
Fast Database Restarts at Facebook

Aakash Goel,
∗

Bhuwan Chopra, Ciprian Gerea, Dhrúv Mátáni,
Josh Metzler, Fahim Ul Haq, and Janet L. Wiener

Facebook, Inc.

ABSTRACT
Facebook engineers query multiple databases to monitor and
analyze Facebook products and services. The fastest of
these databases is Scuba, which achieves subsecond query
response time by storing all of its data in memory across
hundreds of servers. We are continually improving the code
for Scuba and would like to push new software releases at
least once a week. However, restarting a Scuba machine
clears its memory. Recovering all of its data from disk —
about 120 GB per machine — takes 2.5-3 hours to read and
format the data per machine. Even 10 minutes is a long
downtime for the critical applications that rely on Scuba,
such as detecting user-facing errors. Restarting only 2% of
the servers at a time mitigates the amount of unavailable
data, but prolongs the restart duration to about 12 hours,
during which users see only partial query results and one
engineer needs to monitor the servers carefully. We need
a faster, less engineer intensive, solution to enable frequent
software upgrades.

In this paper, we show that using shared memory provides
a simple, effective, fast, solution to upgrading servers. Our
key observation is that we can decouple the memory lifetime
from the process lifetime. When we shutdown a server for
a planned upgrade, we know that the memory state is valid
(unlike when a server shuts down unexpectedly). We can
therefore use shared memory to preserve memory state from
the old server process to the new process. Our solution does
not increase the server memory footprint and allows recov-
ery at memory speeds, about 2-3 minutes per server. This
solution maximizes uptime and availability, which has led to
much faster and more frequent rollouts of new features and
improvements. Furthermore, this technique can be applied
to the in-memory state of any database, even if the memory
contains a cache of a much larger disk-resident data set, as
in most databases.

∗Aakash is a graduate student at Georgia Institute of Tech-
nology and was an intern at Facebook.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD 2014 Park City, UT USA
Copyright 2014 ACM 978-1-4503-2376-5/14/06 ...$15.00.
http://dx.doi.org/10.1145/2588555.2595642.

1. INTRODUCTION
Facebook engineers query multiple database systems to

monitor and analyze Facebook products and services. Scuba[5]
is a very fast, distributed, in-memory database used exten-
sively for interactive, ad hoc, analysis queries. These queries
typically run in under a second over GBs of data. Scuba pro-
cesses almost a million queries per day for over 1500 Face-
book employees. In addition, Scuba is the workhorse behind
Facebook’s code regression analysis, bug report monitoring,
ads revenue monitoring, and performance debugging.

One significant source of downtime is software upgrades,
yet upgrades are necessary to introduce new features and
apply bug fixes. At Facebook, we are accustomed to the
agility that comes with frequent code deployments. New
code is rolled out to our web product multiple times each
week [9]. The Facebook Android Alpha program also re-
leases code multiple times a week [18, 17]. We would like to
deploy new code to Scuba at least once a week as well.

However, any downtime on Scuba’s part is a problem for
the many tools and users that depend on it. When a server
process is shut down, it loses all of the data in its heap
memory. The new server process must then read all of its
data from the backup copy Scuba keeps on a local disk.
However, Scuba machines have 144 GB of RAM, most of
which is filled with data. Reading about 120 GB of data
from disk takes 20-25 minutes; reading that data in its disk
format and translating it to its in-memory format takes 2.5-
3 hours, a very long time — about 4 orders of magnitude
longer than query response time.

Scuba can and does return partial query results when not
all servers are available. We can mitigate the long downtime
by restarting only a handful of servers at a time, usually 2%
of them, to minimize the impact on query results. The entire
system rollover then takes a lot longer, about 12 hours to
restart the entire Scuba cluster with hundreds of machines.
Furthermore, an engineer needs to monitor the rollover for
its entire duration. This time-consuming procedure discour-
ages frequent deployment of new features and bug fixes.

We needed to reduce the total downtime significantly,
since it prevented us from upgrading Scuba software as often
as we want. One possible solution keeps redundant copies of
the data in memory on different servers. When one server is
being upgraded, queries are routed exclusively to the other
server. We discarded that solution as too expensive in two
dimensions: first, it would require twice as many servers.
The hardware cost of hundreds of servers with 144 GB of
RAM is significant. Second, replication code can be tricky to
get right: Which server should participate in which queries?

541

Scuba: real-time analysis and trouble-shooting User behavior + service logs

Data flow through Scuba

Back-end
Services

Web Tier

FB Servers

Scribe

distributed
messaging

system

transport

Scuba GUI Data storage

Scuba backend
Query aggregator

Leaf

add
directly to

leaf
servers

queries

results

Figure 1: Scuba architecture: data flows from Facebook products and services through Scribe to Scuba.
Users query Scuba and visualize the results in the Scuba GUI.

How should we keep pairs of servers synchronized with mil-
lions of row inserts per second?

Instead, we chose a different solution. We observed that
when we shutdown a server for a planned upgrade, we know
that the memory state is good (unlike when a server shuts
down unexpectedly, which might or might not be due to
memory corruption). We decided to decouple the memory’s
lifetime from the process’s lifetime. In this paper, we de-
scribe how we use shared memory to persist data from one
process to the next.

Using shared memory to store data provides a simple, ef-
fective solution to upgrading servers fast. We were inspired
by two other big, distributed systems at Facebook that use
shared memory to keep data alive across software upgrades:
TAO [6] and Memcache [20]. In our solution, we made two
key design decisions:

1. Scuba copies data from heap memory to shared mem-
ory at shutdown time and copies it back to the heap
at startup.

2. During the copy, data structures are translated from
their heap format to a (very similar but not the same)
shared memory format.

Copying data between heap and shared memory avoids
some of the pitfalls in writing a custom allocator in shared
memory, such as fragmentation and problems with thread
safety and scalability. It also allows us to modify the in-
memory format (in heap memory) and rollover to the new
format using shared memory. We describe how to copy all
of the data to shared memory and back without increasing
the memory footprint of the data.

Scuba’s new upgrade path is about 2-3 minutes per server,
rather than 2-3 hours. The entire cluster upgrade time is
now under an hour, rather than lasting 12 hours. This path
maximizes uptime and availability for Scuba users and mini-
mizes monitoring time of the upgrade for our engineers. For
example, instead of having 100% of the data available only
93% of the time with a 12 hour rollover once a week, Scuba

is now fully available 99.5% of the time — and that hour
of downtime can be during offpeak hours (after typical Cal-
ifornia office hours, when many Scuba users, i.e., Facebook
engineers, are not working).

We are now able to deploy new features and improvements
much more frequently. We believe this restart technique can
be applied to the in-memory state of any database, even if
the memory contains a cache of a much larger disk-resident
data set, as in most databases.

In the next section, we describe Scuba’s architecture. In
Section 3, we show Scuba’s data layout in shared memory
and in Section 4 we describe the rollover procedure using
shared memory. We consider related work in database re-
covery and using shared memory for fast system restarts in
Section 5. Finally, we conclude in Section 6.

2. SCUBA ARCHITECTURE
Figure 1 shows Scuba’s overall architecture. Data flows

from log calls in Facebook products and services into Scribe [3].
Scuba “tailer” processes pull the data for each table out of
Scribe and send it into Scuba.

Every N rows or t seconds, the tailer chooses a new Scuba
leaf server and sends it a batch of rows. How does it choose
a server? It picks two servers randomly and asks them both
for their current state and how much free memory they have,
as described previous [5]. If both are alive (see Figure 5(a)),
it sends the data to the server with more free memory. If
only one is alive, that server gets the data. If neither server
is alive, the tailer will try two more servers until it finds
one that is alive or (after enough tries) sends the data to a
restarting server.

Each machine currently runs eight leaf servers and one
aggregator server. The leaf servers store the data. Having
eight servers allows for greater parallelism during query exe-
cution (without the complexity of multiple threads per query
per server). More importantly for recovery, eight servers
mean that we can restart the servers one at a time, while the
other seven servers continue to execute queries. We there-

542

RB0 RB1 RB2 ... RBn

Table
0

Table
m

Table
1 ...

Schema

R
B
C
0

Row Blocks

Heap Memory Layout

Leaf
Map...

Table Pointers

...

...

R
B
C
1

R
B
C
2

...

R
B
C
k

Row Block
Columns

Header

Table Name
Number of Row Blocks

Row Block Pointers

Row Block Column Pointers

Header

Size
Row count
Min time
Max time
Creation timestamp

Name_0, Type_0
Name_1, Type_1
...
Name_k, Type_k

Pointers
Zoom In

Table Data

Row Block Data

Row Block Column Data

Figure 2: Heap memory layout for tables in Scuba. Each Table has a vector of Row Blocks. A Row Block
contains all data for a set of rows. Each Row Block has a header, a schema, and a vector of Row Block
Columns. Each Row Block Column contains the values for one column, for all rows in the Row Block.

fore maximize the number of disks in use for recovery while
limiting the amount of offline data to 2% of the total. For
example, suppose there are 100 machines. With one server
per machine, we could restart only two servers. With a total
of 800 leaf servers, we can restart 16 leaf servers on 16 ma-
chines at once and read from 16 disks. The full rollover thus
takes much less time to complete. This technique also ap-
plies to parallelizing restarts using shared memory, although
the critical resource is the memory bandwidth rather than
the disk speed.

The leaf servers both add new data as it arrives and pro-
cess queries over their current data. They also delete data
as it expires due to either age or size limits.

The aggregator servers distribute a query to all leaves and
then aggregate the results as they arrive from the leaves.
Our previous work [5] describes query processing in more
detail.

2.1 Storage layout
Within each leaf server, there is a fraction of most tables.

Scuba’s storage engine is a column store (a change since [5].
A column layout provides better compression of the data
and enables faster query execution strategies, as described
by others for C-Store [23] and Vertica [14], MonetDB [12],
SAP Hana [22], Dremel [19], and Powerdrill [10].

Figure 2 depicts the memory layout of a leaf. There is a
leaf map containing a vector of pointers, one pointer to each
table. Each table has a vector of pointers to row blocks
(RBs) plus a header. The table name and a count of the
row blocks are in the table header. Each row block contains
65,536 rows that arrived consecutively. (The row block is
capped at 1 GB, pre-compression, even if there are fewer
than 65K rows.) Within each row block, the data is orga-
nized into a header, a schema, and row block columns. Each
row block column contains all of the column values for one
column, for every row in the row block.

The header describes general properties of the row block:
its size in bytes, the number of rows in it (it may not be full),
the minimum and maximum timestamps of rows it contains,
and when the row block was first created. Every row in
Scuba has a required column called “time” that contains a
unix timestamp. These timestamps represent the time of the
row-generating event. They are not unique, as many events
happen on Facebook in the same second. Since rows flow
into Scuba in roughly chronological order, the time column
is close to an index for each table. Nearly all queries contain
predicates on time; the minimum and maximum timestamps
are used to decide whether to even look at a row block when
processing a query.

The schema is a description of the columns in the row

543

Header Magic number

Dictionary

Data

Footer

Number of bytes
used by the column

Number of items
in the column

Number of items
in dictionary

Offset at which
dictionary is found

Offset at which
data is found

Offset at which
footer is found

Version

Compression code

Checksum

R
B
C

Figure 3: Row block column (RBC) layout for tables
in Scuba.

block: their names and types. Different row blocks may
have different schemas, although they usually have a large
overlap in their columns.

Finally, Figure 3 shows the row block column layout. Each
row block column contains a header, a dictionary if needed,
the data (column values), and a footer. The header of the
row block column starts at a base address. All other ad-
dresses in the row block column, such as the beginning of
the dictionary, data, and footer, are offsets from this base
address. BerkeleyDB [21] is another database that uses a
base address plus offsets for its pointers. Using offsets en-
ables us to copy the entire row block column between heap
and shared memory in one memory copy operation. Only
the address of the row block column itself (in the row block)
needs to be changed for its new location.

The data in the row block column is stored in a com-
pressed form. Compression reduces the size of the row block
column by a factor of about 30, although compression results
are outside the scope of this paper. Scuba’s compression
methods are a combination of dictionary encoding, bit pack-
ing, delta encoding, and lz4[7] compression, with at least two
methods applied to each column.

3. SHARED MEMORY
Shared memory allows interprocess communication. For

Scuba, shared memory allows a process to communicate with
its replacement, even though the lifetimes of the two pro-
cesses do not overlap. The first process writes to a location
in physical memory and the second process reads from it.
We use the Posix mmap (mmap, munmap, sync, mprotect)
based API from Boost::Interprocess [4].

We considered two alternative methods of using shared
memory:

1. Allocate all data in shared memory all of the time.
This alternative requires writing a custom allocator
to subdivide shared memory segments. To get thread

safety and scalability in the allocator adds significant
complexity.

2. Allocate data in heap memory during normal opera-
tion. Copy it to shared memory at shutdown and copy
it back at start up. This method involves extra time for
copying to and from shared memory, albeit at memory
speeds. Copying also needs to be performed carefully,
to ensure that there is enough memory.

At Facebook, our default heap memory allocator is je-
malloc [8]. Jason Evans, the author of jemalloc, discussed
writing a new shared memory allocator with us. jemalloc
uses lazy allocation of backing pages for virtual memory to
avoid fragmentation. Since Scuba is entirely memory-bound
(rather than CPU-bound), using memory efficiently is very
important. In shared memory, lazy allocation of backing
pages is not possible. We worried that an allocator in shared
memory would lead to increased fragmentation over time.

Therefore, we chose method 2. We describe how we copy
to and from shared memory in the next section.

4. RESTART IMPLEMENTATION
We now describe the restart mechanism in Scuba. Scuba

stores backups of all incoming data to disk, so it is always
possible to recover from disk, even in the case of a software
or hardware crash. When there is a clean shutdown, such
as when we want to deploy a new Scuba binary, we can use
shared memory rather than restarting by reading from disk.
We do not use shared memory to recover from a crash; the
crash may have been caused by memory corruption. We
first outline recovery from disk and then describe how we
can rollover from shared memory.

4.1 Restart from disk
There are two steps involved in a leaf restart: shutdown of

the old server process and startup of the new server process.

1. Shutdown of a Scuba leaf server is straightforward.
When it receives an API call to shutdown cleanly, the
server stops accepting new data and new queries, fin-
ishes answering queries already in flight, finishes any
pending synchronization with the data on disk, and
exits. Although data synchronization to disk is a bot-
tleneck, only the sections of data that have changed
since the last synchronization point need to be up-
dated. (During normal operation, disk writes are asyn-
chronous.) If there is a crash rather than a clean shut-
down, some new data may be lost. Since Scuba does
not guarantee full query results, we consider losing a
tiny amount of data (a few thousand rows out of mil-
lions of rows inserted per day) acceptable and it sim-
plifies recovery greatly.

2. Starting a new Scuba server process is slower than
shutting it down. All of the data for the server process
needs to be read from the disk. While the new process
starts answering queries as soon as it comes up, it only
returns (gradually increasing) partial results to those
queries until it completes recovery. The server also ac-
cepts new data as soon as it starts recovery, but the
tailers will avoid adding data to servers in recovery if
possible.

544

Header RB0 RB1 RB2 RBn

Table
0

Table
m

Table
1 ...

...

Header Schema Offsets for
Columns

R
B
C
0

R
B
C
1

R
B
C
2

R
B
C
k

Pointers
Zoom In

Row Blocks

Row Block Columns

...

Shared Memory Layout

Leaf
Metadata

Valid bit
...

Shared memory
segment names

Name_0, Type_0
Name_1, Type_1
...
Name_k, Type_k

Version Number

Size
Row count
Min time
Max time
Creation timestamp

Table Name
Number of Row Blocks

Table Data

Row Block Data

Row Block Column Data

Figure 4: Shared memory layout for tables in Scuba. Shared memory layout is very similar to Heap memory
layout. The primary difference is that Row Blocks and Row Block Columns can be laid out contiguously
in memory, since the full set of them (and their sizes) is known when the memory is allocated. The shared
memory layout therefore loses one level of indirection for both Row Blocks and Row Block Columns. Ad-
ditionally, there is leaf metadata for every leaf server at a fixed location. This metadata says whether the
shared memory is valid (usable for recovery) and identifies the shared memory segements being used.

Restart from disk is slow, but resilient to crashes and
changes in memory layouts. Before we describe restarts from
shared memory, we first present the memory layout of data
in shared memory and contrast it to the heap memory lay-
out.

4.2 Shared memory layout
Figure 4 shows the memory layout of tables, row blocks,

and row block columns in shared memory. Figures 2 and 4
are very similar. Since the number and contents of row
blocks and row blocks columns are known at allocation time
in shared memory, we can eliminate one level of indirection
and allocate them contiguously.

Additionally, there is leaf metadata for each of the eight
leaf servers, although at most one of them will roll over
using shared memory at a time. (Memory bandwidth for
a machine is constant, no matter how many servers try to
roll over, so it is much better to restart eight leaf servers on
eight different machines in parallel than to restart all eight
leaf servers on the same machine at once. See the example
in Section 1 for a more detailed explanation.)

Each leaf has a unique hard coded location in shared mem-
ory for its metadata. In that location, the leaf stores a valid
bit, a layout version number, and pointers to any shared
memory segments it has allocated. There is one segment

per table. The layout version number indicates whether the
shared memory layout has changed; note that the heap mem-
ory layout can change independently of the shared memory
layout.

4.3 Restart using shared memory
At all times, each leaf and table keeps track of its state.

The state indicates whether the leaf and table are working
on a restart and determines which actions are permissible:
adding data, deleting (expired) data, evaluating queries, etc.
Figure 5 illustrates the state machines for both leaves and
tables.

Like restart from disk, restarting a leaf using shared mem-
ory also has two steps.

1. Shutdown involves copying all of the table data from
heap memory to shared memory and setting a valid
bit in shared memory before exiting. Figure 6 shows
pseudocode for the shutdown procedure.

2. Starting a new server then first checks the valid bit
in shared memory. If it is set, the server copies the
data from shared memory back to the heap. If it is
not set, the server reverts to recovering from disk (and
frees any shared memory in use). Figure 7 shows pseu-
docode for the restart procedure.

545

ALIVE

COPY
TO SHM

DONE

c) Shared Memory backup:
Table states

ALIVE

COPY
TO SHM

EXIT

a) Shared Memory backup:
Leaf states

INIT

ALIVE

MEMORY
RECOVERY

DISK
RECOVERY

memory recovery
disabled

exception

b) Shared Memory restore:
Leaf states

d) Shared Memory restore:
Table states

PREPARE

1. Reject new requests
2. Kill DELETE requests

in progress
3. Wait for ADD/QUERY

requests in progress
to complete

4. Flush data to disk

INIT

ALIVE

MEMORY
RECOVERY

DISK
RECOVERY

memory recovery
disabled

exception

Figure 5: State machines for shutdown and restart in Scuba. (a) and (b) are the state machines for a leaf
server. In (a), a leaf transitions from being alive, to being in “copy” mode, to exiting. In (b), a new leaf
server transitions from initializing, to attempting memory recovery if it is enabled and disk recovery if not,
to being alive. In (c), a table that is shutting down has one more state than a leaf: it transitions through a
prepare state where it waits for some requests, kills delete requests, and rejects any new work. (Scuba stops
deleting expired table data once shutdown starts. Any needed deletions are made after recovery.) In (d), the
table restart state machine is identical to the leaf restart state machine.

create shared memory segment for leaf metadata

set valid bit to false

for each table

estimate size of table

create table shared memory segment

add table segment to the leaf metadata

for each row block

grow the table segment in size if needed

for each row block column

copy data from heap to the table segment

delete row block column from heap

delete row block from heap

delete table from heap

set valid bit to true

Figure 6: Shutdown pseudocode: backup all data to
shared memory segments. The leaf metadata is at a
known location, specified as a parameter to the leaf
server.

The script that issues the shutdown command to each
leaf then waits in a loop for the leaf server process to die.
Usually, the leaf copies its data to shared memory and exits
in 3-4 seconds. However, the loop ensures that we kill the
leaf server if it has not shut down after 3 minutes. If the
old leaf server is killed, the new leaf server will restart from
disk.

During memory recovery, which takes a few seconds per
leaf, no add data requests or queries are accepted. As we
explain below, during a planned rollover, we keep most of the
leaves alive at all times. The leaves that are alive accept the
add requests (which can go to any leaf) and the query results

if valid bit is false

delete shared memory segments

recover from disk

return

set valid bit to false

for each table shared memory segment

for each row block

for each row block column

allocate memory in heap

copy data from table segment to heap

truncate the table shared memory segment if needed

delete the table shared memory segment

delete the metadata shared memory segment

Figure 7: Restart pseudocode: restore all data from
shared memory segments. If this code path is inter-
rupted, the valid bit will be false on the next restart
and disk recovery will be executed.

are missing in only a tiny fraction of data. During disk
recovery, which takes longer, both add and query requests
are processed by each leaf.

4.4 Copying to and from shared memory
Even though one leaf server only contains 10-15 GB of

data, there is still not enough physical memory free to allo-
cate enough space for it in shared memory, copy it all, and
then free it from the heap. Instead, we copy data gradu-
ally, allocating enough space for one row block column at a
time in shared memory, copying it, and then freeing it from
the heap. There are hundreds of tables (and thousands of

546

 Old version

 Rolling over

 New version

Dashboard for rollover

Time 1 Time 2

Time 3 Time 4

Figure 8: Dashboard shows progress of the restart. At time 1, about 2% of the leaf servers have started a
rollover. 98% of the data is available to queries. At time 2, those leaf servers are now alive and another
2% are restarting. By time 3, about half of the servers are running the new version of the code, about half
of the servers are running the old version, and a different 2% is restarting. At time 4, the restart is nearly
complete.

row block columns, with a maximum size of 2 GB) per leaf
servers, so this method keeps the total memory footprint of
the leaf nearly unchanged during both shutdown and restart.

As explained in Section 2, since all pointers in a row block
column are offsets from the start of the row block column,
copying a row block column can be done in one call to mem-
cpy. Therefore, copying a table only requires one call per
row block column.

4.5 System-wide rollover
Shutting down and restarting many hundreds of leaf servers

takes a long time. If all servers recover from disk at once,
it takes 2.5-3 hours. If we plan a rollover, we keep most
of the data available for queries. Typically, we restart 2%
of the leaf servers at a time, and the entire rollover takes
10-12 hours to restart from disk. We therefore monitor the
rollover process closely, to make sure it is making progress.
Figure 8 shows an example dashboard depicting the progress
of a rollover. Using shared memory is much faster, about 2-3
minutes per server (including the time to detect that a leaf
is done with recovery and then initiate rollover for the next
one).

5. RELATED WORK
In this section, we discuss database recovery and uses of

shared memory in other types of distributed systems.

5.1 Database recovery
Most databases rely on recovery from disk (or sometimes

solid state media). VoltDB [24], SAP Hana[22, 16], Heka-

ton [15], and TimesTen [13], are in memory databases that
recover using a combination of checkpoints and write ahead
logs.

Other database systems, such as SQLite [11], store the
metadata required for restarts in shared memory. The meta-
data provides an index into the data files. For example,
SQLite maintains a write-ahead-log index in shared mem-
ory. This technique restricts the amount of data kept in
memory yet saves many disk accesses (for lookups) during
recovery.

Finally, there are database systems that use shared mem-
ory to coordinate actions between concurrent server pro-
cesses. eXtremeDB [2] is one such example. Since Scuba is
essentially coordinating state between two non-overlapping
server processes, coordinating their actions is not relevant.
Also, different Scuba servers do not share any data, hence
there is no need to coordinate between them.

5.2 Shared memory usage in other systems
At Facebook, two other big, distributed systems use shared

memory to keep data alive across software upgrades: TAO [6]
and Memcache [20]. The original inspiration to use shared
memory for Scuba upgrades came from these systems.

Shared memory is also used for application checkpoint-
ing [1], where processes that need to coordinate to perform a
checkpoint do so in shared memory. STLdb [25] stores C++
data structures in shared memory for persistence, much as
Scuba uses shared memory for persistence beyond process
lifetimes.

547

6. CONCLUSIONS
Using shared memory to store data between database server

process lifetimes provides a fast rollover solution for Scuba.
No extra memory or machines are needed, since we allocate,
copy, and free data in chunks of one row block column (at
most 1 GB) at a time. We can restart one Scuba machine in
2-3 minutes using shared memory versus 2-3 hours from disk.
These numbers also apply to restarts of all of the machines
at the same time.

Copying data between heap and shared memory has sev-
eral advantages. Allocating and freeing heap memory during
normal operation remains simple and uses well-tested code
paths. The copying code is simple and, even though it is
used infrequently, less likely to have bugs. Finally, separat-
ing the heap data structures from the shared memory data
structures means that we can modify the heap data format
and restart using shared memory.

Furthermore, this fast rollover path allows us to deploy ex-
perimental software builds on a handful of machines, which
we could not do if took longer. We can add more logging,
test bug fixes, and try new software designs — and then
revert the changes if we wish. This use of shared memory
rollovers as a software development tool is common in the
Memcache and TAO teams at Facebook.

To maintain high availability of data without replication,
we typically restart only 2% of Scuba servers at a time. By
running N leaf servers on each machine (instead of only one
leaf server), we increase the number of restarting servers by
a factor of N . Restarting only one leaf server per machine
at a time then means that N times as many machines are
active in the rollover — and we get close to N times as much
disk bandwidth (for disk recovery) and memory bandwidth
(for shared memory recovery). We can restart the entire
cluster of Scuba machines in under an hour by using shared
memory, with 98% of data online and available to queries.
In contrast, disk recovery takes about 12 hours. (The de-
ployment software is responsible for about 40 minutes of
overhead.)

One large overhead in Scuba’s disk recovery is translat-
ing from the disk format to the heap memory format. This
translation overhead is both time-consuming and CPU-intensive.
We are planning to use the shared memory format described
in this paper as the disk format, instead. We expect that the
much simpler translation to heap memory format will speed
up disk recovery significantly. We still need to recover from
disk in case of software or hardware failures and hardware
upgrades.

We also expect that replacing disks with solid state drives
will speed up recovery from persistent storage, but writing
to and reading back from memory will still be faster.

7. ACKNOWLEDGMENTS
Jay Parikh first suggested using shared memory for recov-

ery. Jason Evans convinced us not to write a custom alloca-
tor in shared memory. Ryan McElroy and Nathan Bronson
explained how Facebook’s Memcache and TAO, respectively,
use shared memory to make recovery faster.

8. REFERENCES
[1] Application checkpointing.

http://en.wikipedia.org/wiki/Application checkpointing.

[2] eXtremeDB Embedded In-Memory Database System.
http://www.mcobject.com/standardedition.shtml.

[3] Scribe. https://github.com/facebook/scribe.

[4] Sharing memory between processes - 1.54.0.
http://www.boost.org/doc/libs/1 54 0/, 2013.

[5] L. Abraham, J. Allen, O. Barykin, V. Borkar,
B. Chopra, C. Gerea, D. Merl, J. Metzler, D. Reiss,
S. Subramanian, et al. Scuba: diving into data at
facebook. In VLDB, pages 1057–1067, 2013.

[6] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka,
P. Dimov, H. Ding, J. Ferris, A. Giardullo,
S. Kulkarni, H. Li, M. Marchukov, D. Petrov,
L. Puzar, Y. J. Song, and V. Venkataramani. Tao:
Facebook’s distributed data store for the social graph.
In USENIX, 2013.

[7] Y. Collet. Lz4: Extremely fast compression algorithm.
code.google.com, 2013.

[8] J. Evans. A scalable concurrent malloc (3)
implementation for FreeBSD. In BSDCan, 2006.

[9] D. G. Feitelson, E. Frachtenberg, and K. L. Beck.
Development and deployment at Facebook. IEEE
Internet Computing, 17(4):8–17, 2013.

[10] A. Hall, O. Bachmann, R. Büssow, S. Gănceanu, and
M. Nunkesser. Processing a trillion cells per mouse
click. PVLDB, 5(11):1436–1446, July 2012.

[11] D. R. Hipp. Sqlite: Write-ahead log.
http://www.sqlite.org/draft/wal.html.

[12] S. Idreos, F. Groffen, N. Nes, S. Manegold, K. S.
Mullender, and M. L. Kersten. Monetdb: Two decades
of research in column-oriented database architectures.
IEEE Data Eng. Bull., 35(1):40–45, 2012.

[13] T. Lahiri, M.-A. Neimat, and S. Folkman. Oracle
TimesTen: An In-Memory Database for Enterprise
Applications. IEEE Data Eng. Bull., 36(2):6–13, 2013.

[14] A. Lamb, M. Fuller, R. Varadarajan, N. Tran,
B. Vandier, L. Doshi, and C. Bear. The Vertica
Analytic Database: C-Store 7 Years Later . PVLDB,
5(12):1790–1801, 2012.

[15] P.-Å. Larson, M. Zwilling, and K. Farlee. The Hekaton
Memory-Optimized OLTP Engine. IEEE Data Eng.
Bull., 36(2):34–40, 2013.

[16] J. Lee, M. Muehle, N. May, F. Faerber, V. Sikka,
H. Plattner, J. Krueger, and M. Grund.
High-Performance Transaction Processing in SAP
HANA. IEEE Data Eng. Bull., 36(2):28–33, 2013.

[17] C. Legnitto. 1m people try to help Facebook spruce
up Android.
http://news.cnet.com/8301-1023 3-57614540-93/1m-
people-try-to-help-facebook-spruce-up-android/.

[18] C. Legnitto. Update on the Facebook for Android beta
testing program.
https://m.facebook.com/notes/facebook-
engineering/update-on-the-facebook-for-android-beta-
testing-program/10151729114953920.

[19] S. Melnik, A. Gubarev, J. J. Long, G. Romer,
S. Shivakumar, M. Tolton, and T. Vassilakis. Dremel:
Interactive analysis of web-scale datasets. PVLDB,
3(1):330–339, 2010.

[20] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski,
H. Lee, H. C. Li, R. McElroy, M. Paleczny, D. Peek,
P. Saab, D. Stafford, T. Tung, and V. Venkataramani.

548

Scaling Memcache at Facebook. In NSDI, pages
385–398. USENIX Association, 2013.

[21] M. A. Olson, K. Bostic, and M. I. Seltzer. Berkeley
DB. In USENIX, pages 183–191, 1999.

[22] V. Sikka, F. Färber, W. Lehner, S. K. Cha, T. Peh,
and C. Bornhövd. Efficient transaction processing in
SAP HANA database: the end of a column store
myth. In SIGMOD, pages 731–742, 2012.

[23] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen,
M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. Madden,
E. O’Neil, P. O’Neil, A. Rasin, N. Tran, and
S. Zdonik. C-Store: A Column-Oriented DBMS. In
VLDB, pages 553–564, 2005.

[24] M. Stonebraker and A. Weisberg. The VoltDB Main
Memory DBMS. IEEE Data Eng. Bull., 36(2):21–27,
2013.

[25] B. Walters. STLdb.
http://sourceforge.net/apps/trac/stldb/.

549

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20140506180208
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352
 Fixed
 Left
 7.2000
 0.0000

 Both
 1
 AllDoc
 5

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 8
 9
 8
 9

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move down by 23.83 points
 Normalise (advanced option): 'original'

 32

 D:20140506180208
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352

 Fixed
 Down
 23.8320
 0.0000

 Both
 1
 AllDoc
 5

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 8
 9
 8
 9

 1

 HistoryList_V1
 qi2base

