) The space-optimal bitmap index. 

(B) The time-optimal bitmap index under a given space con- 
straint. 

(C) The bitmap index with the optimal space-time tradeoff, 
i.e., the knee of the space-time tradeoff graph. 

(D) The time-optimal bitmap index. 

l An experimental study of the effects of bitmap compression 
on the space-time tradeoff issues. 

l An analytical study of the effects of bitmap buffering on the 
space-time tradeoff issues. 

l The proposal of a more efficient evaluation algorithm for 
bitmap indexes. The new algorithm reduces the number of 
bitmap operations by about 50% and incurs one less bitmap 
scan for a range predicate evaluation. 

The rest of this paper is organized as follows. In Section 2, we 
present a framework to study the design space of bitmap indexes for 

Figure 2: Space-Time Tradeoff Issues 

selection queries. Section 3 presents an improved evaluation algo- 
rithm for bitmap indexes, including both analytical and experimen- 
tal performance evaluations. Section 4 presents an analytical cost 
model for the space-time tradeoff study. Section 5 compares the 
space-time tradeoff of two basic bitmap encoding schemes. In Sec- 
tion 6, we examine the space-optimal (point (A)) and time-optimal 
(point (D)) bitmap indexes. In Section 7, we characterize the knee 
of the space-time tradeoff graph of bitmap indexes (point (C)). Sec- 
tion 8 presents an optimal as well as a heuristic approach to find 
the time-optimal bitmap index under space constraint (point (B)). 
In Section 9, we present an experimental study of the impact of 
bitmap compression on the space-time tradeoff issues. Section 10 
presents an analytical study of the effect of bitmap buffering on the 
space-time tradeoff issues. Finally, we summarize our results in 
Section 11. 

For the rest of this paper, we use the term index to refer to a 
bitmap index. Due to lack of space, the derivations of analytical 
results and the proofs of theorems and algorithms’ correctness are 
omitted from this paper; full details are given elsewhere [2]. 

2 Design Space of Bitmap Indexes for Selection Queries 

In this section, we present a framework to examine the design space 
of indexes for selection queries. The framework has been inspired 
by the work of Wong et. al. [13, 141. 

Let C denote the attribute cardinality; i.e., the number of dis- 
tinct actual values of the indexed attribute. The attribute cardinality 
is generally smaller than the cardinality of the attribute domain; i.e., 
the number of all possible values of the indexed attribute. Without 
loss of generality and to keep the presentation simple, we assume 
in this paper that the actual attribute values are consecutive integer 
values from 0 to C - 1. For the general case where the actual at- 
tribute values are not necessarily consecutive, a bitmap index can 
be built either on the entire attribute domain, or on C consecu- 
tive values by mapping each actual attribute value to its rank via a 
lookup table. 

As described in Section 1, the Value-List index is a set of bitmaps, 
one per attribute value. In other words, if one views this set as 
a two-dimensional bit matrix (Figure l(b)), the focus is on the 
columns. If the focus moves on the rows, however, then the in- 
dex can be seen as the list of attribute values represented in some 
particular way. As there is a large number of possible representa- 
tions for attribute values (integers in this case), this clearly opens 
up the way for defining a whole host of bitmap indexing schemes. 
In classifying all these representations, we identify two major or- 
thogonal parameters that define the overall space of alternatives. 
In particular, considering the Value-List index again, we observe 
that each attribute value is represented as a single digit (in base-C 
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arithmetic), this digit being encoded in bits by turning exactly one 
out of C bits on. The arithmetic we choose for the value repre- 
sentation, i.e., the decomposition of the value in digits according to 
some base, and the encoding scheme of each digit in bits are the 
two dimensions of the space and are analyzed below. 

(1) Attribute Value Decomposition Consider an attribute value 
vandasequenceof(n-l)numbers< b,-l,b,-2, . . ..bl >. Fur- 

thermore, define b, = 

?J = Vl 
= fib1 fvl 

= &(bzbl) + vzbl + v~ 
= K(bxbzbl) + vs(bzbl) + vzbl + vl 
= 

/n-l \ /z-l \ 
= w, (Ebj) +...+v, (gb3) +...+vzbl+vl, 

where v; = V; mod bi, V; = 
L 1 

2 , 1 < i 5 n, and each digit 

vz is in the range 0 5 wi < b,. 
Based on the above, each choice of n and sequence < b,, b,-1 , 

bl > gives a different representation of attribute values, and 
the;efore a different index. An index is well-dejned if bi 2 2, 
1 <i <TX. Thesequence< b,,b,-l,...,bl >isthebaseof 
the-index, which is in turn called a base-< b,, b,,-1, . . . , bl > 
index, If b, = b,-1 = = bl z b, then the base is called 
uniform and the index is called base-b for short. The index consists 
of n components, i.e., one component per digit. Each component 
individually is now a collection of bitmaps, constituting essentially 
a base-bj index. 

Let ni denote the number of bitmaps in the ith component of 
an index and {B” - ‘, BrZ -‘, . , BP} denote the collection of 
ni bitmaps that form the ith component. Figure 3 shows a base- 
< 3,3 > Value-List index (based on the same 12-record relation 
in Figure 1). By decomposing a single-component index into a 2- 
component index. the number of bitmaps has been reduced from 9 
to 6. 
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Figure 3: Example of a 2-Component Value-List Index (a) Pro- 
jection of indexed attribute values with duplicates preserved. (b) 
Base-< 3,3 > Value-List Index. 

(2) Bitmap Encoding Scheme Consider the ith component of 
an index with attribute cardinality bi. There are essentially two 
major schemes to directly encode the corresponding values v; (0 5 

5 bi - 1) in bits’: 

l Equality Encoding: There are bi bits, one for each possible 
value. The representation of value ‘ui has all bits set to 0, ex- 
cept for the bit corresponding to v;, which is set to 1. Clearly, 
an equality-encoded component consists of bi bitmaps. 

l Range Encoding: There are b; bits again, one for each possi- 
ble value. The representation of value U; has the vi rightmost 
bits set to 0 and the remaining bits (starting from the one cor- 
responding to o; and to the left) set to 1 Intuitively, each 
bitmap ByI has 1 in all the records whose ith component 
value is less than or equal to ‘ui. Since the bitmap Bf’-’ has 
all bits set to 1, it does not need to be stored, so a range- 
encoded component consists of (bi - 1) bitmaps. 

Figures 4(b) and (c) show the range-encoded indexes correspond- 
ing to the equality-encoded indexes in Figure 1 and Figure 3, re- 
spectively. 
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Figure 4: Examples of Range-Encoded Bitmap Indexes. (a) Projec- 
tion of indexed attribute values with duplicates preserved. (b) Sin- 
gle Component, Base-9 Range-Encoded Bitmap Index. (c) Base- 
< 3,3 > Range-Encoded Bitmap Index. 

Figure 5 shows the two-dimensional design space of indexes 
for selection queries, with the two existing alternatives, namely, 
the Value-List index and the Bit-Sliced index [lo], classified as 
shown, The Value-List index, which is the simplest index and is 
the most commonly implemented, has a single component and is 
equality-encoded. The Bit-Sliced index [lo] has a uniform base 
and is range-encoded. A base-10 Bit-Sliced index has been used 
in MODEL 204 for evaluating range predicates [8]. The Bit-Sliced 
index is also used in Sybase IQ for evaluating range predicates and 

1 We have excluded the third “basic” encoding scheme (the binary encoding 
scheme) discussed in [13, 141, as it can be characterized in our framework as a base-2 
decomposition with one of the two encodings we do present. 

‘Clearly, a symmetric scheme exists as well, where the roles of right and left are 
exchanged. 
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Figure 5: Design Space of Bitmap Indexes for Selection Queries. 

performing aggregation [lo]. In this paper, we consider all well- 
defined decompositions, and just the two encoding schemes pre- 
sented above, which are used in practice. 

3 An Improved Evaluation Algorithm for Range-Encoded 
Bitmap Indexes 

An evaluation algorithm for selection queries based on range-encoded 
indexes has been proposed by O’Neil and Quass (Algorithm 4.3 in 
[IO]), which we referred to as Algorithm RangeEval. In this 
section, we present an improved evaluation algorithm (Algorithm 
RangeEval-Opt) that reduces the number of bitmap operations 
by about 50% and requires one less bitmap scan for a range pred- 
icate evaluation, Given this, in the rest of the paper, the improved 
evaluation algorithm is used as the basis for the time analysis of 
range-encoded indexes. Both evaluation algorithms are shown in 
Figure 6. 

Let Bc and Di denote bitmaps with all bits set to 0 and 1, re- 
spectively. Also let A, V, and @ denote the logical AND, OR, and 
XOR operations, respectively, and B denote the complement of a 
bitmap B. Depending on the input predicate operator (op), Algo- 
rithm RangeEval evaluates each range predicate by computing 
two bitmaps: the BEQ bitmap and either the &T or BLT bitmap. 
For example, if the predicate is “<‘I, then the result bitmap BLE 
is obtained by computing the bitmaps BEQ and BLT; steps that 
involved BGT, BGE, or BNE are not required. The final result 
bitmap that is returned is either BLT, BLE. BGT, BGE, BEQ, or 
BNE, corresponding to the predicate operator “<‘I, “I”, ‘I>“, “2”. 
“=“, or “#“, respectively. As we show below, such an evaluation 
strategy not only costs more bitmap operations to incrementally 
build the two intermediate bitmaps, but also incurs more bitmap 
scans since the evaluation of the bitmap BEQ, which corresponds 
to an equality predicate evaluation, is the most expensive predicate 
in terms of bitmap scans. 

Algorithm RangeEval-Opt avoids the intermediate equal- 
ity predicate evaluation by evaluating each range query in terms 
of only the “5” predicate based on the following three identities: 
(1) A < v z A 2 v - 1, (2) A > v = A 5 v, (3) A 2 
v E A 5 v - 1. Furthermore, the evaluation of the “I” predi- 
cate itself does not require an equality predicate evaluation. Con- 
sequently, Algorithm RangeEval-Opt requires the computation 
of only one bitmap B for any predicate evaluation, as opposed to 
two bitmaps (BEQ and either BLT or BGT) required in Algorithm 
RangeEval. 

Figure 7 compares the two algorithms for evaluating the pred- 
icate “A 2 864” using a 3-component base-10 index. Clearly, 
Algorithm RangeEval-Opt is more efficient as it requires only 

4 bitmap operations and 5 bitmap scans, compared to Algorithm 
RangeEval, which incurs 10 bitmap operations and 6 bitmap 
scans. Moreover, while efficient processing of Algorithm BSRange- 
Opt requires buffering for only one bitmap (the intermediate/final 
result), efficient processing of Algorithm RangeEval requires buffer- 
ing for two bitmaps (for BEQ and BGT/BLT). 

Figure 7: Comparison of Evaluation Strategies for Selection Predi- 
cate “A 5 864” using a 3-Component, Base-10 Range-Encoded 
Bitmap Index. (a) Algorithm RangeEval. (b) Algorithm 
RangeEval-Opt. 

3.1 Analytical Comparison of Evaluation Algorithms for 
Range-Encoded Bitmap Index 

Number of Bitmap Operations 

RanaeEval-Oot 

Aft 11 n 1 0 ( 1 1 n I2n+l 11 2; 

Table 1: Worst Case Analysis of Evaluation Algorithms; n is the 
number of index components. 

Table 1 shows the worst case analysis of the performance of the 
evaluation algorithms in terms of the number of bitmap operations 
and scans. For Algorithm RangeEval, since each range pred- 
icate evaluation entails an equality predicate evaluation (for BEQ 
bitmap), the number of bitmap operations of a range predicate eval- 
uation is at least twice that of the “=” predicate evaluation. By us- 
ing a more direct evaluation strategy, Algorithm RangeEval-Opt 
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Evaluation Algorithms for Selection Queries Using Range-Encoded Bitmap Indexes. 
Input: n is the number of components in the range-encoded index. 

<bn,bn-I,..., bl > is the base of the index. 
op is the predicate operator, op E {<, >, <,>, =, #}. 
II is the predicate value. 
B,, is a bitmap representing the set of records with non-null values for the indexed attribute. 

Output: A bitmap representation of the set of records that satisfies the predicate “A op v”. 

Algorithm RangeEval Algorithm RangeEval -Opt 
I) BGT = BLT = 80; 1) B=B,, 
2) BEQ = B,,; 2) if(opE{<,>})thenv=v-1; 
3) letv=v,v,-l...vt; 3) let v = 1)~2)~-1 .211; 
4) for i = R. downto 1 do 4) if(opE {<,>,<,>})then 
5) if (v, > 0) then 5) 

I;; 
BL~ = BLT v (BEG A B;‘-‘); 

if (VI < bl - 1) then B = By’ ; 
6) for i = 2 to 71 do 

if (w, < b, - 1) then 7) if (v; # bi - 1) then B = B A By’; 

8) BGT = BGT V (BEQ A B1y’); 8) if(ui#O)thenB=BVBY*-‘; 

9) BEQ = BEQ A (By’ $ BF’-l); 9) else 

10) else 10) for i = 1 to n do 

11) BEQ = BEQ A Bf’-‘; 
11) if(u;=O)thenB=BABF; 

12) else 12) elseif(v;=b;-1)thenB=BAB~‘c2; 

13) BGT = BGT V (BEQ A @); 13) elseB=BA(BY’@By’-I); 

14) BEQ = BEQ A BP; 14)if(opE {>,>,#})then 

15) BNE = BEQ A B,,; 
15) return % A B,,; 

16) BLE = BLT V BEQ; BGE = BGT V BEQ; 
16) else 

17) return B,,; 17) return B A B,,,; 

Figure 6: Algorithms RangeEval and RangeEval-Opt. 

reduces the number of bitmap operations for range predicate eval- 
uations by about half; the number of bitmap scans for range pred- 
icates is reduced by one. Both algorithms have the same cost for 
an equality predicate evaluation. For both evaluation algorithms, 
the worst case occurs when 0 < w2 < b; - 1, 1 < i 5 n, which 
corresponds also to the most probable case. 

3.2 Experimental Comparison of Evaluation Algorithms 
for Range-Encoded Bitmap Index 

In this section, we compare the performance of the evaluation al- 
gorithms in terms of the average number of bitmap scans and the 
average number of bitmap operations. Indexes with uniform base 
are generated by varying the two main parameters: the attribute 
cardinality C and the base number b. We experimented with C = 
50, 100, and 1000; for each value of C, the entire space of base- 
b range-encoded indexes are generated by varying b from 2 to C. 
For each index, we generated a total of 6C selection queries of the 
form “A op c” by varying the predicate op E { <, 5, >, 2, =, #} 
and the predicate constant 0 <_ c < C. Each query is evaluated 
using Algorithm RangeEval and Algorithm RangeEval-Opt. 
For a given range-encoded index and an evaluation algorithm, the 
average number of bitmap scans (operations) is computed by tak- 
ing the average of the number of bitmap scans (operations) over all 
6C queries. 

Figure 8 compares the performance of the two evaluation algo- 
rithms as a function of the base number with C = 100. The graphs 
clearly demonstrate that Algorithm RangeEval-Opt is more ef- 
ficient than Algorithm RangeEval. Similar trends are obtained 
for other values of C. 

4 Cost Model for Space-Time Tradeoff Analysis 

Our cost model for the space-time tradeoff analysis uses the fol- 
lowing two metrics: 

l The space metric is in terms of the number of bitmaps stored. 

l The time metric is in terms of the expected number of bitmap 
scans for a selection query evaluation, and is based on the as- 
sumption that the queries in the query space & are uniformly 
distributed, where Q = {A op IJ : op E (5, 2, <, >, =, # 
},O 5 w < C}. 

Note that our time metric incorporates only the I/O cost (i.e., 
number of bitmap scans) and does not include the CPU cost (i.e., 
number of bitmap operations) as the number of bitmap scans and 
the number of bitmap operations for a query evaluadon are cor- 
related. We denote the space and time metric of an index I by 
Space(l) and Time(l), respectively. 

5 Comparison of Bitmap Encoding Schemes 

This section compares the performance of the two basic encoding 
schemes, namely, equality encoding and range encoding, for selec- 
tion queries. Our result shows that range encoding provides better 
space-time tradeoff than equality encoding in most cases. Let I 
denote an n-component index with base < b,, b,- 1, . . . , bl >. 

Based on the cost model, we have the following result. 

Theorem 5.1 If I is equality-encoded, then 

Space(l) = 25-i, where s; = bi if b; > 2, 
1 otherwise. (1) 

i=l 
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(a) Average Number of Bitmap Scans as a Function of 
Base Number 

4 Oo I I1I.I. I1 I IO 20 30 49 Bale E”,b.. 
60 70 80 w ICC 

(b) Average Number of Bitmap Operations as a Function 
of Base Number 

Figure 8: RangeEval vs RangeEval-Opt for Uniform 
Base Range-Encoded Bitmap Indexes, C = 100. 

Time(l) = 2t, + l), where 

([+j’+(b,-l)([+l-4)) ifbi>2, 

otherwise. 

If 1 is range-encoded, then 

n 

Space(l) = C(bi - 1) 
z=l 

(2) 

Time(l) = 2(n - 2 $ + Jj(k - 1)) (4) 
i=l ’ 

The time analysis for range-encoded indexes is based on Algo- 
rithm RangeEval-Opt. The evaluation algorithm for equality- 
encoded indexes is not shown here due to space constraint; details 
can be found elsewhere [2]. 

A range-encoded index requires one or two bitmap scans per 
component for a selection predicate evaluation. On the other hand, 
an equality-encoded index requires only one bitmap scan per com- 
ponent for an equality predicate evaluation, but for a range predi- 
cate evaluation, the number of bitmap scans required per compo- 
nent is between two and half the number of bitmaps in that com- 
ponent. Figure 9 compares the space-time tradeoff of range- and 
equality-encoded indexes for C = 20, 100, and 1000. The re- 
sults show that range-encoding in general provides better space- 
time tradeoff than equality-encoding in most cases. 

Given the overall superiority of range-encoding, in the remain- 
der of this paper, we focus on the space-time tradeoff of range- 
encoded indexes. Henceforth, we use the term index as an abbrevi- 
ation for a range-encoded index. 

6 Space-Optimal and Time-Optimal Bitmap Indexes 

In this section, we identify both the space-optimal and time-optimal 
indexes (i.e., points (A) and (D) in Figure 2). We refer to the 
most space-efficient (respectively, time-efficient) index among all 
indexes with n components as the n-component space-optimal in- 
dex (respectively, n-component time-optimal index). Note that the 
n-component space-optimal index might not be unique; for exam- 
ple, if C = 1000, then the base-< 32,32 > and base-< 31,33 > 
indexes are both 2-component space-optimal indexes. 

Based on Equations (3) and (4). we have the following result. 

Theorem 6.1 (1) The number of bitmaps in an n-component 
space-optimal index is given by n(b - 2) + T, where b = 
1 q and T is the smallest positive integer such that 
V(b- l)n-’ 2 C. The index with base < ,b - 1,. ,. , b - l,, 

lx--T 
b, . . , b > is an n-component space-optimal index. 

T 

(2) The space-efficiency of space-optimal indexes is a non-decreasing 
function of the number of components. 

(3) The base of the n-component time-optimal index is < w 

n-1 

pi-1 >. 
(4) The time-efficiency of time-optimal indexes is a non-increasing 

function of the number of components. 

By Theorem 6.1, it follows that the space-optimal index corre- 
sponds to the index with the maximum number of components (i.e, 
n = [logz(C)l with each base number equal to 2), and the time- 
optimal index corresponds to the index with the minimal number 
of components (i.e. n = 1). These are probably immediate corol- 
laries of information theory and/or number theory results as well, 
but they are easy enough to prove that doing so seemed easier than 
tracking down the existing literature. 

7 Bitmap Index with Optimal Space-Time Tradeoff (Knee) 

In this section, we characterize the knee of the space-time tradeoff 
graph, referred to as the knee index (point (C) in Figure 2), which 
corresponds to the index with the best space-time tradeoff. Note 
that our characterization is an approximate one as finding a precise 
analytical characterization is generally a difficult problem. How- 
ever, it turns out that our approximate characterization has very 
good accuracy. 

We first give a definition of the knee index that will serve as 
a basis for comparing with our approximate characterization. Let 
S = {II, 12, , I,,} denote the set of optimal indexes3 corre- 
sponding to the points in the space-time tradeoff graph such that 
Space(1,) < Space(l,+l), 1 5 j < p. For 1 < j < p, let LGj 
and RGj denote the gradients of the line segments formed by I3 

3The set of optimal indexes S is the maximal subset of all possible indexes S’ such 
that for each I E S, there does not exist another index in S’ that is more efficient 
than I in both time and space. 
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(c) c = 1000 (c) c = 1000 

Figure 9: Comparison of Space-Time Tradeoff of Range- and Equality-Encoded Bitmap Indexes. 

with Ij-r and I,+,, respectively. LG, and RG, are defined as 
follows: 

RG, = 
TiVLe(lj) - ?‘i?TK(lj+l) x F and 

SpUCe(lj+l) - Space(l,) 

LGj = 
Ti77E(lj-1) - Time(lj) x F 
SpUCe(lj) - Space(l,-1) 

where F = Space(l,,)/Time(lr) is a normalizing factor. The 
index Ik E {I3 E S : LG, > 1, RGj < 1) with the maximum 
ratio LGk/RGk is the knee index. 

Figure 10: Space-Time Tradeoff of Bitmap Indexes, C = 
1000. 

/ 

\2 
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Figure II: Space-Time Tradeoff of Space-Optimal Bitmap 
Indexes, C = 1000. 

We now motivate our approximate characterization, which is 
based on the results of Theorem 6.1, Figure 10 compares the space- 

time tradeoff graphs for three classes of indexes: the class of space- 
optimal indexes, the class of time-optimal indexes, and the en- 
tire class of indexes, for C = 1000; similar results are obtained 
for other values of C. The graph for space-optimal (respectively, 
time-optimal) indexes consist of at most [logz(C)l points, where 
each point corresponds to an n-component space-optimal (respec- 
tively, time-optimal) index, 1 5 n 5 [Zogz(C)l. Note that since 
the space-optimal index is generally not unique, each point in the 
space-optimal graph shown corresponds to the most time-efficient 
index among all equally space-efficient indexes with the same num- 
ber of components, Figure 10 shows that the tradeoff graph for 
space-optimal indexes provides a good approximation to that for 
all indexes. In particular, the set of points on the graph for space- 
optimal indexes is a subset of the set of points on the graph for all 
indexes. 

Figure 11 shows the same space-optimal tradeoff graph as in 
Figure 10 but with each point labelled with the number of compo- 
nents of the corresponding space-optimal index. We observe that 
the knee of the space-time tradeoff graph for the space-optimal in- 
dex corresponds to a 2-component index, something that was con- 
sistent throughout our experimentation. Hence, we characterize the 
knee index as the most time-efficient 2-component space-optimal 
index, which is obtained from the following result. 

Theorem 7.1 The base of the most time-efficient 2-component space- 
optimal index is given by < bz - 6, bl + 6 >, where bl = [q, 

bz = I$], and 6 = max{O, 
L 

b2mb1+J(~+b1)2-4C 1). 

We have compared the knee index based on our approximate char- 
acterization with that based on the definition for various values of 
attribute cardinality; the results show that both knee indexes match 
exactly for all the cases that we compared. 

8 Time-Optimal Bitmap Index Under Space Constraint 

In this section, we consider the following practical optimization 
problem (point (B) in Figure 2): Given a constraint on the available 
disk space to store an index, say at most M bitmaps (or equiva- 
lently, at most MN bits, where N is the number of records), deter- 
mine the most time-efficient index. We first present an algorithm 
that finds the optimal solution, and then present a more efficient 
heuristic approach, which is near-optimal. Both algorithms are 
shown in Figure 12. In the,following, let I, denote an n-component 
index; and IApace and I:‘,’ denote the n-component space- and 
time-optimal indexes, respectively. 
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Algorithms to Find Time-Optimal Bitmap Index Under Space Constraint. 
Input: M is the space constraint in terms of the maximum number of bitmaps. 

C is the attribute cardinality. 
Output: The time-optimal bitmap index with no more than M bitmaps. 

Algorithm TimeOptAlg Algorithm TimeOptHeur 
1) let n be the smallest number such that Sp~ce(l~~“~“) 5 M; 1) (r&,1)= FindSmallestN(M,C); 
2) if (Space(l:lim”) 5 M) then return 12”“; 2) if (Space(lkvL”) 5 ill) then return 1:‘,‘; 
3) let n’ be the smallest number such that n’ > n and Spuce(l$“‘) 5 M; 3) return Ref ineIndex(1); 
4) let Z = {II, : n < k < n’, Space(lh) 5 M} u {I,!J”“}; 
5) return I’ E Z such that Time(1’) 5 Ti,me(l), V I E 1; 

Figure 12: Algorithms TimeOptAlgandTimeOptHeur 

8.1 Optimal Approach 

Algorithm TimeOptAlg finds the actual optimal solution. By re- 
sult (2) of Theorem 6.1, the solution must have at least n compo- 
nents, where n is the smallest number of components such that 
Spuce(l~Pace ) 5 M. If the n-component time-optimal index 
satisfies the space constraint (step 2), then by result (4) of Theo- 
rem 6.1, it is the solution; otherwise, by result (4) of Theorem 6.1, 
the solution index must have no more than n’ components where 
n’ 2 n is the smallest number of components such that the n’- 
component time-optimal index satisfies the space constraint. Fig- 
ure 13 shows two cases to illustrate the bounds on the number of 
components of the solution index; each point on the space-time 
tradeoff graphs shown is labelled with the number of components 
of the corresponding index. 

The time complexity of the algorithm is determined by the size 
of the set of candidate indexes defined by Z (step 4). This search 
space is large as we need to enumerate for each value of k, n 5 k < 
n’, all possible /c-component indexes such that n,“=, bi 2 C and 

Cfzl(bi - 1) < M. F’ lgure 14 shows the size of Z as a function 
of M for C = 1000. 

8.2 Heuristic Approach 

To avoid the costly exhaustive search in the optimal approach (steps 
4 and 5), we present in this section a heuristic approach (Algorithm 
TimeOptHeur in Figure 12) to find an approximate optimal solu- 
tion. Our experimental results show that the heuristic approach is 
near-optimal with the optimal index being selected at least 97% of 
the time. The main idea is to first select a “seed” index that satis- 
fies the space constraint, and then to improve the time-efficiency of 
the seed index by adjusting its base numbers. For the seed index, 
our approach uses an n-component index I with Space(l) = M, 
where n is the least number of components such that Space(l~Pace) 
5 M. Both n and I are determined by Algorithm FindSmallestN 
(Figure 15). Note that if I:,’ satisfies the space cqnstraint (step 
2),then,as in step 2 of Algorithm TimeOptAlg,I$me is the op- 
timal solution index. Algorithm Ref ineIndex (Figure 15) im- 
proves the time-efficiency of an index; its correctness is based on 
the following result. 

Theorem 8.1 Let I,, be an n-component index with base < 0,) b,- 1, 
. , bl >. Suppose there exists two base numbers b, and b,, 

2 < b, 5 b,, and some integer constant 0 < 6 5 b, - 2, such that 
n 

II b’i 2 C, where b’; = 
b,--6 ifi=p, 
b,+b ifi=q, 

i=l b, otherwise. 

Figure 13: Bounds on Number of Components of Solution Index in 
Algorithm TimeOptAlg. 

Let I:, be another n-component index with base < b’,, b/,-l, . . , 
b’l > as defined above. Then Time(lL) < Time(1,). 

Based on Theorem 8.1, Algorithm Ref ineIndex essentially 
tries to maximize the number of components with small base num- 
bers; in particular, step 8 determines the largest possible 6 value for 
adjusting a pair of base numbers. To illustrate Algorithm Refine- 
Index,consider a3-component index I withbase < 21,21,22 > 
and C = 1000. In the first iteration, with b, = b, = 21, S = 19 
and the base is refined to < 2,22,40 >. In the second iteration, 
with b, = 22 and b, = 40, 6 = 12 and the base is refined to 
< 2, lo,52 >. After the final refinement step 3, the base of the re- 
fined index I’ is < 2,10,50 >. By Equation (3), Space(l) = 61 
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Algorithm FindSmal les tN: Algorithm to Find the Bitmap Index with Least Number 
of Components Under Space Constraint. 
Input: M is the space constraint in terms of the maximum number of bitmaps. 

C is the attribute cardinality. 
Output: n, the smallest number of components such that Space(l~Pace) < M, and 

An n-component index I, with Space(I,,) = M. 
1) n=o; // n is the number of components 
2) repeat 
3) n=n+l; 
4) b= +j; 

5) i r= M+n)modr~; //r is the number of components with base (b + 1) 
6) until ((b + l)Tbn-’ > C); 
7) let I, be the n-component bitmap index with base < b, . , b, b + 1,. . . , b + 1 >; 

-- 
n--r 7 

8) return (n, I,); 

Algorithm Ref ineIndex: Algorithm to Improve the Time-Efficiency of a Bitmap Index. 
Input: I, is a ,n-component bitmap index. 

C is the attribute cardinality. 
Output: A n-component bitmap index IL such that Time 5 Time(I,) and Space(I:,) I: Space(I,). 
I) letseqOfBase=<b,,b,-I,...,bl >bethebaseofI,; 

2) prodOfBase = fi bi; 
i=l 

3) for i = n downto 2 do 
4) let b, be the smallest base number from seqOf Base; 
5) delete b, from seqOf Base; 
6) if (bp > 2) then 
7) let b, be the smallest base number from seq0 f Buse; 

b b 
8) let 6 = 

L 

b-b,+&,+bd2-p?,#& 
2 

J1 

9) if (0 < 6 5 b, - 2) then 

10) prodOfBase = prodOjBasbep~~-6)(b1+6); 
11) b, = b, - 6; 
12) b, = b, + 6; 
13) b’, = b,; 

14) b; = 

15) return the n-component bitmap index with base < b’,, b’,- 1, . . , b; >; 

1 

Figure 15: Algorithms FindSmallestN and Ref ineIndex. 

and Space(I’) = 59. By Equation (4), Time(I) = 5.08 and 
Time(l’) = 4.10. 

The time complexities of Algorithms FindSmal les tN and 
Ref ineIndex are O(log:,(C)) and O(nlogz(n)), respectively, 
where n is at most [logz(C)l. Therefore, the time complexity of 
Algorithm TimeOptHeur is o(logz(C)logz(log:!(C))). 

50 
500 

[_-I 

1000 
2000 

Max. Difference in 
Expected Number 

Table 2 shows the effectiveness of the heuristic approach for 
various values of attribute cardinality. The second column shows 
the percentage of solutions selected by the heuristic approach that 
are optimal for the attribute cardinality value indicated in the first 
column. For those cases where the optimal and heuristic approaches 
differ, the third column shows the maximum difference in the ex- 
pected number of bitmap scans of their selected indexes. The result 
indicates that the proposed heuristic approach is near-optimal. 

9 Effect of Bitmap Compression on Space-Time Tradeoff 

This section examines the effect of bitmap compression on the 
space-time tradeoff of bitmap indexes. 

9.1 Bitmap Index Storage Schemes 
Table 2: Effectiveness of Heuristic Approach to Select Time- 
Optimal Bitmap Index under Space Constraint. We first investigate different physical organizations for bitmap in- 

dexes to identify storage schemes that have good space-time trade- 
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Figure 14: Size of Set of Candidate Bitmap Indexes, 2, as a 
Function of the Space Constraint A4 for C = 1000. 

off. Consider an k-component bitmap index for a N-record re- 
.” lation, where the z index component comprises of 72; bitmaps, 

1 < i 5 lc. Let n = 2 nl. The entire bitmap index is essen- 
E=l 

tially a (N x n) bit-matrix, where the ith component is a (N x n;) 
bit-matrix, and each bitmap is a (N x 1) bit-vector. Based on the 
above view of a bitmap index, we compare the following three stor- 
age schemes: 

Bitmap-Level Storage (BS) Each bitmap is stored individually in 
a single bitmap file of N bits. Thus, the bitmap index is 
stored in n N-bit bitmap files. 

Component-Level Storage (CS) Each index component is stored 
individually in a row-major order in a single bitmap file of 
(N x ni) bits, 1 < i < Ic. Thus, the bitmap index is stored 
in k bitmap files. 

Index-Level Storage (IS) The entire index is stored in a row-major 
order in a single bitmap file of Nn bits. 

We refer to a bitmap index that is organized using storage scheme 
X (without any compression) as a X-index, and refer to a X-index 
with all its bitmaps compressed as a cX-index (i.e., c for com- 
pressed). For a l-component bitmap index, both a CS-index and 
an IS-index are equivalent. For a bitmap index with the maximum 
number of components; i.e., each component is of base 2, (1) both 
a BS-index and a CS-index are equivalent, and (2) an IS-index is a 
projection index4. 

In a CS-index, each row of a component bit-matrix has either 
a consecutive stream of 1 bits followed by a consecutive stream of 
0 bits if the index is range-encoded, or exactly one bit set to 1 if 
the index is equality-encoded. In contrast, in a BS-index, the dis- 
tribution of the bits in each bitmap is dependent on the distribution 
of the attribute values. Thus, we expect a CS-index to be more 
compressible than a BS-index. 

9.2 Experimental Setup 

Our experimental study uses two data sets extracted from the TPC- 
D Benchmark [4]: data set 1 is for small attribute cardinality, and 
data set 2 is for large attribute cardinality. Table 3 shows the key 
characteristics of our experimental data. To limit the number of ex- 
periments for each data set, our comparison of the space-time trade- 
off is restricted to the class of space-optimal indexes (as a function 
of the number of index components, n) with n being varied from 1 

4A projection index [IO] on an attribute A in B relation R is simply the projection 
of A on R with duplicates preserved and stored in RlD-order. 

DataSet 1 1 DataSet 2 

‘~~ 

Table 3: Characteristics of TPC-D Benchmark Data used in Exper- 
iments 

to 6; this is motivated by our results in Section 7 which show that 
the space-time tradeoff of space-optimal indexes provides a good 
approximation to the space-time tradeoff of all indexes. The data 
compression code used is from the zlib library5. 

Table 4 compares the compressibility of the three storage schemes 
for both data sets. For each n-component index I and each com- 
pressed storage scheme S, where 1 5 n 5 6 and S E {CBS, cCS, 
clS}, we compute the percentage of the size of I under S to the 
size of I under BS. For both data sets, the results show that CS- 

Base Size of I Compressibility of 

Base 
of 

Index I 
< 2406 > 
< 43,56 > 

< 11,13,17 > 

Size of I Compressibility of 
under BS Storage Scheme (%) 
(in bytes) CBS cCS cIS 

450,937,500 76.2 2.2 2.2 
18,187,500 77.6 26.3 28.8 
7,125,OOO 80.7 40.9 48.8 

< 5,7,7,10 > 4,687,500 84.2 60.5 76.8 
< 4,5,5,5,5 > 3,562,500 87.7 67.2 87.6 

< 3,3,3,3,5,6 > 3,187,500 89.7 75.1 93.0 
(b) Data Set 2 

Table 4: Comparison of Compressibility of Different Storage 
Schemes. 

indexes give the best compression. 
In terms of query evaluation cost, a BS-index requires at most 

2 bitmap file scans per index component. On the other hand, both a 
CS-index and an IS-index require all the bitmap files to be scanned; 
moreover, they also incur additional CPU overhead to extract the 
bits of each relevant bitmap from the component bitmap files (which 
are stored in row-major order). Thus, we expect CBS-indexes to 
be more time-efficient than cCS- and cIS-indexes; this is indeed 
supported by our experimental results. For example, consider the 
base-50 CBS-index; the average size of each compressed bitmap is 
36Y7571448xo.776 = 582,118 bytes. Even when two bitmaps (an 
averag:if 1,164,236 bytes) are scanned to evaluate an equality 
query, using the CBS-index is still significantly cheaper than us- 
ing the cCS-index (or cIS-index), which requires (36,757,448 x 
0.272) = 9,998,026 bytes to be scanned. 

Since CBS-indexes are the most time-efficient and cCS-indexes 
are the most space-efficient, we shall compare the space-time trade- 

‘The zlib library is written by Jean-loup Gdly 
and Mark Adler (http //www.cdrom,com/pub/infozip/zlib); the compression method 

is based on a LZ77 variant called deflation. 
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offs of only CBS- and cCS-indexes against BS-indexes for the rest 
of this section, Each bitmap index is used to evaluate a set of 2C 
selection queries & (using Algorithm RangeEval-Opt), where 
& = {A op v : op E {<,=},O 5 u < C). The predicate oper- 
ator is restricted to “5” (for range queries) and “=” (for equality 
queries) to limit the number of queries. 

The performance of each index is measured in terms of its space- 
and time-efficiency. The space metric is in terms of the total space 
of all its bitmaps (in MBytes), and the time metric is in terms of the 
average predicate evaluation time (in sets) which includes (1) the 
time to read the bitmaps, (2) the time for in-memory bitmap decom- 
pression (for compressed bitmaps), and (3) the time for bitmap op- 
erations The average predicate evaluation time, Tavy, is computed 

C-l 
as follows: T,,q = & c (T> + TT), where Tzp denote the 

%I=” 
time to evaluate the predicate “A op v”. 

9.3 Experimental Results 

This section presents experimental results for indexes under the 
storage schemes BS, CBS, and cCS for data set 1; results for data set 
2 are not shown due to space limitation. Figure 16(a) compares the 
time-efficiency of the indexes as a function of the number of index 
components. Both BS- and CBS-indexes outperform cCS-indexes 
significantly; in particular, for cCS-indexes, over 70% of the to- 
tal evaluation time is due to bitmap decompression, The decom- 
pression cost for cCS-indexes generally increases with the number 
of bitmap components since the number of bits to be extracted is 
an increasing function of the number of components. For cCS- 
indexes, since all the compressed bitmap files need to be scanned 
for a query evaluation, their I/O cost is a function of the total size of 
all compressed bitmap files, which generally decreases as the num- 
ber of components increases. In contrast, for both BS- and CBS- 
indexes, since the number of bitmaps to be scanned increases with 
the number of components, their l/O cost is an increasing function 
of the number of components. Comparing BS- and CBS-indexes, 
while CBS-indexes incur a lower I/O cost, this is often offset by 
their bitmap decompression cost; our results show that both BS- 
and CBS-indexes are almost comparable in their time-efficiency. 

Figure 16(b) compares the space-efficiency of the indexes as 
a function of the number of index components. There are two 
main observations. First, as we already know from Table 4, cCS- 
indexes are the most space-efficient. Second, the results show that 
the effectiveness of bitmap compression decreases as the number 
of components increases. This can be explained by the fact that 
the number of bitmaps is a decreasing function of the number of 
components (result (2) of Theorem 6.1); in particular, there is a 
significant space reduction when an index is decomposed from one 
to two components. Consequently, the gain of bitmap compression, 
with respect to space reduction, is only marginal once an index has 
been decomposed (i.e., n 2 2). Thus, in terms of improving space 
efficiency, decomposing an i-component BS-index to an (i + l)- 
component BS-index could be more effective than compressing the 
i-component index. 

Figure 16(c) compares the space-time tradeoff of the indexes. 
The result shows that BS- and CBS-indexes have comparable space- 
time tradeoff, which is better than that of cCS-indexes. 

10 Effect of Buffering on Space-Time Tradeoff 

This section considers the effect of bitmap buffering on the space- 
time tradeoff issues that we have addressed. As the typical size of 
buffer space is at least 1 GB in database systems running on SMP 
systems for large data warehouse applications [ 1 11, it is likely that 
a good number of bitmaps can remain memory-resident, By taking 

into account the amount of main-memory allocated for buffering 
bitmaps, more optimal indexes with better space-time tradeoff can 
be designed. 

The unit of buffering that we consider here is the number of 
bitmaps. Consider an n-component index I with base < b,, b,-1, 
. . , bl >. Let m denote the number of bitmaps that can be buffered 
in main-memory, where 1 5 m < Space(l). We denote a m- 
bilmap bujj%l- assignment for I by < f,,, fn-l, . , fl >, where 
f, is the number of bitmaps in the ith component of I that are 
buffered. A m-bitmap buffer assignment for I is well-defined if 
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O<f~<b,,Vl<i~n,and c fi =m. 
2=1 

In addition to the uniform query distribution assumption stated 
in Section 4, we further assume that the buffer hit rate for each 
referenced bitmap is uniformly distributed (i.e., the probabrlity that 
a reference to any bitmap in the ith component is a buffer hit is 
given by A). Then, the expected number of bitmaps scans for 
a selection query evaluation using an n-component index I with a 
m-bitmap buffer assignment is given by 

Time(I) = 2(n - 2 y + j!($k$ - 1)) (5) 
2=1 z 

We now present an optimal bitmap buffering policy for indexes. 
From result (3) of Theorem 6.1 and Theorem 8.1, we know that an 
index is more time-efficient if it has more components with smaller 
base numbers. Since buffering the bitmaps in an index component 
effectively reduces the base of that component, it follows that it 
is more beneficial (in terms of reducing the expected number of 
bitmap scans) to buffer a bitmap from a component with a smaller 
base number than from one with a larger base number. The follow- 
ing optimal bitmap buffering policy is based on a prioritization of 
the index components using their base numbers. 

Theorem 10.1 Consider the following priority assignment to bitmap 
components: 

1. Partition the components of an index into two disjoint sets 
X and X’ such that X = (1 < i 5 n : b, 5 $bl} and 
X’=(l<i<n:i#X}. 

2. Components in X have higher priority than those in X’. 

3. Within each set (X or X’), components with smaller base 
numbers have higher priority. 

Based on the above priority assignment, a bitmap buffering policy 
that favors bitmaps from a higher priority component over those 
from a lower priority component is optimal. 

Based on Equation (5) and the above optimal bitmap buffering 
policy, we have the following result. 

Theorem 10.2 If m > 0, the time-optimal index is an m-component - ,-Y - 
>. 

Figure 17 compares the space-time tradeoff of indexes (based 
on the optimal bitmap buffering policy) as a function of the number 
of buffered bitmaps m for C = 1000. As expected, the space- 
time tradeoff improves as m increases. Based on our experimental 
observations, we have the following approximate characterization 
of the knee: 
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(a) Time vs Number of Components (b) Space vs Number of Components (c) Time vs Space 

Figure 16: Comparison of Space-Time Tradeoff of Compressed Bitmap Indexes under Different Storage Schemes for Data Set 1. 

The knee of the space-time tradeoff graph corresponds 
approximately to an (m + 2)-component index with 
base<2 ,..., 2,bs--J,bi+S>,whereC’= [$I, 

, 
6 = max{O, 

bz-bl+ (bz+b1)2-4C’ 

2 1, 

Note that the approximate knee characterization in Section 7 is a 
special case of the above result. Our experimental results show that 
the approximate knee characterization has very good accuracy. 

Figure 17: Space-Time Tradeoff as a Function of the Number 
of Buffered Bitmaps m, C = 1000. 

11 Conclusions 

In this paper, we have presented a general framework to study 
the design space of bitmap indexes for selection queries, and have 
examined several space-time tradeoff issues. To the best of our 
knowledge, this study represents a first set of guidelines for physi- 
cal database design using bitmap indexes. 

Our results indicate that range-encoded bitmap indexes offer, in 
most cases, better space-time tradeoff than equality-encoded bitmap 
indexes. Concentrating on these, we have identified the time-optimal 
index, the space-optimal index, the index with the optimal space- 
time tradeoff, and the time-optimal index under disk-space con- 
straints. In addition, we have proposed an optimal bitmap buffering 
policy and examined its impact on the space-time tradeoff issues, 
All these results are based on an improved evaluation algorithm for 

selection queries that we have proposed for range-encoded bitmap 
indexes. 

For future work, we plan to explore bitmap indexes for the more 
general class of selection queries that is based on the membership 
operator. 

References 

[I] AIPD Technical Publications. Sybase IQ Indexes. In Sybuse IQ Ad- 
ministration Guide, Sybase IQ Release 11.2 Collection, chapter 5. 
Sybase Inc., March 1997. http://sybooks.sybase.com/cgi-bin/nph- 
dynaweb/siql120l/iq~admin/l.toc. 

[2] C.Y. Chan and Y.E. Ioannidis. Bitmap Index Design and Evaluation. 
Computer Sciences Dept., University of Wisconsin-Madison, 1997. 
http:Nwww.cs.wisc.edu/~cychan/paperl0l.ps. 

[3] S. Chaudhuri and U. Dayal. An Overview of Data Warehousing 
and OLAP Technology. ACM SlGMOD Record, 26( 1):65-74, March 
1997. 

[4] Transaction Processing Performance Council, May 1995. 
http://www.tpc.org. 

[5] H. Edelstein. Faster Data Warehouses, information Week, pages 77- 
88, December 1995. 

[6] C.D. French. “One Size Fits All” Database Architectures do not work 
for DSS. In SfGMOD’95, pages 449-450, San Jose, California, May 
1995. 

[7] G. Graefe. Query Evaluation Techniques for Large Databases. Com- 
puting Surveys, 25(2):73-170, 1993. 

[8] P. O’Neil. Model 204 Architecture and Performance. In Proceedings 
of the 2nd lnlernarional Workshop on High Performance Transactions 
Systems, pages 40-59, Asilomar, CA, 1987. Springer-Verlag. In Lec- 
ture Notes in Computer Science 359. 

[9] P. O’Neil and G. Graefe. Multi-Table Joins Through Bitmapped Join 
Indices. ACM SIGMOD Record, pages 8-l 1, September 1995. 

[lo] P. O’Neil and D. Quass. Improved Query Performance with Variant 
Indexes. In SlGMOD’97, pages 38849, Tucson, Arizona, May 1997. 

[ 1 l] T-E Tsuei, A.N. Packer, and K-T. Ko. Database Buffer Size Investiga- 
tion for OLTP Workloads. In SIGMOD’97, pages 112-122, Tucson, 
Arizona, May 1997. 

[12] J. Winchell. Rushmore’s Bald Spot, DBMS, 4(10):58, September 
1991. 

[ 131 H.K.T. Wong, J.Z. Li, F. Olken, D. Rotem, and L. Wong. Bit Tranposi- 
tion for Very Large Scientific and Statistical Databases. Algarithmica, 
1(3):289-309, 1986. 

[14] H.K.T. Wong, H-F. Liu, F. Olken, D. Rotem, and L. Wong. Bit Tran- 
posed Files. In VLDE’85, pages 448-457, Stockholm, 1985. 

366 


