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BACKGROUND 

Much of the history of DBMSs is about avoiding 
the slowness of disks. 
 
Hardware was much different when the 
original DBMSs were designed: 
→ Uniprocessor (single-core CPU) 
→ RAM was severely limited. 
→ The database had to be stored on disk. 
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BACKGROUND 

But now DRAM capacities are large enough 
that most databases can fit in memory. 
 
So why not just use a “traditional” disk-
oriented DBMS with a really large cache? 
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DISK-ORIENTED DBMS 

The primary storage location of the database is 
on non-volatile storage (e.g., HDD, SSD). 
→ The database is organized as a set of fixed-length 

blocks called slotted pages. 

 
The system uses an in-memory (volatile) buffer 
pool to cache blocks fetched from disk. 
→ Its job is to manage the movement of those blocks 

back and forth between disk and memory. 
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BUFFER POOL 

When a query accesses a page, the DBMS 
checks to see if that page is already in memory: 
→ If it’s not, then the DBMS has to retrieve it from disk 

and copy it into a frame in its buffer pool. 
→ If there are no free frames, then find a page to evict. 
→ If the page being evicted is dirty, then the DBMS has 

to write it back to disk. 

Once the page is in memory, the DBMS 
translates any on-disk addresses to their in-
memory addresses. 
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BUFFER POOL 

Every tuple access has to go through the buffer 
pool manager regardless of whether that data 
will always be in memory. 
→ Always have to translate a tuple’s record id to its 

memory location. 
→ Worker thread has to pin pages that it needs to make 

sure that they are not swapped to disk. 
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CONCURRENCY CONTROL 

In a disk-oriented DBMS, the systems assumes 
that a txn could stall at any time when it tries 
to access data that is not in memory. 
Execute other txns at the same time so that if 
one txn stalls then others can keep running. 
→ Has to set locks and latches to provide ACID 

guarantees for txns. 
→ Locks are stored in a separate data structure to avoid 

being swapped to disk. 
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LOGGING & RECOVERY 

Most DBMSs use STEAL + NO-FORCE buffer 
pool policies, so all modifications have to be 
flushed to the WAL before a txn can commit. 
 
Each log entry contains the before and after 
image of record modified. 
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IN-MEMORY DBMSS 

Assume that the primary storage location of 
the database is permanently in memory. 
 
Early ideas proposed in the 1980s but it is now 
feasible because DRAM prices are low and 
capacities are high. 
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WHY NOT MMAP? 

Memory-map a database file into DRAM and let 
the OS be in charge of swapping data in and 
out as needed. 
Use madvise and msync to give hints to the OS 
about what data is safe to flush. 
 
Notable mmap DBMSs: 
→ MongoDB (pre WiredTiger) 
→ MonetDB 
→ LMDB 
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WHY NOT MMAP? 

Using mmap gives up fine-grained control on 
the contents of memory. 
→ Cannot perform non-blocking memory access. 
→ The “on-disk” representation has to be the same as 

the “in-memory” representation. 
→ The DBMS has no way of knowing what pages are in 

memory or not. 
 

A well-written DBMS always knows best. 
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BOT TLENECKS 

If I/O is no longer the slowest resource, much 
of the DBMS’s architecture will have to change 
account for other bottlenecks: 
→ Locking/latching 
→ Cache-line misses 
→ Pointer chasing 
→ Predicate evaluations 
→ Data movement & copying 
→ Networking (between application & DBMS) 
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STORAGE ACCESS LATENCIES 
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L3 DRAM SSD HDD 

Read Latency ~20 ns 60 ns 25,000 ns 10,000,000 ns 

Write Latency ~20 ns 60 ns 300,000 ns 10,000,000 ns 

LET’S TALK ABOUT STORAGE & RECOVERY 
METHODS FOR NON-VOLATILE MEMORY 
DATABASE SYSTEMS 
SIGMOD, pp. 707-722, 2015. 
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DATA ORGANIZATION 

An in-memory DBMS does not need to store 
the database in slotted pages but it will still 
organize tuples in blocks: 
→ Direct memory pointers vs. record ids 
→ Fixed-length vs. variable-length data pools 
→ Use block checksums to detect software errors from 

trashing the database. 
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CONCURRENCY CONTROL 

Observation: The cost of a txn acquiring a lock 
is the same as accessing data. 
 
In-memory DBMS may want to detect conflicts 
between txns at a different granularity. 
→ Fine-grained locking allows for better concurrency 

but requires more locks. 
→ Coarse-grained locking requires fewer locks but 

limits the amount of concurrency. 
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CONCURRENCY CONTROL 

The DBMS can store locking information about 
each tuple together with its data. 
→ This helps with CPU cache locality. 
→ Mutexes are too slow. Need to use CAS instructions. 

 
New bottleneck is contention caused from txns 
trying access data at the same time. 
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INDEXES 

Main-memory indexes were proposed in 1980s 
when cache and memory access speeds were 
roughly equivalent. 
But then caches got faster than main memory: 
→ Memory-optimized indexes performed worse than 

the B+trees because they were not cache aware.  
 
Indexes are usually rebuilt in an in-memory 
DBMS after restart to avoid logging overhead. 
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QUERY PROCESSING 

The best strategy for executing a query plan in 
a DBMS changes when all of the data is already 
in memory. 
→ Sequential scans are no longer significantly faster 

than random access. 

 
The traditional tuple-at-a-time iterator model 
is too slow because of function calls. 
→ This problem is more significant in OLAP DBMSs. 
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QUERY PROCESSING 

Tuple-at-a-time 
→ Each operator calls next on their child to 

get the next tuple to process. 
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QUERY PROCESSING 

Tuple-at-a-time 
→ Each operator calls next on their child to 

get the next tuple to process. 

 
Operator-at-a-time 
→ Each operator materializes their entire 

output for their parent operator. 
 

Vector-at-a-time 
→ Each operator calls next on their child to 

get the next chunk of data to process. 
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LOGGING & RECOVERY 

The DBMS still needs a WAL on non-volatile 
storage since the system could halt at anytime. 
→ Use group commit to batch log entries and flush 

them together to amortize fsync cost. 
→ May be possible to use more lightweight logging 

schemes if using coarse-grained locking (redo only). 
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LOGGING & RECOVERY 

The system also still takes checkpoints to 
speed up recovery time. 
Different methods for checkpointing: 
→ Old idea: Maintain a second copy of the database in 

memory that is updated by replaying the WAL. 
→ Switch to a special “copy-on-write” mode and then 

write a dump of the database to disk. 
→ Fork the DBMS process and then have the child 

process write its contents to disk. 
 

 

26 

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016


CMU 15-721 (Spring 2016) 

LARGER-THAN-MEMORY DATABASES 

DRAM is fast, but data is not accessed with the 
same frequency and in the same manner. 
→ Hot Data: OLTP Operations 
→ Cold Data: OLAP Queries 

 
We will study techniques for how to bring back 
disk-resident data without slowing down the 
entire system. 
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NON-VOLATILE  MEMORY 

Emerging hardware that is able to get almost 
the same read/write speed as DRAM but with 
the persistence guarantees of an SSD. 
→ Also called storage class memory 
→ Examples: Phase-Change Memory, Memristors 
 

It’s not clear how to build a DBMS to operate 
on this kind memory. 
Again, we’ll cover this topic later. 
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NOTABLE IN-MEMORY DBMSs 

Oracle TimesTen 
P*TIME 
Dali / DataBlitz 
Altibase 
SAP HANA 
VoltDB / H-Store 
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TIMESTEN 

Originally SmallBase from HP Labs in 1995. 
Multi-process, shared memory DBMS. 
→ Single-version database using two-phase locking. 
→ Dictionary-encoded columnar compression. 

 
Bought by Oracle in 2005. 
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ORACLE TIMESTEN: AN IN-MEMORY 
DATABASE FOR ENTERPRISE APPLICATIONS 
VLDB, pp. 1033-1044, 2004. 
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DALI  /  DATABLITZ 

Developed at AT&T Labs in the early 1990s. 
Multi-process, shared memory storage 
manager using memory-mapped files. 
Employed additional safety measures to make 
sure that erroneous writes to memory do not 
corrupt the database. 
→ Meta-data is stored in a non-shared location. 
→ A page’s checksum is always tested on a read; if the 

checksum is invalid, recover page from log. 
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P*TIME 

Korean in-memory DBMS from the 2000s. 
Performance numbers are still impressive. 
Lots of interesting features: 
→ Uses differential encoding (XOR) for log records. 
→ Hybrid storage layouts. 
→ Support for larger-than-memory databases. 

 
Sold to SAP in 2005. Now part of HANA. 
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FOR MANAGING UPDATE-INTENSIVE 
STREAM WORKLOAD 
VLDB, pp. 1033-1044, 2004. 
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PELOTON DBMS 

CMU’s in-memory hybrid relational DBMS 
→ Multi-version concurrency control. 
→ Tile-based storage manager. 
→ Multi-threaded architecture. 
→ Based on PostgreSQL 9.3 

 

Currently supports most of SQL-92. 
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Logical Relation 
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SELECT A.id, B.value 
  FROM A, B 
 WHERE A.id = B.id 
   AND B.value > 100 

A B 

A.id=B.id 

value>100 

A.id, B.value 

⨝ 
σ 

π 
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PROJECT #1 

Implement an in-memory hash join operator 
that supports four different join types: 
→ INNER JOIN, LEFT OUTER JOIN, RIGHT OUTER JOIN, 

and FULL OUTER JOIN 
 

You are free to implement either the “classic” 
algorithm or the GRACE hash join algorithm. 
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PROJECT #1 –  TESTING 

We are providing you with a C++ unit test for 
you check your implementation. 
We also have a SQL batch script that will 
execute a couple different queries. 
 
We strongly encourage you to do your own 
additional testing. 
→ Make sure that you disable the other join types to 

force the optimizer to always pick hash join plans. 
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PROJECT #1 –  GRADING 

We will run additional tests beyond what we 
provided you for grading. 
→ Bonus points will be given to the student with the 

fastest implementation. 
→ We will use Valgrind when testing your code. 

 

All source code must pass ClangFormat syntax 
formatting checker. 
→ See Peloton documentation for formatting guidelines 
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DEVELOPMENT ENVIRONMENT 

Peloton only builds on 64-bit Linux. 
But you can do development on either Linux or 
OSX (through a VM). 
→ We have a Vagrant config file to automatically create 

a development Ubuntu VM for you. 

 
This is CMU so I’m going to assume that each of 
you are capable of getting access to a machine. 
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GITHUB PRIVATE REPO 

If you want to use Github for your projects, you 
must use a private repo for Projects #1 and #2. 
 
Sign up for a student account on Github to get 
five free private repositories: 
https://education.github.com/pack 
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PROJECT #1 

Due Date: February 8th, 2016 @ 11:59pm 
Projects will be turned in using Autolab. 
 
Full description and instructions: 
http://15721.courses.cs.cmu.edu/spring2016/p
roject1.html 
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PARTING THOUGHTS 

Disk-oriented DBMSs are a relic of the past. 
→ Most databases fit entirely in DRAM on a single machine. 

 
The world has finally become comfortable with in-
memory data storage and processing. 
 
Never use mmap for your DBMS. 
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NEXT CLASS 

Transactions & Concurrency Control 
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