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TRANSACTION DEFINITION

A txn is a sequence of actions that are executed
on a shared database to perform some higher-
level function.

Txns are the basic unit of change in the DBMS.
No partial txns are allowed.
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ACTION CLASSIFICATION

Unprotected Actions
— These lack all of the ACID properties except for
consistency. Their effects cannot be depended upon.

Protected Actions
— These do not externalize their results before they are
completely done. Fully ACID.

Real Actions
— These affect the physical world in a way that is hard
or impossible to reverse.
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TRANSACTION MODELS

Flat Txns

Flat Txns + Savepoints
Chained Txns

Nested Txns

Saga Txns
Compensating Txns
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FLAT TRANSACTIONS

Standard txn model that starts with BEGIN,
followed by one or more actions, and then
completed with either COMMIT or ROLLBACK.

Txn #1 Txn #2

BEGIN

READ(A) READ(A)

WRITE(B)

WRITE(B)

COMMIT ROLLBACK
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LIMITATIONS OF FLAT TRANSACTIONS

The application can only rollback the entire
txn (i.e., no partial rollbacks).

All of a txn’s work is lost is the DBMS fails
before that txn finishes.

Each txn takes place at a single point in time
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LIMITATIONS OF FLAT TRANSACTIONS

Multi-Stage Planning
— An application needs to make multiple reservations.
— All the reservations need to occur or none of them.

Bulk Updates

— An application needs to update one billion records.

— This txn could take hours to complete and therefore
the DBMS is exposed to losing all of its work for any
failure or conflict.
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TRANSACTION SAVEPOINTS

Save the current state of processing for the txn
and provide a handle for the application to
refer to that savepoint.

The application can control the state of the txn

through these checkpoints:

— ROLLBACK - Revert all changes back to the state of
the DB at the savepoint.

— RELEASE - Destroys a savepoint previously defined
in the txn.
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TRANSACTION SAVEPOINTS

Txn #1

WRITE(A)
SAVEPOINT 1
WRITE(B)
ROLLBACK TO 1
WRITE(C)
COMMIT
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TRANSACTION SAVEPOINTS

Txn #1

WRITE(A)
SAVEPOINT 1

WRITE(B)
ROLLBACK TO 1

WRITE(C)

COMMIT
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TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

WRITE(A)
SAVEPOINT 1

WRITE(B)
ROLLBACK TO 1

WRITE(C)

COMMIT
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TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

SAVEPOINT 1
WRITE(B)
ROLLBACK TO 1
WRITE(C)
COMMIT

I_
__WRITE(B)
ROLLBACK TO 1
__COMMIT
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TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

SAVEPOINT 1
WRITE(B)
ROLLBACK TO 1
WRITE(C)
COMMIT
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TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

WRITE(A) A

WRITE(B)
ROLLBACK TO 1
WRITE(C)

|_
__WRITE(B)
ROLLBACK TO 1
| COMMIT

COMMIT
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TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

WRITE(A) A

WRITE(B)
ROLLBACK TO 1
WRITE(C)

Savepoint#2

|_
__WRITE(B)
ROLLBACK TO 1
| COMMIT

COMMIT
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TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

WRITE(A) A

SAVEPOINT 1

Savepoint#2

ROLLBACK TO 1
WRITE(C)

i
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COMMIT
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TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

WRITE(A) A

SAVEPOINT 1

Savepoint#2

ROLLBACK TO 1
WRITE(C)
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COMMIT
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TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

WRITE(A) A

int#
SAVEPOINT 1 Savepoint#2

WRITE (B) B |

ROLLBACK TO 1
WRITE(C)
COMMIT

& @ CARNEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

10

TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

WRITE(A) A

SAVEPOINT 1

Savepoint#2

WRITE(B)
ROLLBACK TO 1
WRITE(C)
COMMIT

X
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TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

WRITE(A) “

int#
SAVEPOINT 1 Savepoint#2

WRITE(B) »
ROLLBACK TO 1 Savepoint#3

WRITE(C)
COMMIT
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TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

___BEGIN __
T
o o7
™

WRITE(A
(2) “ Savepoint#2

SAVEPOINT 1
WRITE(B) »
ROLLBACK TO 1 Savepoint#3

COMMIT
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TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

WRITE(A
(2) “ Savepoint#2

SAVEPOINT 1
WRITE(B) »
ROLLBACK TO 1 Savepoint#3

COMMIT

il

& @ CARNEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

10

TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

___BEGIN __
__WRITE(A)
_SAVEPOINT 1 _
__WRITE(B)
| WRITE(C) |

WRITE(A
(2) “ Savepoint#2

SAVEPOINT 1
WRITE(B) »
ROLLBACK TO 1 Savepoint#3

WRITE(C)
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TRANSACTION SAVEPOINTS

Txn #1

WRITE(A)
SAVEPOINT 1
WRITE(B)
SAVEPOINT 2
WRITE(C)
SAVEPOINT 3
RELEASE 2
WRITE (D)
ROLLBACK TO 3
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TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

WRITE(A)
SAVEPOINT 1
WRITE(B)
SAVEPOINT 2
WRITE(C)
SAVEPOINT 3
RELEASE 2
WRITE (D)
ROLLBACK TO 3

i
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TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

SAVEPOINT 1
WRITE(B)
SAVEPOINT 2
WRITE(C)
SAVEPOINT 3
RELEASE 2
WRITE (D)
ROLLBACK TO 3

N
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TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

WRITE(A) A

WRITE(B)
SAVEPOINT 2
WRITE(C)
SAVEPOINT 3
RELEASE 2
WRITE (D)
ROLLBACK TO 3

Savepoint#2

Kt
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TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

WRITE(A) A

SAVEPOINT 1

Savepoint#2

SAVEPOINT 2
WRITE(C)
SAVEPOINT 3
RELEASE 2
WRITE (D)
ROLLBACK TO 3

Hie
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TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

WRITE(A) A

int#
SAVEPOINT 1 Savepoint#2

WRITE (B) B |

WRITE(C)
SAVEPOINT 3
RELEASE 2
WRITE (D)
ROLLBACK TO 3
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TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

WRITE(A) A

int#
SAVEPOINT 1 Savepoint#2

WRITE (B) B |

WRITE(C)
SAVEPOINT 3

RELEASE 2

WRITE (D)
ROLLBACK TO 3

Savepoint#3
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TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

WRITE(A) A

int#
SAVEPOINT 1 Savepoint#2

WRITE (B) B |

SAVEPOINT 2

Savepoint#3

SAVEPOINT 3
RELEASE 2
WRITE (D)

ROLLBACK TO 3
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TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

WRITE(A) A

int#
SAVEPOINT 1 Savepoint#2

WRITE (B) B |

SAVEPOINT 2
WRITE(C)

Savepoint#3

Savepoint#4

RELEASE 2

WRITE (D)
ROLLBACK TO 3
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TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

WRITE(A) A

int#
SAVEPOINT 1 Savepoint#2

WRITE (B) B |

SAVEPOINT 2
WRITE(C)

Savepoint#3

SAVEPOINT 3 Savepoint#4

WRITE (D)
ROLLBACK TO 3
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TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

WRITE(A) A

SAVEPOINT 1

WRITE(B)
SAVEPOINT 2

WRITE(C)
SAVEPOINT 3

WRITE (D)
ROLLBACK TO 3

L
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Savepoint#3

11

Savepoint#4
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TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

WRITE(A) A

SAVEPOINT 1

WRITE (B) B |

SAVEPOINT 2
WRITE(C)

Savepoint#3

SAVEPOINT 3 Savepoint#4

RELEASE 2
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TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

WRITE(A) A

SAVEPOINT 1
WRITE (B) B |
SAVEPOINT 2

WRITE(C)

SAVEPOINT 3 Savepoint#4
RELEASE 2

WRITE(D) n

ROLLBACK TO 3

Savepoint#3

[liig
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TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

WRITE(A) A

SAVEPOINT 1

WRITE (B) B |

SAVEPOINT 2
WRITE(C)

Savepoint#3

SAVEPOINT 3 Savepoint#4

RELEASE 2

WRITE(D) n

ROLLBACK TO 3 Y& s
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TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

WRITE(A) A

SAVEPOINT 1

WRITE (B) ﬂ
Savepoint#3

SAVEPOINT 2
WRITE(C)

SAVEPOINT 3 Savepoint#4

RELEASE 2

WRITE(D) n

ROLLBACK TO 3 Y& s
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TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

WRITE(A) A

SAVEPOINT 1

WRITE (B) ﬂ
Savepbint#3

SAVEPOINT 2
WRITE(C)

SAVEPOINT 3 Savepoint#4

RELEASE 2

WRITE(D) n

ROLLBACK TO 3 Y& s
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TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

WRITE(A) A

SAVEPOINT 1

WRITE (B) ﬂ ]

SAVEPOINT 2
WRITE(C)

SAVEPOINT 3 Savepoint#4

RELEASE 2

WRITE(D) n

ROLLBACK TO 3 Y& s
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TRANSACTION CHAINS

Multiple txns executed one after another.
Combined COMMIT / BEGIN operation is atomic.

— No other txn can change the state of the database as
seen by the second txn from the time that the first txn
commits and the second txn begins.

Differences with savepoints:
e COMMIT allows the DBMS to free locks.
» Cannot rollback previous txns in chain.

12

CMU 15-721 (Spring 2016)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

13

TRANSACTION CHAINS

Txn #1

WRITE(A)
COMMIT

Txn #2

WRITE(B)
COMMIT

Txn #3

WRITE(C)
ROLLBACK
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TRANSACTION CHAINS

Txn #1

WRITE(A)
COMMIT

Txn #2

WRITE(B)
COMMIT

Txn #3

WRITE(C)
ROLLBACK
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TRANSACTION CHAINS

Txn #1
"~ BEGIN |
T commIT [xn #2
BN™REGIN |
,
[xn #3

WRITE(C)
ROLLBACK
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TRANSACTION CHAINS

Txn #1
"~ BEGIN |
T commIT [xn #2
BN™REGIN |

Fen 43
_ COMMIT gy

WRITE(C)
ROLLBACK
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NESTED TRANSACTIONS

Savepoints organize a transaction as a
sequence of actions that can be rolled back

individually.

Nested txns form a hierarchy of work.
— The outcome of a child txn depends on the outcome
of its parent txn.

14
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NESTED TRANSACTIONS

Txn #1

WRITE(A)

WRITE(B)

WRITE(C)
COMMIT
WRITE(D)
ROLLBACK
COMMIT
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NESTED TRANSACTIONS
Txn #1
WRITE(A)
WRITE(B)
WRITE(C)
COMMIT

WRITE(D)
ROLLBACK
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NESTED TRANSACTIONS

Txn #1

WRITE(A)

WRITE(B)

WRITE(C)
COMMIT
WRITE(D)
ROLLBACK
COMMIT
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NESTED TRANSACTIONS

Txn #1

WRITE(A)

WRITE(B)

WRITE(C)
COMMIT
WRITE(D)
ROLLBACK
COMMIT
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NESTED TRANSACTIONS

Txn #1

WRITE(A)

»

WRITE(B)

WRITE(C)
COMMIT
WRITE(D)
ROLLBACK
COMMIT
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NESTED TRANSACTIONS

Txn #1

WRITE(A)

\ 4

WRITE(B)

WRITE(C)
COMMIT
WRITE(D)
ROLLBACK
COMMIT
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NESTED TRANSACTIONS

Txn #1

WRITE(B)

WRITE(C)
COMMIT
WRITE(D)
ROLLBACK
COMMIT
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NESTED TRANSACTIONS

Txn #1

Sub-Txn #1.1
| BEGIN

WRITE(C)

COMMIT
WRITE (D)
ROLLBACK

COMMIT
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NESTED TRANSACTIONS

Txn #1

WRITE(A)

COMMIT

»

Sub-Txn #1.1

WRITE(B)

WRITE(C)

COMMIT
WRITE (D)
ROLLBACK
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NESTED TRANSACTIONS

Txn #1

WRITE(A)

COMMIT

n

Sub-Txn #1.1

WRITE(B)

WRITE(C)

COMMIT
WRITE (D)
ROLLBACK
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NESTED TRANSACTIONS

Txn #1

WRITE(A)

COMMIT

n

Sub-Txn #1.1

WRITE(B)

WRITE(C)

COMMIT
WRITE (D)
ROLLBACK

Sub-Txn #1.1.1
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NESTED TRANSACTIONS

Txn #1

__BEGIN __
Sub-Txn #1.1
BEGIN o BEGIN
Sub-Txn #1.1.1

T BrGIN NNy
»

WRITE(D)
ROLLBACK

COMMIT
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NESTED TRANSACTIONS

Txn #1

Sub-Txn #1.1
| BEGIN  oemmeemd  BEGIN

WRITE (D)
ROLLBACK

COMMIT

Sub-Txn #1.1.1

WRITE(C)
COMMIT
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NESTED TRANSACTIONS

Txn #1

Sub-Txn #1.1
BEGIN gl BEGIN
Sub-Txn #1.1.1
BEGIN _ enel  BEGIN

WRITE(D)
ROLLBACK

COMMIT

o
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NESTED TRANSACTIONS

Txn #1

Sub-Txn #1.1
BEGIN o BEGIN

Sub-Txn #1.1.1
T ST

WRITE(C)
COMMIT
‘ WRITE(D)

ROLLBACK
COMMIT
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NESTED TRANSACTIONS

Txn #1

Sub-Txn #1.1
BEGIN o BEGIN

Sub-Txn #1.1.1
T ST

)
COMMIT
WRITE(D)

ROLLBACK

»

COMMIT

o
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NESTED TRANSACTIONS

Txn #1

Sub-Txn #1.1
BEGIN o BEGIN

Sub-Txn #1.1.1
T BrGIN NNy

)
COMMIT
WRITE(D)

ROLLBACK

»

COMMIT
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BULK UPDATE PROBLEM

These other txn models are nice, but they still
do not solve our bulk update problem.

Chained txns seems like the right idea but they
require the application to handle failures and

maintain it’s own state.
— Has to be able to reverse changes when things fail.
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COMPENSATING TRANSACTIONS

A special type of txn that is designed to
semantically reverse the effects of another
already committed txn.

Reversal has to be logical instead of physical.
— Example: Decrement a counter by one instead of
reverting to the original value.
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ARNEGIE M
TABASE

. SAGAS
% | SIGMOD, pp. 249-259, 2014.

ELLON
GROUP

SAGA TRANSACTIONS

A sequence of chained txns T,,...,T, and

compensating txns C,,...,C, ; where one of the
following is guaranteed:

— The txns will commit in the order
T1,...,Tn

— The txns will commit in the order

T, 5.y TjCjpo.e,C; (Where j <)
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SAGA TRANSACTIONS

Txn #2

Txn #1

WRITE(A+1)
COMMIT

Comp Txn #1

WRITE(A-1)

COMMIT

WRITE(B+1)
COMMIT

Comp Txn #2

WRITE(B-1)
COMMIT

Txn #3

WRITE(C+1)

Comp Txn #3

WRITE(C-1)
COMMIT
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SAGA TRANSACTIONS
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WRITE(A-1)

COMMIT

WRITE(B+1)
COMMIT

Comp Txn #2

WRITE(B-1)
COMMIT

Txn #3

WRITE(C+1)

Comp Txn #3

WRITE(C-1)
COMMIT

19

CMU 15-721 (Spring 2016)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

FQ CARNEGIE MELLON
&2 DATABASE GROUP

SAGA TRANSACTIONS
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—
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SAGA TRANSACTIONS

Txn #1 Txn #2 Txn #3
__ BEGIN ey BEGIN
WRITE (C+1)
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WRITE(B-1) WRITE(C-1)
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CONCURRENCY CONTROL

The protocol to allow txns to access a database
in a multi-programmed fashion while
preserving the illusion that each of them is

executing alone on a dedicated system.
— The goal is to have the effect of a group of txns on

the database’s state is equivalent to any serial
execution of all txns.

Provides Atomicity + Isolation in ACID
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TXN INTERNAL STATE

Undo Log Entries
— Stored in an in-memory data structure.
— Dropped on commit.

Redo Log Entries
— Append to the in-memory tail of WAL.
— Flushed to disk on commit.

Read/Write Set

— Depends on the concurrency control scheme.
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CONCURRENCY CONTROL SCHEMES

Two-Phase Locking (2PL)

— Assume txns will conflict so they must acquire locks
on elements before they are allowed to access them.

Timestamp Ordering (T/0)
— Assume that conflicts are rare so txns do not need to

acquire locks and instead check for conflicts at
commit time.
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TWO-PHASE LOCKING

Txn #1

N

Lq

WRITE(B) | UNLOCK(A) | UNLOCK(B)
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N
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TWO-PHASE LOCKING

Txn #1

Growing Phase

N

Lq

WRITE(B) | UNLOCK(A) | UNLOCK(B)
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TWO-PHASE LOCKING

Txn #1

7.
LOCK(A) READ(A) LOCK(B) WRITE(B) | UNLOCK(A) | UNLOCK(B)

Growing Phase Shrinking Phase
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TWO-PHASE LOCKING

Txn #1
TN B
LOCK(A) READ(A) LOCK(B) WRITE(B)

Txn #2

= | O
LOCK(B) WRITE(B) | LOCK(A)
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TWO-PHASE LOCKING

N

Lq

WRITE(B)

Txn #2

WRITE(A) | UNLOCK(A) | UNLOCK(B)
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TWO-PHASE LOCKING

Txn #1
E

Txn #2

= | O
LOCK(B) WRITE(B) | LOCK(A) | WRITE(A) | UNLOCK(A) | UNLOCK(B)
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WRITE(B)
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TWO-PHASE LOCKING

A @
LOCK(B) | WRITE(B)
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Txn #2
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TWO-PHASE LOCKING

Txn #1

LOCK(A)
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LocK(B) | WRITE(B) | LOcK(A) | WRITE(A) | UNLOCK(A) | UNLOCK(B)
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TWO-PHASE LOCKING

UNLOCK(B)
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TWO-PHASE LOCKING

UNLOCK(A) | UNLOCK(B)
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TWO-PHASE LOCKING

Deadlock Detection

— Each txn maintains a queue of the txns that hold the
locks that it waiting for.

— A separate thread checks these queues for deadlocks.

— If deadlock found, use a heuristic to decide what txn
to kill in order to break deadlock.

Deadlock Prevention

— Check whether another txn already holds a lock
when another txn requests it.

— If lock is not available, the txn will either (1) wait, (2)
commit suicide, or (3) kill the other txn.
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TIMESTAMP ORDERING

Txn #1

N N
66 l' ® & o o l' o o o
READ(A) | WRITE(B) WRITE(A)
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TIMESTAMP ORDERING
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N N
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TIMESTAMP ORDERING

"-1
N >
65| R &
READ(A) WRITE(B) WRITE(A)

_ Read Write
Timestamp Timestamp

10001

Record

A 10000 10000
B 10000 10000
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TIMESTAMP ORDERING

READ(A) | WRITE(B)

WRITE(A)

Read Write

Record Timestamp Timestamp

A | 10000 | 10000
B 10000 | 10000
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TIMESTAMP ORDERING

READ(A) | WRITE(B)

WRITE(A)

Read Write

Record Timestamp Timestamp

A | 10001 | 10000
B 10000 | 10000
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TIMESTAMP ORDERING

READ(A) | WRITE(B)

WRITE(A)

Read Write

Record Timestamp Timestamp

A | 10001 | 10000
B 10000 | 10000
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TIMESTAMP ORDERING
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TIMESTAMP ORDERING

"-1

Record

10001

WRITE(A)

_ Read Write
Timestamp Timestamp

A 10001 10000
B 10000 10001

_c..—a CARNEGIE MELLON
&2 DATABASE GROUP

CMU 15-721 (Spring 2016)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

25

TIMESTAMP ORDERING

"-1

Record

10001

WRITE(A)

_ Read Write
Timestamp Timestamp

A 10001 10005
B 10000 10001

_c..—a CARNEGIE MELLON
&2 DATABASE GROUP

CMU 15-721 (Spring 2016)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

25

TIMESTAMP ORDERING

"-1
N >
6| @ @
READ(A) WRITE(B) WRITE(A)

_ Read Write
Timestamp Timestam-

10001

Record

_c..—a CARNEGIE MELLON
&2 DATABASE GROUP

CMU 15-721 (Spring 2016)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

25

TIMESTAMP ORDERING

"-1
N >
6| @ @
READ(A) WRITE(B) WRITE(A)

_ Read Write
Timestamp Timestam-

10001

Record

_c..—a CARNEGIE MELLON
&2 DATABASE GROUP

CMU 15-721 (Spring 2016)


http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

_s._a CARNEGIE MELLON
&2 DATABASE GROUP

26

TIMESTAMP ORDERING

Basic T/O
— Check for conflicts on each read/write.
— Copy tuples on each access to ensure repeatable reads.

Multi-Version Concurrency Control (MVCC)

— Create a new version of a tuple whenever a txn
modifies it. Use timestamps as version id.

— Check visibility on every read/write.

Optimistic Currency Control (OCC)
— Store all changes in private workspace.
— Check for conflicts at commit time and then merge.
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CONCURRENCY CONTROL SCHEMES
DL_DETECT 2PL w/ Deadlock Detection

NO_WAIT 2PL w/ Non-waiting Prevention
WAIT_DIE 2PL w/ Wait-and-Die Prevention
TIMESTAMP  Basic T/O Algorithm

MVCC Multi-Version T/0O

0OCC Optimistic Concurrency Control
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CONCURRENCY CONTROL SCHEMES

TIMESTAMP  Basic T/O Algorithm
MVCC Multi-Version T/0O

Optimistic Concurrency Control
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1000-CORE CPU SIMULATOR

DBx1000 Database System

— In-memory DBMS with pluggable lock manager.
— No network access, logging, or concurrent indexes

MIT Graphite CPU Simulator

— Single-socket, tile-based CPU.
— Shared L2 cache for groups of cores.
— Tiles communicate over 2D-mesh network.

—— | STARING INTO THE ABYSS: AN EVALUATION
OF CONCURRENCY CONTROL WITH ONE
THOUSAND CORES

VLDB, pp. 209-220, 2014,

Fﬁ CARNEGIE MELLON
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TARGET WORKLOAD

Yahoo! Cloud Serving Benchmark (YCSB)

— 20 million tuples
— Each tuple is 1KB (total database is ~20GB)

Each transactions reads/modifies 16 tuples.

Varying skew in transaction access patterns.

Serializable isolation level.
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READ-ONLY WORKLOAD
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WRITE-INTENSIVE / MEDIUM-CONTENTION
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WRITE-INTENSIVE / HIGH-CONTENTION
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WRITE-INTENSIVE / HIGH-CONTENTION
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WRITE-INTENSIVE / HIGH-CONTENTION
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BOTTLENECKS

Lock Thrashing
— DL_DETECT, WAIT_DIE

Timestamp Allocation
— All T/0 algorithms + WAIT_DIE

Memory Allocations
— OCC + MVCC
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LOCK THRASHING

Each txn waits longer to acquire locks, causing
other txn to wait longer to acquire locks.

Can measure this phenomenon by removing

deadlock detection/prevention overhead.
— Force txns to acquire locks in primary key order.
— Deadlocks are not possible.
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TIMESTAMP ALLOCATION

Mutex
— Worst option.

Atomic Addition

— Requires cache invalidation on write.

Batched Atomic Addition

— Needs a back-off mechanism to prevent fast burn.

Hardware Clock
— Not sure if it will exist in future CPUs.

Hardware Counter
— Not implemented in existing CPUs.
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TIMESTAMP ALLOCATION
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MEMORY ALLOCATIONS

Copying data on every read/write access slows
down the DBMS because of contention on the

memory controller.
— In-place updates and non-copying reads are not
affected as much.

Default libc malloc is slow. Never use it.
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PARTITION-LEVEL LOCKING

The database is split up into horizontal partitions:

— Each partition is assigned a single-threaded execution
engine that has exclusive access to its data.
— In-place updates.

Only one txn can execute at a time per partition.

— Order txns based on when they arrive at the DBMS.

— A txn acquires the lock for a partition when it has the
lowest timestamp.

— It is not allowed to access any partition that it does not
hold the lock for.
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READ-ONLY WORKLOAD
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MULTI-PARTITION WORKLOADS
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PARTING THOUGHTS

Concurrency control is hard to get correct and
perform well.

Evaluation did not consider HTAP workloads.
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NEXT CLASS

Isolation Levels
Modern MVCC
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