
Andy Pavlo // Carnegie Mellon University // Spring 2016

Lecture #03 – Concurrency Control
Part I

DATABASE
SYSTEMS

15-721

[Source]

https://youtu.be/UU2bnUmdexs?t=3m

CMU 15-721 (Spring 2016)

TODAY ’S AGENDA

Transaction Models
Concurrency Control Overview
Many-Core Evaluation

2

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TRANSACTION DEFINITION

3

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TRANSACTION DEFINITION

A txn is a sequence of actions that are executed
on a shared database to perform some higher-
level function.

Txns are the basic unit of change in the DBMS.
No partial txns are allowed.

3

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

ACTION CLASSIF ICATION

Unprotected Actions
→ These lack all of the ACID properties except for

consistency. Their effects cannot be depended upon.

Protected Actions
→ These do not externalize their results before they are

completely done. Fully ACID.

Real Actions
→ These affect the physical world in a way that is hard

or impossible to reverse.

4

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TRANSACTION MODELS

Flat Txns
Flat Txns + Savepoints
Chained Txns
Nested Txns
Saga Txns
Compensating Txns

5

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

FLAT TRANSACTIONS

Standard txn model that starts with BEGIN,
followed by one or more actions, and then
completed with either COMMIT or ROLLBACK.

6

Txn #1

BEGIN

READ(A)

COMMIT

WRITE(B)

Txn #2

BEGIN

READ(A)

ROLLBACK

WRITE(B)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

LIMITATIONS OF FLAT TRANSACTIONS

The application can only rollback the entire
txn (i.e., no partial rollbacks).

All of a txn’s work is lost is the DBMS fails
before that txn finishes.

Each txn takes place at a single point in time

7

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

LIMITATIONS OF FLAT TRANSACTIONS

Multi-Stage Planning
→ An application needs to make multiple reservations.
→ All the reservations need to occur or none of them.

Bulk Updates
→ An application needs to update one billion records.
→ This txn could take hours to complete and therefore

the DBMS is exposed to losing all of its work for any
failure or conflict.

8

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TRANSACTION SAVEPOINTS

Save the current state of processing for the txn
and provide a handle for the application to
refer to that savepoint.
The application can control the state of the txn
through these checkpoints:
→ ROLLBACK – Revert all changes back to the state of

the DB at the savepoint.
→ RELEASE – Destroys a savepoint previously defined

in the txn.

9

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TRANSACTION SAVEPOINTS

10

Txn #1
BEGIN

WRITE(A)

COMMIT

SAVEPOINT 1

WRITE(B)
ROLLBACK TO 1

WRITE(C)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TRANSACTION SAVEPOINTS

10

Txn #1
BEGIN

WRITE(A)

COMMIT

SAVEPOINT 1

WRITE(B)
ROLLBACK TO 1

WRITE(C)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TRANSACTION SAVEPOINTS

10

Txn #1
BEGIN

WRITE(A)

COMMIT

SAVEPOINT 1

WRITE(B)
ROLLBACK TO 1

WRITE(C)

Savepoint#1

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TRANSACTION SAVEPOINTS

10

Txn #1
BEGIN

WRITE(A)

COMMIT

SAVEPOINT 1

WRITE(B)
ROLLBACK TO 1

WRITE(C)

Savepoint#1

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TRANSACTION SAVEPOINTS

10

Txn #1
BEGIN

WRITE(A)

COMMIT

SAVEPOINT 1

WRITE(B)
ROLLBACK TO 1

WRITE(C)

Savepoint#1

A

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TRANSACTION SAVEPOINTS

10

Txn #1
BEGIN

WRITE(A)

COMMIT

SAVEPOINT 1

WRITE(B)
ROLLBACK TO 1

WRITE(C)

Savepoint#1

A

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TRANSACTION SAVEPOINTS

10

Txn #1
BEGIN

WRITE(A)

COMMIT

SAVEPOINT 1

WRITE(B)
ROLLBACK TO 1

WRITE(C)

Savepoint#1

A
Savepoint#2

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TRANSACTION SAVEPOINTS

10

Txn #1
BEGIN

WRITE(A)

COMMIT

SAVEPOINT 1

WRITE(B)
ROLLBACK TO 1

WRITE(C)

Savepoint#1

A
Savepoint#2

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TRANSACTION SAVEPOINTS

10

Txn #1
BEGIN

WRITE(A)

COMMIT

SAVEPOINT 1

WRITE(B)
ROLLBACK TO 1

WRITE(C)

Savepoint#1

A
Savepoint#2

B

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TRANSACTION SAVEPOINTS

10

Txn #1
BEGIN

WRITE(A)

COMMIT

SAVEPOINT 1

WRITE(B)
ROLLBACK TO 1

WRITE(C)

Savepoint#1

A
Savepoint#2

B

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TRANSACTION SAVEPOINTS

10

Txn #1
BEGIN

WRITE(A)

COMMIT

SAVEPOINT 1

WRITE(B)
ROLLBACK TO 1

WRITE(C)

Savepoint#1

A
Savepoint#2

B X

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TRANSACTION SAVEPOINTS

10

Txn #1
BEGIN

WRITE(A)

COMMIT

SAVEPOINT 1

WRITE(B)
ROLLBACK TO 1

WRITE(C)

Savepoint#1

A
Savepoint#2

B
Savepoint#3 X

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TRANSACTION SAVEPOINTS

10

Txn #1
BEGIN

WRITE(A)

COMMIT

SAVEPOINT 1

WRITE(B)
ROLLBACK TO 1

WRITE(C)

Savepoint#1

A
Savepoint#2

B
Savepoint#3 X

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TRANSACTION SAVEPOINTS

10

Txn #1
BEGIN

WRITE(A)

COMMIT

SAVEPOINT 1

WRITE(B)
ROLLBACK TO 1

WRITE(C)

Savepoint#1

A
Savepoint#2

B
Savepoint#3

C
X

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TRANSACTION SAVEPOINTS

10

Txn #1
BEGIN

WRITE(A)

COMMIT

SAVEPOINT 1

WRITE(B)
ROLLBACK TO 1

WRITE(C)

Savepoint#1

A
Savepoint#2

B
Savepoint#3

C
X

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TRANSACTION SAVEPOINTS

11

Txn #1
BEGIN

WRITE(A)

SAVEPOINT 3

SAVEPOINT 1

WRITE(B)
SAVEPOINT 2

WRITE(C)

ROLLBACK TO 3

RELEASE 2

WRITE(D)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TRANSACTION SAVEPOINTS

11

Txn #1
BEGIN

WRITE(A)

SAVEPOINT 3

SAVEPOINT 1

WRITE(B)
SAVEPOINT 2

WRITE(C)

Savepoint#1

ROLLBACK TO 3

RELEASE 2

WRITE(D)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TRANSACTION SAVEPOINTS

11

Txn #1
BEGIN

WRITE(A)

SAVEPOINT 3

SAVEPOINT 1

WRITE(B)
SAVEPOINT 2

WRITE(C)

Savepoint#1

A

ROLLBACK TO 3

RELEASE 2

WRITE(D)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TRANSACTION SAVEPOINTS

11

Txn #1
BEGIN

WRITE(A)

SAVEPOINT 3

SAVEPOINT 1

WRITE(B)
SAVEPOINT 2

WRITE(C)

Savepoint#1

A
Savepoint#2

ROLLBACK TO 3

RELEASE 2

WRITE(D)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TRANSACTION SAVEPOINTS

11

Txn #1
BEGIN

WRITE(A)

SAVEPOINT 3

SAVEPOINT 1

WRITE(B)
SAVEPOINT 2

WRITE(C)

Savepoint#1

A
Savepoint#2

B

ROLLBACK TO 3

RELEASE 2

WRITE(D)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TRANSACTION SAVEPOINTS

11

Txn #1
BEGIN

WRITE(A)

SAVEPOINT 3

SAVEPOINT 1

WRITE(B)
SAVEPOINT 2

WRITE(C)

Savepoint#1

A
Savepoint#2

B

ROLLBACK TO 3

RELEASE 2

WRITE(D)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TRANSACTION SAVEPOINTS

11

Txn #1
BEGIN

WRITE(A)

SAVEPOINT 3

SAVEPOINT 1

WRITE(B)
SAVEPOINT 2

WRITE(C)

Savepoint#1

A
Savepoint#2

B
Savepoint#3

ROLLBACK TO 3

RELEASE 2

WRITE(D)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TRANSACTION SAVEPOINTS

11

Txn #1
BEGIN

WRITE(A)

SAVEPOINT 3

SAVEPOINT 1

WRITE(B)
SAVEPOINT 2

WRITE(C)

Savepoint#1

A
Savepoint#2

B
Savepoint#3

C

ROLLBACK TO 3

RELEASE 2

WRITE(D)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TRANSACTION SAVEPOINTS

11

Txn #1
BEGIN

WRITE(A)

SAVEPOINT 3

SAVEPOINT 1

WRITE(B)
SAVEPOINT 2

WRITE(C)

Savepoint#1

A
Savepoint#2

B
Savepoint#3

C

ROLLBACK TO 3

RELEASE 2

WRITE(D)

Savepoint#4

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TRANSACTION SAVEPOINTS

11

Txn #1
BEGIN

WRITE(A)

SAVEPOINT 3

SAVEPOINT 1

WRITE(B)
SAVEPOINT 2

WRITE(C)

Savepoint#1

A
Savepoint#2

B
Savepoint#3

C

ROLLBACK TO 3

RELEASE 2

WRITE(D)

Savepoint#4

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TRANSACTION SAVEPOINTS

11

Txn #1
BEGIN

WRITE(A)

SAVEPOINT 3

SAVEPOINT 1

WRITE(B)
SAVEPOINT 2

WRITE(C)

Savepoint#1

A

B
Savepoint#3

C

ROLLBACK TO 3

RELEASE 2

WRITE(D)

Savepoint#4

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TRANSACTION SAVEPOINTS

11

Txn #1
BEGIN

WRITE(A)

SAVEPOINT 3

SAVEPOINT 1

WRITE(B)
SAVEPOINT 2

WRITE(C)

Savepoint#1

A

B
Savepoint#3

C

ROLLBACK TO 3

RELEASE 2

WRITE(D)

Savepoint#4

D

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TRANSACTION SAVEPOINTS

11

Txn #1
BEGIN

WRITE(A)

SAVEPOINT 3

SAVEPOINT 1

WRITE(B)
SAVEPOINT 2

WRITE(C)

Savepoint#1

A

B
Savepoint#3

C

ROLLBACK TO 3

RELEASE 2

WRITE(D)

Savepoint#4

D

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TRANSACTION SAVEPOINTS

11

Txn #1
BEGIN

WRITE(A)

SAVEPOINT 3

SAVEPOINT 1

WRITE(B)
SAVEPOINT 2

WRITE(C)

Savepoint#1

A

B
Savepoint#3

C

ROLLBACK TO 3

RELEASE 2

WRITE(D)

Savepoint#4

D

???

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TRANSACTION SAVEPOINTS

11

Txn #1
BEGIN

WRITE(A)

SAVEPOINT 3

SAVEPOINT 1

WRITE(B)
SAVEPOINT 2

WRITE(C)

Savepoint#1

A

B
Savepoint#3

C

ROLLBACK TO 3

RELEASE 2

WRITE(D)

Savepoint#4

D

???

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TRANSACTION SAVEPOINTS

11

Txn #1
BEGIN

WRITE(A)

SAVEPOINT 3

SAVEPOINT 1

WRITE(B)
SAVEPOINT 2

WRITE(C)

Savepoint#1

A

B
Savepoint#3

C

ROLLBACK TO 3

RELEASE 2

WRITE(D)

Savepoint#4

D

???

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TRANSACTION SAVEPOINTS

11

Txn #1
BEGIN

WRITE(A)

SAVEPOINT 3

SAVEPOINT 1

WRITE(B)
SAVEPOINT 2

WRITE(C)

Savepoint#1

A

B

C

ROLLBACK TO 3

RELEASE 2

WRITE(D)

Savepoint#4

D

???

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TRANSACTION CHAINS

Multiple txns executed one after another.
Combined COMMIT / BEGIN operation is atomic.
→ No other txn can change the state of the database as

seen by the second txn from the time that the first txn
commits and the second txn begins.

Differences with savepoints:
• COMMIT allows the DBMS to free locks.
• Cannot rollback previous txns in chain.

12

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TRANSACTION CHAINS

13

Txn #1
BEGIN

WRITE(A)
COMMIT Txn #2

BEGIN
WRITE(B)
COMMIT Txn #3

BEGIN
WRITE(C)
ROLLBACK

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TRANSACTION CHAINS

13

Txn #1
BEGIN

WRITE(A)
COMMIT Txn #2

BEGIN
WRITE(B)
COMMIT Txn #3

BEGIN
WRITE(C)
ROLLBACK

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TRANSACTION CHAINS

13

Txn #1
BEGIN

WRITE(A)
COMMIT Txn #2

BEGIN
WRITE(B)
COMMIT Txn #3

BEGIN
WRITE(C)
ROLLBACK

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TRANSACTION CHAINS

13

Txn #1
BEGIN

WRITE(A)
COMMIT Txn #2

BEGIN
WRITE(B)
COMMIT Txn #3

BEGIN
WRITE(C)
ROLLBACK

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

NESTED TRANSACTIONS

Savepoints organize a transaction as a
sequence of actions that can be rolled back
individually.
Nested txns form a hierarchy of work.
→ The outcome of a child txn depends on the outcome

of its parent txn.

14

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

NESTED TRANSACTIONS

15

Txn #1
BEGIN

WRITE(A)
BEGIN

BEGIN
WRITE(C)
COMMIT

COMMIT

WRITE(B)

ROLLBACK
WRITE(D)

BEGIN

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

NESTED TRANSACTIONS

15

Txn #1
BEGIN

WRITE(A)
BEGIN

BEGIN
WRITE(C)
COMMIT

COMMIT

WRITE(B)

ROLLBACK
WRITE(D)

BEGIN

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

NESTED TRANSACTIONS

15

Txn #1
BEGIN

WRITE(A)
BEGIN

BEGIN
WRITE(C)
COMMIT

COMMIT

WRITE(B)

ROLLBACK
WRITE(D)

BEGIN

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

NESTED TRANSACTIONS

15

Txn #1
BEGIN

WRITE(A)
BEGIN

BEGIN
WRITE(C)
COMMIT

COMMIT

WRITE(B)

ROLLBACK
WRITE(D)

BEGIN

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

NESTED TRANSACTIONS

15

Txn #1
BEGIN

WRITE(A)
BEGIN

BEGIN
WRITE(C)
COMMIT

COMMIT

WRITE(B)

ROLLBACK
WRITE(D)

BEGIN

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

NESTED TRANSACTIONS

15

Txn #1
BEGIN

WRITE(A)
BEGIN

BEGIN
WRITE(C)
COMMIT

COMMIT

WRITE(B)

ROLLBACK
WRITE(D)

BEGIN

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Sub-Txn #1.1

NESTED TRANSACTIONS

15

Txn #1
BEGIN

WRITE(A)
BEGIN

BEGIN
WRITE(C)
COMMIT

COMMIT

WRITE(B)

ROLLBACK
WRITE(D)

BEGIN

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Sub-Txn #1.1

NESTED TRANSACTIONS

15

Txn #1
BEGIN

WRITE(A)
BEGIN

BEGIN
WRITE(C)
COMMIT

COMMIT

WRITE(B)

ROLLBACK
WRITE(D)

BEGIN

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Sub-Txn #1.1

NESTED TRANSACTIONS

15

Txn #1
BEGIN

WRITE(A)
BEGIN

BEGIN
WRITE(C)
COMMIT

COMMIT

WRITE(B)

ROLLBACK
WRITE(D)

BEGIN

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Sub-Txn #1.1

NESTED TRANSACTIONS

15

Txn #1
BEGIN

WRITE(A)
BEGIN

BEGIN
WRITE(C)
COMMIT

COMMIT

WRITE(B)

ROLLBACK
WRITE(D)

BEGIN

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Sub-Txn #1.1

NESTED TRANSACTIONS

15

Sub-Txn #1.1.1

Txn #1
BEGIN

WRITE(A)
BEGIN

BEGIN
WRITE(C)
COMMIT

COMMIT

WRITE(B)

ROLLBACK
WRITE(D)

BEGIN

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Sub-Txn #1.1

NESTED TRANSACTIONS

15

Sub-Txn #1.1.1
BEGIN

Txn #1
BEGIN

WRITE(A)
BEGIN

BEGIN
WRITE(C)
COMMIT

COMMIT

WRITE(B)

ROLLBACK
WRITE(D)

BEGIN

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Sub-Txn #1.1

NESTED TRANSACTIONS

15

Sub-Txn #1.1.1
BEGIN

Txn #1
BEGIN

WRITE(A)
BEGIN

BEGIN
WRITE(C)
COMMIT

COMMIT

WRITE(B)

ROLLBACK
WRITE(D)

BEGIN

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Sub-Txn #1.1

NESTED TRANSACTIONS

15

Sub-Txn #1.1.1
BEGIN

Txn #1
BEGIN

WRITE(A)
BEGIN

BEGIN
WRITE(C)
COMMIT

COMMIT

WRITE(B)

ROLLBACK
WRITE(D)

BEGIN

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Sub-Txn #1.1

NESTED TRANSACTIONS

15

Sub-Txn #1.1.1
BEGIN

Txn #1
BEGIN

WRITE(A)
BEGIN

BEGIN
WRITE(C)
COMMIT

COMMIT

WRITE(B)

ROLLBACK
WRITE(D)

BEGIN

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Sub-Txn #1.1

NESTED TRANSACTIONS

15

Sub-Txn #1.1.1
BEGIN

Txn #1
BEGIN

WRITE(A)
BEGIN

BEGIN
WRITE(C)
COMMIT

COMMIT

WRITE(B)

ROLLBACK
WRITE(D)

BEGIN

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Sub-Txn #1.1

NESTED TRANSACTIONS

15

Sub-Txn #1.1.1
BEGIN

Txn #1
BEGIN

WRITE(A)
BEGIN

BEGIN
WRITE(C)
COMMIT

COMMIT

WRITE(B)

ROLLBACK
WRITE(D)

BEGIN

X

X

X

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Sub-Txn #1.1

NESTED TRANSACTIONS

15

Sub-Txn #1.1.1
BEGIN

Txn #1
BEGIN

WRITE(A)
BEGIN

BEGIN
WRITE(C)
COMMIT

COMMIT

WRITE(B)

ROLLBACK
WRITE(D)

BEGIN

X

X

X

✓

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

BULK UPDATE PROBLEM

These other txn models are nice, but they still
do not solve our bulk update problem.

Chained txns seems like the right idea but they
require the application to handle failures and
maintain it’s own state.
→ Has to be able to reverse changes when things fail.

16

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

COMPENSATING TRANSACTIONS

A special type of txn that is designed to
semantically reverse the effects of another
already committed txn.

Reversal has to be logical instead of physical.
→ Example: Decrement a counter by one instead of

reverting to the original value.

17

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SAGA TRANSACTIONS

A sequence of chained txns T1 ,…,Tn and
compensating txns C1,…,Cn-1 where one of the
following is guaranteed:
→The txns will commit in the order

T1 ,…,Tn

→The txns will commit in the order
T1 ,…,Tj,Cj,…,C1 (where j < n)

18

SAGAS
SIGMOD, pp. 249-259, 2014.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://dl.acm.org/citation.cfm?id=38742
http://dl.acm.org/citation.cfm?id=38742

CMU 15-721 (Spring 2016)

SAGA TRANSACTIONS

19

Txn #1
BEGIN

WRITE(A+1)
COMMIT

Txn #2
BEGIN

WRITE(B+1)
COMMIT

Txn #3
BEGIN

WRITE(C+1)

Comp Txn #1
BEGIN

WRITE(A-1)
COMMIT

Comp Txn #2
BEGIN

WRITE(B-1)
COMMIT

Comp Txn #3
BEGIN

WRITE(C-1)
COMMIT

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SAGA TRANSACTIONS

19

Txn #1
BEGIN

WRITE(A+1)
COMMIT

Txn #2
BEGIN

WRITE(B+1)
COMMIT

Txn #3
BEGIN

WRITE(C+1)

Comp Txn #1
BEGIN

WRITE(A-1)
COMMIT

Comp Txn #2
BEGIN

WRITE(B-1)
COMMIT

Comp Txn #3
BEGIN

WRITE(C-1)
COMMIT

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SAGA TRANSACTIONS

19

Txn #1
BEGIN

WRITE(A+1)
COMMIT

Txn #2
BEGIN

WRITE(B+1)
COMMIT

Txn #3
BEGIN

WRITE(C+1)

Comp Txn #1
BEGIN

WRITE(A-1)
COMMIT

Comp Txn #2
BEGIN

WRITE(B-1)
COMMIT

Comp Txn #3
BEGIN

WRITE(C-1)
COMMIT

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SAGA TRANSACTIONS

19

Txn #1
BEGIN

WRITE(A+1)
COMMIT

Txn #2
BEGIN

WRITE(B+1)
COMMIT

Txn #3
BEGIN

WRITE(C+1)

Comp Txn #1
BEGIN

WRITE(A-1)
COMMIT

Comp Txn #2
BEGIN

WRITE(B-1)
COMMIT

Comp Txn #3
BEGIN

WRITE(C-1)
COMMIT

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SAGA TRANSACTIONS

19

Txn #1
BEGIN

WRITE(A+1)
COMMIT

Txn #2
BEGIN

WRITE(B+1)
COMMIT

Txn #3
BEGIN

WRITE(C+1)

Comp Txn #1
BEGIN

WRITE(A-1)
COMMIT

Comp Txn #2
BEGIN

WRITE(B-1)
COMMIT

Comp Txn #3
BEGIN

WRITE(C-1)
COMMIT

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SAGA TRANSACTIONS

19

Txn #1
BEGIN

WRITE(A+1)
COMMIT

Txn #2
BEGIN

WRITE(B+1)
COMMIT

Txn #3
BEGIN

WRITE(C+1)

Comp Txn #1
BEGIN

WRITE(A-1)
COMMIT

Comp Txn #2
BEGIN

WRITE(B-1)
COMMIT

Comp Txn #3
BEGIN

WRITE(C-1)
COMMIT

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SAGA TRANSACTIONS

19

Txn #1
BEGIN

WRITE(A+1)
COMMIT

Txn #2
BEGIN

WRITE(B+1)
COMMIT

Txn #3
BEGIN

WRITE(C+1)

Comp Txn #1
BEGIN

WRITE(A-1)
COMMIT

Comp Txn #2
BEGIN

WRITE(B-1)
COMMIT

Comp Txn #3
BEGIN

WRITE(C-1)
COMMIT

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

CONCURRENCY CONTROL

The protocol to allow txns to access a database
in a multi-programmed fashion while
preserving the illusion that each of them is
executing alone on a dedicated system.
→ The goal is to have the effect of a group of txns on

the database’s state is equivalent to any serial
execution of all txns.

Provides Atomicity + Isolation in ACID

20

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TXN INTERNAL STATE

Undo Log Entries
→ Stored in an in-memory data structure.
→ Dropped on commit.

Redo Log Entries
→ Append to the in-memory tail of WAL.
→ Flushed to disk on commit.

Read/Write Set
→ Depends on the concurrency control scheme.

21

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

CONCURRENCY CONTROL SCHEMES

Two-Phase Locking (2PL)
→ Assume txns will conflict so they must acquire locks

on elements before they are allowed to access them.

Timestamp Ordering (T/O)
→ Assume that conflicts are rare so txns do not need to

acquire locks and instead check for conflicts at
commit time.

22

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TWO-PHASE LOCKING

23

Txn #1

BE
GI
N

CO
MM
IT

LOCK(A) LOCK(B) UNLOCK(A) UNLOCK(B) READ(A) WRITE(B)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TWO-PHASE LOCKING

23

Txn #1

BE
GI
N

CO
MM
IT

LOCK(A) LOCK(B) UNLOCK(A) UNLOCK(B) READ(A) WRITE(B) LOCK(A) LOCK(B)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TWO-PHASE LOCKING

23

Txn #1

BE
GI
N

CO
MM
IT

LOCK(A) LOCK(B) UNLOCK(A) UNLOCK(B) READ(A) WRITE(B) LOCK(A) LOCK(B)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TWO-PHASE LOCKING

23

Txn #1

BE
GI
N

CO
MM
IT

LOCK(A) LOCK(B) UNLOCK(A) UNLOCK(B) READ(A) WRITE(B) LOCK(A) LOCK(B)

Growing Phase

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TWO-PHASE LOCKING

23

Txn #1

BE
GI
N

CO
MM
IT

LOCK(A) LOCK(B) UNLOCK(A) UNLOCK(B) READ(A) WRITE(B)

Shrinking Phase

LOCK(A) LOCK(B)

Growing Phase

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TWO-PHASE LOCKING

23

Txn #1

BE
GI
N

CO
MM
IT

LOCK(A) LOCK(B) UNLOCK(A) UNLOCK(B) READ(A) WRITE(B) LOCK(A) LOCK(B)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TWO-PHASE LOCKING

23

Txn #2

BE
GI
N

CO
MM
IT

LOCK(B) LOCK(A) WRITE(A) UNLOCK(A) UNLOCK(B) WRITE(B)

Txn #1

BE
GI
N

CO
MM
IT

LOCK(A) LOCK(B) UNLOCK(A) UNLOCK(B) READ(A) WRITE(B) LOCK(A) LOCK(B)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TWO-PHASE LOCKING

23

Txn #2

BE
GI
N

CO
MM
IT

LOCK(B) LOCK(A) WRITE(A) UNLOCK(A) UNLOCK(B) WRITE(B)

Txn #1

BE
GI
N

CO
MM
IT

LOCK(A) LOCK(B) UNLOCK(A) UNLOCK(B) READ(A) WRITE(B) LOCK(A) LOCK(B)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TWO-PHASE LOCKING

23

Txn #2

BE
GI
N

CO
MM
IT

LOCK(B) LOCK(A) WRITE(A) UNLOCK(A) UNLOCK(B) WRITE(B)

Txn #1

BE
GI
N

CO
MM
IT

LOCK(A) LOCK(B) UNLOCK(A) UNLOCK(B) READ(A) WRITE(B) LOCK(A) LOCK(B)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TWO-PHASE LOCKING

23

Txn #2

BE
GI
N

CO
MM
IT

LOCK(B) LOCK(A) WRITE(A) UNLOCK(A) UNLOCK(B) WRITE(B)

Txn #1

BE
GI
N

CO
MM
IT

LOCK(A) LOCK(B) UNLOCK(A) UNLOCK(B) READ(A) WRITE(B) LOCK(A) LOCK(B)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TWO-PHASE LOCKING

23

Txn #2

BE
GI
N

CO
MM
IT

LOCK(B) LOCK(A) WRITE(A) UNLOCK(A) UNLOCK(B) WRITE(B)

Txn #1

BE
GI
N

CO
MM
IT

LOCK(A) LOCK(B) UNLOCK(A) UNLOCK(B) READ(A) WRITE(B) LOCK(A) LOCK(B)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TWO-PHASE LOCKING

23

Txn #2

BE
GI
N

CO
MM
IT

LOCK(B) LOCK(A) WRITE(A) UNLOCK(A) UNLOCK(B) WRITE(B)

Txn #1

BE
GI
N

CO
MM
IT

LOCK(A) LOCK(B) UNLOCK(A) UNLOCK(B) READ(A) WRITE(B) LOCK(A) LOCK(B)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TWO-PHASE LOCKING

23

Txn #2

BE
GI
N

CO
MM
IT

LOCK(B) LOCK(A) WRITE(A) UNLOCK(A) UNLOCK(B) WRITE(B)

Txn #1

BE
GI
N

CO
MM
IT

LOCK(A) LOCK(B) UNLOCK(A) UNLOCK(B) READ(A) WRITE(B) LOCK(A) LOCK(B)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TWO-PHASE LOCKING

23

Txn #2

BE
GI
N

CO
MM
IT

LOCK(B) LOCK(A) WRITE(A) UNLOCK(A) UNLOCK(B) WRITE(B)

Txn #1

BE
GI
N

CO
MM
IT

LOCK(A) LOCK(B) UNLOCK(A) UNLOCK(B) READ(A) WRITE(B) LOCK(A) LOCK(B)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TWO-PHASE LOCKING

Deadlock Detection
→ Each txn maintains a queue of the txns that hold the

locks that it waiting for.
→ A separate thread checks these queues for deadlocks.
→ If deadlock found, use a heuristic to decide what txn

to kill in order to break deadlock.

Deadlock Prevention
→ Check whether another txn already holds a lock

when another txn requests it.
→ If lock is not available, the txn will either (1) wait, (2)

commit suicide, or (3) kill the other txn.

24

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TIMESTAMP ORDERING

25

Txn #1

BE
GI
N

CO
MM
IT

READ(A) WRITE(B) WRITE(A)

• • • • • • •

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TIMESTAMP ORDERING

25

Txn #1

BE
GI
N

CO
MM
IT

READ(A) WRITE(B) WRITE(A)

• • • • • • •

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TIMESTAMP ORDERING

25

Txn #1

BE
GI
N

CO
MM
IT

READ(A) WRITE(B) WRITE(A)

• • • • • • •

10001

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TIMESTAMP ORDERING

25

Record Read
Timestamp

Write
Timestamp

A

B 10000

Txn #1

BE
GI
N

CO
MM
IT

READ(A) WRITE(B) WRITE(A)

• • • •

10000

10000

• • •

10000

10001

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TIMESTAMP ORDERING

25

Record Read
Timestamp

Write
Timestamp

A

B 10000

Txn #1

BE
GI
N

CO
MM
IT

READ(A) WRITE(B) WRITE(A)

• • • •

10000

10000

• • •

10000

10001

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TIMESTAMP ORDERING

25

Record Read
Timestamp

Write
Timestamp

A

B 10000

Txn #1

BE
GI
N

CO
MM
IT

READ(A) WRITE(B) WRITE(A)

• • • •

10001

10000

• • •

10000

10001

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TIMESTAMP ORDERING

25

Record Read
Timestamp

Write
Timestamp

A

B 10000

Txn #1

BE
GI
N

CO
MM
IT

READ(A) WRITE(B) WRITE(A)

• • • •

10001

10000

• • •

10000

10001

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TIMESTAMP ORDERING

25

Record Read
Timestamp

Write
Timestamp

A

B 10000

Txn #1

BE
GI
N

CO
MM
IT

READ(A) WRITE(B) WRITE(A)

• • • •

10001

10000

• • •

10000

10001

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TIMESTAMP ORDERING

25

Record Read
Timestamp

Write
Timestamp

A

B 10000

Txn #1

BE
GI
N

CO
MM
IT

READ(A) WRITE(B) WRITE(A)

• • • •

10001

10001

• • •

10000

10001

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TIMESTAMP ORDERING

25

Record Read
Timestamp

Write
Timestamp

A

B 10000

Txn #1

BE
GI
N

CO
MM
IT

READ(A) WRITE(B) WRITE(A)

• • • •

10001

10001

• • •

10000

10001

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TIMESTAMP ORDERING

25

Record Read
Timestamp

Write
Timestamp

A

B 10000

Txn #1

BE
GI
N

CO
MM
IT

READ(A) WRITE(B) WRITE(A)

• • • •

10001

10001

• • •

10000

10001

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TIMESTAMP ORDERING

25

Record Read
Timestamp

Write
Timestamp

A

B 10000

Txn #1

BE
GI
N

CO
MM
IT

READ(A) WRITE(B) WRITE(A)

• • • •

10001

10001

• • •

10005

10001

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TIMESTAMP ORDERING

25

Record Read
Timestamp

Write
Timestamp

A

B 10000

Txn #1

BE
GI
N

CO
MM
IT

READ(A) WRITE(B) WRITE(A)

• • • •

10001

10001

• • •

10005

10001

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TIMESTAMP ORDERING

25

Record Read
Timestamp

Write
Timestamp

A

B 10000

Txn #1

BE
GI
N

CO
MM
IT

READ(A) WRITE(B) WRITE(A)

• • • •

10001

10001

• • •

10005

10001

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TIMESTAMP ORDERING

Basic T/O
→ Check for conflicts on each read/write.
→ Copy tuples on each access to ensure repeatable reads.

Multi-Version Concurrency Control (MVCC)
→ Create a new version of a tuple whenever a txn

modifies it. Use timestamps as version id.
→ Check visibility on every read/write.

Optimistic Currency Control (OCC)
→ Store all changes in private workspace.
→ Check for conflicts at commit time and then merge.

26

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

CONCURRENCY CONTROL SCHEMES

27

DL_DETECT
NO_WAIT
WAIT_DIE

2PL w/ Deadlock Detection
2PL w/ Non-waiting Prevention
2PL w/ Wait-and-Die Prevention

TIMESTAMP
MVCC
OCC

Basic T/O Algorithm
Multi-Version T/O
Optimistic Concurrency Control

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

CONCURRENCY CONTROL SCHEMES

27

DL_DETECT
NO_WAIT
WAIT_DIE

2PL w/ Deadlock Detection
2PL w/ Non-waiting Prevention
2PL w/ Wait-and-Die Prevention

TIMESTAMP
MVCC
OCC

Basic T/O Algorithm
Multi-Version T/O
Optimistic Concurrency Control

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

CONCURRENCY CONTROL SCHEMES

27

DL_DETECT
NO_WAIT
WAIT_DIE

2PL w/ Deadlock Detection
2PL w/ Non-waiting Prevention
2PL w/ Wait-and-Die Prevention

TIMESTAMP
MVCC
OCC

Basic T/O Algorithm
Multi-Version T/O
Optimistic Concurrency Control

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

CONCURRENCY CONTROL SCHEMES

27

DL_DETECT
NO_WAIT
WAIT_DIE

2PL w/ Deadlock Detection
2PL w/ Non-waiting Prevention
2PL w/ Wait-and-Die Prevention

TIMESTAMP
MVCC
OCC

Basic T/O Algorithm
Multi-Version T/O
Optimistic Concurrency Control

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

CONCURRENCY CONTROL SCHEMES

27

DL_DETECT
NO_WAIT
WAIT_DIE

2PL w/ Deadlock Detection
2PL w/ Non-waiting Prevention
2PL w/ Wait-and-Die Prevention

TIMESTAMP
MVCC
OCC

Basic T/O Algorithm
Multi-Version T/O
Optimistic Concurrency Control

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

CONCURRENCY CONTROL SCHEMES

27

DL_DETECT
NO_WAIT
WAIT_DIE

2PL w/ Deadlock Detection
2PL w/ Non-waiting Prevention
2PL w/ Wait-and-Die Prevention

TIMESTAMP
MVCC
OCC

Basic T/O Algorithm
Multi-Version T/O
Optimistic Concurrency Control

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

CONCURRENCY CONTROL SCHEMES

27

DL_DETECT
NO_WAIT
WAIT_DIE

2PL w/ Deadlock Detection
2PL w/ Non-waiting Prevention
2PL w/ Wait-and-Die Prevention

TIMESTAMP
MVCC
OCC

Basic T/O Algorithm
Multi-Version T/O
Optimistic Concurrency Control

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

1000-CORE CPU SIMULATOR

DBx1000 Database System
→ In-memory DBMS with pluggable lock manager.
→ No network access, logging, or concurrent indexes

MIT Graphite CPU Simulator
→ Single-socket, tile-based CPU.
→ Shared L2 cache for groups of cores.
→ Tiles communicate over 2D-mesh network.

28

STARING INTO THE ABYSS: AN EVALUATION
OF CONCURRENCY CONTROL WITH ONE
THOUSAND CORES
VLDB, pp. 209-220, 2014.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
https://github.com/yxymit/DBx1000
http://groups.csail.mit.edu/carbon/?page_id=111
http://15721.courses.cs.cmu.edu/spring2016/papers/p209-yu.pdf
http://15721.courses.cs.cmu.edu/spring2016/papers/p209-yu.pdf

CMU 15-721 (Spring 2016)

TARGET WORKLOAD

Yahoo! Cloud Serving Benchmark (YCSB)
→ 20 million tuples
→ Each tuple is 1KB (total database is ~20GB)

Each transactions reads/modifies 16 tuples.
Varying skew in transaction access patterns.
Serializable isolation level.

29

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

READ-ONLY WORKLOAD

30

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

READ-ONLY WORKLOAD

30

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

READ-ONLY WORKLOAD

30

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

READ-ONLY WORKLOAD

30

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WRITE- INTENSIVE / MEDIUM-CONTENTION

31

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WRITE- INTENSIVE / MEDIUM-CONTENTION

31

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WRITE- INTENSIVE / MEDIUM-CONTENTION

31

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WRITE- INTENSIVE / MEDIUM-CONTENTION

31

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WRITE- INTENSIVE / HIGH-CONTENTION

32

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WRITE- INTENSIVE / HIGH-CONTENTION

32

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WRITE- INTENSIVE / HIGH-CONTENTION

32

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WRITE- INTENSIVE / HIGH-CONTENTION

32

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WRITE- INTENSIVE / HIGH-CONTENTION

32

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WRITE- INTENSIVE / HIGH-CONTENTION

32

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WRITE- INTENSIVE / HIGH-CONTENTION

32

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WRITE- INTENSIVE / HIGH-CONTENTION

32

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

BOT TLENECKS

Lock Thrashing
→ DL_DETECT, WAIT_DIE

Timestamp Allocation
→ All T/O algorithms + WAIT_DIE

Memory Allocations
→ OCC + MVCC

33

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

LOCK THRASHING

Each txn waits longer to acquire locks, causing
other txn to wait longer to acquire locks.

Can measure this phenomenon by removing
deadlock detection/prevention overhead.
→ Force txns to acquire locks in primary key order.
→ Deadlocks are not possible.

34

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

LOCK THRASHING

35

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

LOCK THRASHING

35

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

LOCK THRASHING

35

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

LOCK THRASHING

35

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TIMESTAMP ALLOCATION

Mutex
→ Worst option.

Atomic Addition
→ Requires cache invalidation on write.

Batched Atomic Addition
→ Needs a back-off mechanism to prevent fast burn.

Hardware Clock
→ Not sure if it will exist in future CPUs.

Hardware Counter
→ Not implemented in existing CPUs.

36

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TIMESTAMP ALLOCATION

37

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

MEMORY ALLOCATIONS

Copying data on every read/write access slows
down the DBMS because of contention on the
memory controller.
→ In-place updates and non-copying reads are not

affected as much.

Default libc malloc is slow. Never use it.

38

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

PARTITION-LEVEL LOCKING

The database is split up into horizontal partitions:
→ Each partition is assigned a single-threaded execution

engine that has exclusive access to its data.
→ In-place updates.

Only one txn can execute at a time per partition.
→ Order txns based on when they arrive at the DBMS.
→ A txn acquires the lock for a partition when it has the

lowest timestamp.
→ It is not allowed to access any partition that it does not

hold the lock for.

39

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

READ-ONLY WORKLOAD

40

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

MULTI -PARTITION WORKLOADS

41

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

PARTING THOUGHTS

Concurrency control is hard to get correct and
perform well.

Evaluation did not consider HTAP workloads.

42

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

NEXT CLASS

Isolation Levels
Modern MVCC

43

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

	DATABASE SYSTEMS
	TODAY’S AGENDA
	TRANSACTION DEFINITION
	TRANSACTION DEFINITION
	ACTION CLASSIFICATION
	TRANSACTION MODELS
	FLAT TRANSACTIONS
	LIMITATIONS OF FLAT TRANSACTIONS
	LIMITATIONS OF FLAT TRANSACTIONS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION CHAINS
	TRANSACTION CHAINS
	TRANSACTION CHAINS
	TRANSACTION CHAINS
	TRANSACTION CHAINS
	NESTED TRANSACTIONS
	NESTED TRANSACTIONS
	NESTED TRANSACTIONS
	NESTED TRANSACTIONS
	NESTED TRANSACTIONS
	NESTED TRANSACTIONS
	NESTED TRANSACTIONS
	NESTED TRANSACTIONS
	NESTED TRANSACTIONS
	NESTED TRANSACTIONS
	NESTED TRANSACTIONS
	NESTED TRANSACTIONS
	NESTED TRANSACTIONS
	NESTED TRANSACTIONS
	NESTED TRANSACTIONS
	NESTED TRANSACTIONS
	NESTED TRANSACTIONS
	NESTED TRANSACTIONS
	NESTED TRANSACTIONS
	BULK UPDATE PROBLEM
	COMPENSATING TRANSACTIONS
	SAGA TRANSACTIONS
	SAGA TRANSACTIONS
	SAGA TRANSACTIONS
	SAGA TRANSACTIONS
	SAGA TRANSACTIONS
	SAGA TRANSACTIONS
	SAGA TRANSACTIONS
	SAGA TRANSACTIONS
	CONCURRENCY CONTROL
	TXN INTERNAL STATE
	CONCURRENCY CONTROL SCHEMES
	TWO-PHASE LOCKING
	TWO-PHASE LOCKING
	TWO-PHASE LOCKING
	TWO-PHASE LOCKING
	TWO-PHASE LOCKING
	TWO-PHASE LOCKING
	TWO-PHASE LOCKING
	TWO-PHASE LOCKING
	TWO-PHASE LOCKING
	TWO-PHASE LOCKING
	TWO-PHASE LOCKING
	TWO-PHASE LOCKING
	TWO-PHASE LOCKING
	TWO-PHASE LOCKING
	TWO-PHASE LOCKING
	TIMESTAMP ORDERING
	TIMESTAMP ORDERING
	TIMESTAMP ORDERING
	TIMESTAMP ORDERING
	TIMESTAMP ORDERING
	TIMESTAMP ORDERING
	TIMESTAMP ORDERING
	TIMESTAMP ORDERING
	TIMESTAMP ORDERING
	TIMESTAMP ORDERING
	TIMESTAMP ORDERING
	TIMESTAMP ORDERING
	TIMESTAMP ORDERING
	TIMESTAMP ORDERING
	TIMESTAMP ORDERING
	CONCURRENCY CONTROL SCHEMES
	CONCURRENCY CONTROL SCHEMES
	CONCURRENCY CONTROL SCHEMES
	CONCURRENCY CONTROL SCHEMES
	CONCURRENCY CONTROL SCHEMES
	CONCURRENCY CONTROL SCHEMES
	CONCURRENCY CONTROL SCHEMES
	1000-CORE CPU SIMULATOR
	TARGET WORKLOAD
	READ-ONLY WORKLOAD
	READ-ONLY WORKLOAD
	READ-ONLY WORKLOAD
	READ-ONLY WORKLOAD
	WRITE-INTENSIVE / MEDIUM-CONTENTION
	WRITE-INTENSIVE / MEDIUM-CONTENTION
	WRITE-INTENSIVE / MEDIUM-CONTENTION
	WRITE-INTENSIVE / MEDIUM-CONTENTION
	WRITE-INTENSIVE / HIGH-CONTENTION
	WRITE-INTENSIVE / HIGH-CONTENTION
	WRITE-INTENSIVE / HIGH-CONTENTION
	WRITE-INTENSIVE / HIGH-CONTENTION
	WRITE-INTENSIVE / HIGH-CONTENTION
	WRITE-INTENSIVE / HIGH-CONTENTION
	WRITE-INTENSIVE / HIGH-CONTENTION
	WRITE-INTENSIVE / HIGH-CONTENTION
	BOTTLENECKS
	LOCK THRASHING
	LOCK THRASHING
	LOCK THRASHING
	LOCK THRASHING
	LOCK THRASHING
	TIMESTAMP ALLOCATION
	TIMESTAMP ALLOCATION
	MEMORY ALLOCATIONS
	PARTITION-LEVEL LOCKING
	READ-ONLY WORKLOAD
	MULTI-PARTITION WORKLOADS
	PARTING THOUGHTS
	NEXT CLASS

