
Andy Pavlo // Carnegie Mellon University // Spring 2016

Lecture #02 – In-Memory Databases

DATABASE
SYSTEMS

15-721

[Image Source]

https://www.flickr.com/photos/dno1967b/5406673227/

CMU 15-721 (Spring 2016)

TODAY ’S AGENDA

Background
In-Memory DBMS Architectures
Historical Systems
Peloton Overview
Project #1

2

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

BACKGROUND

Much of the history of DBMSs is about avoiding
the slowness of disks.

Hardware was much different when the
original DBMSs were designed:
→ Uniprocessor (single-core CPU)
→ RAM was severely limited.
→ The database had to be stored on disk.

3

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

BACKGROUND

But now DRAM capacities are large enough
that most databases can fit in memory.

So why not just use a “traditional” disk-
oriented DBMS with a really large cache?

4

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

DISK-ORIENTED DBMS

The primary storage location of the database is
on non-volatile storage (e.g., HDD, SSD).
→ The database is organized as a set of fixed-length

blocks called slotted pages.

The system uses an in-memory (volatile) buffer
pool to cache blocks fetched from disk.
→ Its job is to manage the movement of those blocks

back and forth between disk and memory.

5

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

BUFFER POOL

When a query accesses a page, the DBMS
checks to see if that page is already in memory:
→ If it’s not, then the DBMS has to retrieve it from disk

and copy it into a frame in its buffer pool.
→ If there are no free frames, then find a page to evict.
→ If the page being evicted is dirty, then the DBMS has

to write it back to disk.

Once the page is in memory, the DBMS
translates any on-disk addresses to their in-
memory addresses.

6

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

DATA ORGANIZATION

7

Buffer Pool

page6

page4

Index Database (On-Disk)

Slotted Pages

Page Table

page0

page1

page2

page2

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

DATA ORGANIZATION

7

Buffer Pool

page6

page4

Index

Page Id +
Slot #

Database (On-Disk)

Slotted Pages

Page Table

page0

page1

page2

page2

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

DATA ORGANIZATION

7

Buffer Pool

page6

page4

Index

Page Id +
Slot #

Database (On-Disk)

Slotted Pages

Page Table

page0

page1

page2

page2

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

DATA ORGANIZATION

7

Buffer Pool

page6

page4

Index

Page Id +
Slot #

Database (On-Disk)

Slotted Pages

Page Table

page0

page1

page2

page2

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

DATA ORGANIZATION

7

Buffer Pool

page6

page4

Index

Page Id +
Slot #

Database (On-Disk)

Slotted Pages

Page Table

page0

page1

page2

page2

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

DATA ORGANIZATION

7

Buffer Pool

page6

page4

Index

Page Id +
Slot #

Database (On-Disk)

Slotted Pages

Page Table

page0

page1

page2

page2

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

DATA ORGANIZATION

7

Buffer Pool

page6

page4

Index

Page Id +
Slot #

Database (On-Disk)

Slotted Pages

Page Table

page0

page1

page2

page2

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

DATA ORGANIZATION

7

Buffer Pool

page6

page4

Index

Page Id +
Slot #

Database (On-Disk)

Slotted Pages

Page Table

page0

page1

page2

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

DATA ORGANIZATION

7

Buffer Pool

page6

page4

Index

Page Id +
Slot #

Database (On-Disk)

Slotted Pages

Page Table

page0

page1

page2

page1

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

DATA ORGANIZATION

7

Buffer Pool

page6

page4

Index

Page Id +
Slot #

Database (On-Disk)

Slotted Pages

Page Table

page0

page1

page2

page1

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SLOT TED PAGES

8

header blob1

tuple1 tuple2 tuple3

blob2 blob3

· · · free space · · ·

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SLOT TED PAGES

8

header blob1

tuple1 tuple2 tuple3

blob2 blob3

· · · free space · · ·

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SLOT TED PAGES

8

header blob1

tuple1 tuple2 tuple3

blob2 blob3

· · · free space · · ·

Fixed-length Data Slots

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SLOT TED PAGES

8

header blob1

tuple1 tuple2 tuple3

blob2 blob3

· · · free space · · ·

Fixed-length Data Slots

Variable-length Data

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SLOT TED PAGES

8

header blob1

tuple1 tuple2 tuple3

blob2 blob3

· · · free space · · ·

Fixed-length Data Slots

Variable-length Data

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SLOT TED PAGES

8

header blob1

tuple1 tuple2 tuple3

blob2 blob3

· · · free space · · ·

Fixed-length Data Slots

Variable-length Data

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SLOT TED PAGES

8

header blob1

tuple1 tuple2 tuple3

blob2 blob3

· · · free space · · ·

Fixed-length Data Slots

Variable-length Data

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SLOT TED PAGES

8

header blob1

tuple1 tuple2 tuple3

blob2 blob3

· · · free space · · ·

Fixed-length Data Slots

Variable-length Data

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

BUFFER POOL

Every tuple access has to go through the buffer
pool manager regardless of whether that data
will always be in memory.
→ Always have to translate a tuple’s record id to its

memory location.
→ Worker thread has to pin pages that it needs to make

sure that they are not swapped to disk.

9

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

CONCURRENCY CONTROL

In a disk-oriented DBMS, the systems assumes
that a txn could stall at any time when it tries
to access data that is not in memory.
Execute other txns at the same time so that if
one txn stalls then others can keep running.
→ Has to set locks and latches to provide ACID

guarantees for txns.
→ Locks are stored in a separate data structure to avoid

being swapped to disk.

10

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

LOGGING & RECOVERY

Most DBMSs use STEAL + NO-FORCE buffer
pool policies, so all modifications have to be
flushed to the WAL before a txn can commit.

Each log entry contains the before and after
image of record modified.

11

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

DISK-ORIENTED DBMS OVERHEAD

12

Measured CPU Cycles

OLTP THROUGH THE LOOKING GLASS,
AND WHAT WE FOUND THERE
SIGMOD, pp. 981-992, 2008.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://hstore.cs.brown.edu/papers/hstore-lookingglass.pdf

CMU 15-721 (Spring 2016)

DISK-ORIENTED DBMS OVERHEAD

12

BUFFER POOL

LOCKING

RECOVERY

REAL WORK

Measured CPU Cycles

OLTP THROUGH THE LOOKING GLASS,
AND WHAT WE FOUND THERE
SIGMOD, pp. 981-992, 2008.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://hstore.cs.brown.edu/papers/hstore-lookingglass.pdf

CMU 15-721 (Spring 2016)

DISK-ORIENTED DBMS OVERHEAD

12

BUFFER POOL

LOCKING

RECOVERY

REAL WORK
30%

Measured CPU Cycles

OLTP THROUGH THE LOOKING GLASS,
AND WHAT WE FOUND THERE
SIGMOD, pp. 981-992, 2008.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://hstore.cs.brown.edu/papers/hstore-lookingglass.pdf

CMU 15-721 (Spring 2016)

DISK-ORIENTED DBMS OVERHEAD

12

BUFFER POOL

LOCKING

RECOVERY

REAL WORK

30%

30%

Measured CPU Cycles

OLTP THROUGH THE LOOKING GLASS,
AND WHAT WE FOUND THERE
SIGMOD, pp. 981-992, 2008.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://hstore.cs.brown.edu/papers/hstore-lookingglass.pdf

CMU 15-721 (Spring 2016)

DISK-ORIENTED DBMS OVERHEAD

12

BUFFER POOL

LOCKING

RECOVERY

REAL WORK

28%
30%

30%

Measured CPU Cycles

OLTP THROUGH THE LOOKING GLASS,
AND WHAT WE FOUND THERE
SIGMOD, pp. 981-992, 2008.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://hstore.cs.brown.edu/papers/hstore-lookingglass.pdf

CMU 15-721 (Spring 2016)

DISK-ORIENTED DBMS OVERHEAD

12

BUFFER POOL

LOCKING

RECOVERY

REAL WORK

28%
30%

30%
12%

Measured CPU Cycles

OLTP THROUGH THE LOOKING GLASS,
AND WHAT WE FOUND THERE
SIGMOD, pp. 981-992, 2008.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://hstore.cs.brown.edu/papers/hstore-lookingglass.pdf

CMU 15-721 (Spring 2016)

IN-MEMORY DBMSS

Assume that the primary storage location of
the database is permanently in memory.

Early ideas proposed in the 1980s but it is now
feasible because DRAM prices are low and
capacities are high.

13

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WHY NOT MMAP?

Memory-map a database file into DRAM and let
the OS be in charge of swapping data in and
out as needed.
Use madvise and msync to give hints to the OS
about what data is safe to flush.

Notable mmap DBMSs:
→ MongoDB (pre WiredTiger)
→ MonetDB
→ LMDB

14

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://mongodb.org/
http://wiredtiger.com/
https://www.monetdb.org/
http://symas.com/mdb/

CMU 15-721 (Spring 2016)

WHY NOT MMAP?

Using mmap gives up fine-grained control on
the contents of memory.
→ Cannot perform non-blocking memory access.
→ The “on-disk” representation has to be the same as

the “in-memory” representation.
→ The DBMS has no way of knowing what pages are in

memory or not.

A well-written DBMS always knows best.

15

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

BOT TLENECKS

If I/O is no longer the slowest resource, much
of the DBMS’s architecture will have to change
account for other bottlenecks:
→ Locking/latching
→ Cache-line misses
→ Pointer chasing
→ Predicate evaluations
→ Data movement & copying
→ Networking (between application & DBMS)

16

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

STORAGE ACCESS LATENCIES

17

L3 DRAM SSD HDD

Read Latency ~20 ns 60 ns 25,000 ns 10,000,000 ns

Write Latency ~20 ns 60 ns 300,000 ns 10,000,000 ns

LET’S TALK ABOUT STORAGE & RECOVERY
METHODS FOR NON-VOLATILE MEMORY
DATABASE SYSTEMS
SIGMOD, pp. 707-722, 2015.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://db.cs.cmu.edu/papers/2015/p707-arulraj.pdf
http://db.cs.cmu.edu/papers/2015/p707-arulraj.pdf

CMU 15-721 (Spring 2016)

DATA ORGANIZATION

An in-memory DBMS does not need to store
the database in slotted pages but it will still
organize tuples in blocks:
→ Direct memory pointers vs. record ids
→ Fixed-length vs. variable-length data pools
→ Use block checksums to detect software errors from

trashing the database.

18

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

DATA ORGANIZATION

19

Fixed-Length
Data Blocks

Index Variable-Length
Data Blocks

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

DATA ORGANIZATION

19

Fixed-Length
Data Blocks

Index

Memory
Address

Variable-Length
Data Blocks

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

DATA ORGANIZATION

19

Fixed-Length
Data Blocks

Index

Memory
Address

Variable-Length
Data Blocks

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

DATA ORGANIZATION

19

Fixed-Length
Data Blocks

Index

Memory
Address

Variable-Length
Data Blocks

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

CONCURRENCY CONTROL

Observation: The cost of a txn acquiring a lock
is the same as accessing data.

In-memory DBMS may want to detect conflicts
between txns at a different granularity.
→ Fine-grained locking allows for better concurrency

but requires more locks.
→ Coarse-grained locking requires fewer locks but

limits the amount of concurrency.

20

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

CONCURRENCY CONTROL

The DBMS can store locking information about
each tuple together with its data.
→ This helps with CPU cache locality.
→ Mutexes are too slow. Need to use CAS instructions.

New bottleneck is contention caused from txns
trying access data at the same time.

21

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

INDEXES

Main-memory indexes were proposed in 1980s
when cache and memory access speeds were
roughly equivalent.
But then caches got faster than main memory:
→ Memory-optimized indexes performed worse than

the B+trees because they were not cache aware.

Indexes are usually rebuilt in an in-memory
DBMS after restart to avoid logging overhead.

22

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

QUERY PROCESSING

The best strategy for executing a query plan in
a DBMS changes when all of the data is already
in memory.
→ Sequential scans are no longer significantly faster

than random access.

The traditional tuple-at-a-time iterator model
is too slow because of function calls.
→ This problem is more significant in OLAP DBMSs.

23

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

QUERY PROCESSING

Tuple-at-a-time
→ Each operator calls next on their child to

get the next tuple to process.

24

SELECT A.id, B.value
 FROM A, B
 WHERE A.id = B.id
 AND B.value > 100

A B

A.id=B.id

value>100

A.id, B.value

⨝
σ

π

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

QUERY PROCESSING

Tuple-at-a-time
→ Each operator calls next on their child to

get the next tuple to process.

Operator-at-a-time
→ Each operator materializes their entire

output for their parent operator.

24

SELECT A.id, B.value
 FROM A, B
 WHERE A.id = B.id
 AND B.value > 100

A B

A.id=B.id

value>100

A.id, B.value

⨝
σ

π

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

QUERY PROCESSING

Tuple-at-a-time
→ Each operator calls next on their child to

get the next tuple to process.

Operator-at-a-time
→ Each operator materializes their entire

output for their parent operator.

Vector-at-a-time
→ Each operator calls next on their child to

get the next chunk of data to process.

24

SELECT A.id, B.value
 FROM A, B
 WHERE A.id = B.id
 AND B.value > 100

A B

A.id=B.id

value>100

A.id, B.value

⨝
σ

π

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

LOGGING & RECOVERY

The DBMS still needs a WAL on non-volatile
storage since the system could halt at anytime.
→ Use group commit to batch log entries and flush

them together to amortize fsync cost.
→ May be possible to use more lightweight logging

schemes if using coarse-grained locking (redo only).

25

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

LOGGING & RECOVERY

The system also still takes checkpoints to
speed up recovery time.
Different methods for checkpointing:
→ Old idea: Maintain a second copy of the database in

memory that is updated by replaying the WAL.
→ Switch to a special “copy-on-write” mode and then

write a dump of the database to disk.
→ Fork the DBMS process and then have the child

process write its contents to disk.

26

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

LARGER-THAN-MEMORY DATABASES

DRAM is fast, but data is not accessed with the
same frequency and in the same manner.
→ Hot Data: OLTP Operations
→ Cold Data: OLAP Queries

We will study techniques for how to bring back
disk-resident data without slowing down the
entire system.

27

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

NON-VOLATILE MEMORY

Emerging hardware that is able to get almost
the same read/write speed as DRAM but with
the persistence guarantees of an SSD.
→ Also called storage class memory
→ Examples: Phase-Change Memory, Memristors

It’s not clear how to build a DBMS to operate
on this kind memory.
Again, we’ll cover this topic later.

28

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

NOTABLE IN-MEMORY DBMSs

Oracle TimesTen
P*TIME
Dali / DataBlitz
Altibase
SAP HANA
VoltDB / H-Store

29

Microsoft Hekaton
Harvard Silo
TUM HyPer
MemSQL
IBM DB2 BLU
Apache Geode

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://www.oracle.com/technetwork/database/database-technologies/timesten
https://en.wikipedia.org/wiki/Datablitz
http://altibase.com/
http://hana.sap.com/
http://voltdb.com/
http://hstore.cs.brown.edu/
https://en.wikipedia.org/wiki/Hekaton_(database)
https://github.com/stephentu/silo
http://hyper-db.de/
http://memsql.com/
http://www.ibmbluhub.com/
http://geode.incubator.apache.org/
http://geode.incubator.apache.org/

CMU 15-721 (Spring 2016)

NOTABLE IN-MEMORY DBMSs

Oracle TimesTen
P*TIME
Dali / DataBlitz
Altibase
SAP HANA
VoltDB / H-Store

29

Microsoft Hekaton
Harvard Silo
TUM HyPer
MemSQL
IBM DB2 BLU
Apache Geode

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://www.oracle.com/technetwork/database/database-technologies/timesten
https://en.wikipedia.org/wiki/Datablitz
http://altibase.com/
http://hana.sap.com/
http://voltdb.com/
http://hstore.cs.brown.edu/
https://en.wikipedia.org/wiki/Hekaton_(database)
https://github.com/stephentu/silo
http://hyper-db.de/
http://memsql.com/
http://www.ibmbluhub.com/
http://geode.incubator.apache.org/
http://geode.incubator.apache.org/

CMU 15-721 (Spring 2016)

TIMESTEN

Originally SmallBase from HP Labs in 1995.
Multi-process, shared memory DBMS.
→ Single-version database using two-phase locking.
→ Dictionary-encoded columnar compression.

Bought by Oracle in 2005.

30

ORACLE TIMESTEN: AN IN-MEMORY
DATABASE FOR ENTERPRISE APPLICATIONS
VLDB, pp. 1033-1044, 2004.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://sites.computer.org/debull/A13june/TimesTen1.pdf
http://sites.computer.org/debull/A13june/TimesTen1.pdf

CMU 15-721 (Spring 2016)

DALI / DATABLITZ

Developed at AT&T Labs in the early 1990s.
Multi-process, shared memory storage
manager using memory-mapped files.
Employed additional safety measures to make
sure that erroneous writes to memory do not
corrupt the database.
→ Meta-data is stored in a non-shared location.
→ A page’s checksum is always tested on a read; if the

checksum is invalid, recover page from log.

31

DALI: A HIGH PERFORMANCE MAIN
MEMORY STORAGE MANAGER
VLDB, pp. 48-59, 1994.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://www.vldb.org/conf/1994/P048.PDF
http://www.vldb.org/conf/1994/P048.PDF

CMU 15-721 (Spring 2016)

P*TIME

Korean in-memory DBMS from the 2000s.
Performance numbers are still impressive.
Lots of interesting features:
→ Uses differential encoding (XOR) for log records.
→ Hybrid storage layouts.
→ Support for larger-than-memory databases.

Sold to SAP in 2005. Now part of HANA.

32

P*TIME: HIGHLY SCALABLE OLTP DBMS
FOR MANAGING UPDATE-INTENSIVE
STREAM WORKLOAD
VLDB, pp. 1033-1044, 2004.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://www.vldb.org/conf/2004/IND2P2.PDF
http://www.vldb.org/conf/2004/IND2P2.PDF

CMU 15-721 (Spring 2016)

PELOTON DBMS

CMU’s in-memory hybrid relational DBMS
→ Multi-version concurrency control.
→ Tile-based storage manager.
→ Multi-threaded architecture.
→ Based on PostgreSQL 9.3

Currently supports most of SQL-92.

33

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://drbl.in/kIkC

CMU 15-721 (Spring 2016)

PELOTON DBMS

CMU’s in-memory hybrid relational DBMS
→ Multi-version concurrency control.
→ Tile-based storage manager.
→ Multi-threaded architecture.
→ Based on PostgreSQL 9.3

Currently supports most of SQL-92.

33

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://drbl.in/kIkC

CMU 15-721 (Spring 2016)

TILE STORAGE ARCHITECTURE

34

Logical Relation
attr4 attr3 attr2 attr1

tuple1

tuple2

tuple3

tuple4

tuple5

tuple6

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TILE STORAGE ARCHITECTURE

34

Logical Relation
attr4 attr3 attr2 attr1

tuple1

tuple2

tuple3

tuple4

tuple5

tuple6

Tile Group B
attr4 attr3

Tile B-2

attr2 attr1

Tile B-1

tuple3

tuple4

tuple5

tuple6

Tile Group A
attr2 attr1

Tile A-1

tuple1

tuple2

attr4 attr3

Physical Representation

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TILE STORAGE ARCHITECTURE

35

SELECT A.id, B.value
 FROM A, B
 WHERE A.id = B.id
 AND B.value > 100

A B

A.id=B.id

value>100

A.id, B.value

⨝
σ

π

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TILE STORAGE ARCHITECTURE

35

Physical Tile Group

attr2 attr1

Tile A-1

attr4 attr3

Tile A-2

SELECT A.id, B.value
 FROM A, B
 WHERE A.id = B.id
 AND B.value > 100

A B

A.id=B.id

value>100

A.id, B.value

⨝
σ

π

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TILE STORAGE ARCHITECTURE

35

Physical Tile Group

attr2 attr1

Tile A-1

attr4 attr3

Tile A-2

SELECT A.id, B.value
 FROM A, B
 WHERE A.id = B.id
 AND B.value > 100

A B

A.id=B.id

value>100

A.id, B.value

⨝
σ

π

Logical Tile Group

Tile A1 [id] Tile B3 [value]

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TILE STORAGE ARCHITECTURE

35

Physical Tile Group

attr2 attr1

Tile A-1

attr4 attr3

Tile A-2

SELECT A.id, B.value
 FROM A, B
 WHERE A.id = B.id
 AND B.value > 100

A B

A.id=B.id

value>100

A.id, B.value

⨝
σ

π

Logical Tile Group

Tile A1 [id] Tile B3 [value]

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

PROJECT #1

Implement an in-memory hash join operator
that supports four different join types:
→ INNER JOIN, LEFT OUTER JOIN, RIGHT OUTER JOIN,

and FULL OUTER JOIN

You are free to implement either the “classic”
algorithm or the GRACE hash join algorithm.

36

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
https://en.wikipedia.org/wiki/Hash_join

CMU 15-721 (Spring 2016)

PROJECT #1 – TESTING

We are providing you with a C++ unit test for
you check your implementation.
We also have a SQL batch script that will
execute a couple different queries.

We strongly encourage you to do your own
additional testing.
→ Make sure that you disable the other join types to

force the optimizer to always pick hash join plans.

37

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

PROJECT #1 – GRADING

We will run additional tests beyond what we
provided you for grading.
→ Bonus points will be given to the student with the

fastest implementation.
→ We will use Valgrind when testing your code.

All source code must pass ClangFormat syntax
formatting checker.
→ See Peloton documentation for formatting guidelines

38

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
https://github.com/cmu-db/peloton/wiki/Formatting

CMU 15-721 (Spring 2016)

DEVELOPMENT ENVIRONMENT

Peloton only builds on 64-bit Linux.
But you can do development on either Linux or
OSX (through a VM).
→ We have a Vagrant config file to automatically create

a development Ubuntu VM for you.

This is CMU so I’m going to assume that each of
you are capable of getting access to a machine.

39

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
https://www.vagrantup.com/

CMU 15-721 (Spring 2016)

GITHUB PRIVATE REPO

If you want to use Github for your projects, you
must use a private repo for Projects #1 and #2.

Sign up for a student account on Github to get
five free private repositories:
https://education.github.com/pack

40

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
https://education.github.com/pack
https://education.github.com/pack

CMU 15-721 (Spring 2016)

PROJECT #1

Due Date: February 8th, 2016 @ 11:59pm
Projects will be turned in using Autolab.

Full description and instructions:
http://15721.courses.cs.cmu.edu/spring2016/p
roject1.html

41

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://15721.courses.cs.cmu.edu/spring2016/project1.html
http://15721.courses.cs.cmu.edu/spring2016/project1.html
http://15721.courses.cs.cmu.edu/spring2016/project1.html

CMU 15-721 (Spring 2016)

PARTING THOUGHTS

Disk-oriented DBMSs are a relic of the past.
→ Most databases fit entirely in DRAM on a single machine.

The world has finally become comfortable with in-
memory data storage and processing.

Never use mmap for your DBMS.

42

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

NEXT CLASS

Transactions & Concurrency Control

43

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

	DATABASE SYSTEMS
	TODAY’S AGENDA
	BACKGROUND
	BACKGROUND
	DISK-ORIENTED DBMS
	BUFFER POOL
	DATA ORGANIZATION
	DATA ORGANIZATION
	DATA ORGANIZATION
	DATA ORGANIZATION
	DATA ORGANIZATION
	DATA ORGANIZATION
	DATA ORGANIZATION
	DATA ORGANIZATION
	DATA ORGANIZATION
	DATA ORGANIZATION
	SLOTTED PAGES
	SLOTTED PAGES
	SLOTTED PAGES
	SLOTTED PAGES
	SLOTTED PAGES
	SLOTTED PAGES
	SLOTTED PAGES
	SLOTTED PAGES
	BUFFER POOL
	CONCURRENCY CONTROL
	LOGGING & RECOVERY
	DISK-ORIENTED DBMS OVERHEAD
	DISK-ORIENTED DBMS OVERHEAD
	DISK-ORIENTED DBMS OVERHEAD
	DISK-ORIENTED DBMS OVERHEAD
	DISK-ORIENTED DBMS OVERHEAD
	DISK-ORIENTED DBMS OVERHEAD
	IN-MEMORY DBMSS
	WHY NOT MMAP?
	WHY NOT MMAP?
	BOTTLENECKS
	STORAGE ACCESS LATENCIES
	DATA ORGANIZATION
	DATA ORGANIZATION
	DATA ORGANIZATION
	DATA ORGANIZATION
	DATA ORGANIZATION
	CONCURRENCY CONTROL
	CONCURRENCY CONTROL
	INDEXES
	QUERY PROCESSING
	QUERY PROCESSING
	QUERY PROCESSING
	QUERY PROCESSING
	LOGGING & RECOVERY
	LOGGING & RECOVERY
	LARGER-THAN-MEMORY DATABASES
	NON-VOLATILE MEMORY
	NOTABLE IN-MEMORY DBMSs
	NOTABLE IN-MEMORY DBMSs
	TIMESTEN
	DALI / DATABLITZ
	P*TIME
	PELOTON DBMS
	PELOTON DBMS
	TILE STORAGE ARCHITECTURE
	TILE STORAGE ARCHITECTURE
	TILE STORAGE ARCHITECTURE
	TILE STORAGE ARCHITECTURE
	TILE STORAGE ARCHITECTURE
	TILE STORAGE ARCHITECTURE
	PROJECT #1
	PROJECT #1 – TESTING
	PROJECT #1 – GRADING
	DEVELOPMENT ENVIRONMENT
	GITHUB PRIVATE REPO
	PROJECT #1
	PARTING THOUGHTS
	NEXT CLASS

