15-721

DATABASE
SYSTEMS

[[[[[[[[

Lecture #03 - Concurrency Control
Part |

Andy Pavlo / Carnegie Mellon University / Spring 2016

https://youtu.be/UU2bnUmdexs?t=3m

TODAY'S AGENDA

Transaction Models
Concurrency Control Overview
Many-Core Evaluation

& & CARMEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

o

TRANSACTION DEFINITION

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

TRANSACTION DEFINITION

A txn is a sequence of actions that are executed
on a shared database to perform some higher-
level function.

Txns are the basic unit of change in the DBMS.
No partial txns are allowed.

CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

_s._a CARNEGIE MELLON
&2 DATABASE GROUP

ACTION CLASSIFICATION

Unprotected Actions
— These lack all of the ACID properties except for
consistency. Their effects cannot be depended upon.

Protected Actions
— These do not externalize their results before they are
completely done. Fully ACID.

Real Actions
— These affect the physical world in a way that is hard
or impossible to reverse.

CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

o

TRANSACTION MODELS

Flat Txns

Flat Txns + Savepoints
Chained Txns

Nested Txns

Saga Txns
Compensating Txns

CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

FLAT TRANSACTIONS

Standard txn model that starts with BEGIN,
followed by one or more actions, and then
completed with either COMMIT or ROLLBACK.

Txn #1 Txn #2

BEGIN

READ(A) READ(A)

WRITE(B)

WRITE(B)

COMMIT ROLLBACK

§=.2 CARNEGIE MELLON .
= DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

o

LIMITATIONS OF FLAT TRANSACTIONS

The application can only rollback the entire
txn (i.e., no partial rollbacks).

All of a txn’s work is lost is the DBMS fails
before that txn finishes.

Each txn takes place at a single point in time

CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

o

LIMITATIONS OF FLAT TRANSACTIONS

Multi-Stage Planning
— An application needs to make multiple reservations.
— All the reservations need to occur or none of them.

Bulk Updates

— An application needs to update one billion records.

— This txn could take hours to complete and therefore
the DBMS is exposed to losing all of its work for any
failure or conflict.

CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

o

TRANSACTION SAVEPOINTS

Save the current state of processing for the txn
and provide a handle for the application to
refer to that savepoint.

The application can control the state of the txn

through these checkpoints:

— ROLLBACK - Revert all changes back to the state of
the DB at the savepoint.

— RELEASE - Destroys a savepoint previously defined
in the txn.

CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

10

TRANSACTION SAVEPOINTS

Txn #1

WRITE(A)
SAVEPOINT 1
WRITE(B)
ROLLBACK TO 1
WRITE(C)
COMMIT

& @ CARNEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

10

TRANSACTION SAVEPOINTS

Txn #1

WRITE(A)
SAVEPOINT 1

WRITE(B)
ROLLBACK TO 1

WRITE(C)

COMMIT

o

& @ CARNEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

10

TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

WRITE(A)
SAVEPOINT 1

WRITE(B)
ROLLBACK TO 1

WRITE(C)

COMMIT

o

& @ CARNEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

10

TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

SAVEPOINT 1
WRITE(B)
ROLLBACK TO 1
WRITE(C)
COMMIT

I_
__WRITE(B)
ROLLBACK TO 1
__COMMIT

& @ CARNEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

10

TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

SAVEPOINT 1
WRITE(B)
ROLLBACK TO 1
WRITE(C)
COMMIT

e
o o7
o

& @ CARNEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

10

TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

WRITE(A) A

WRITE(B)
ROLLBACK TO 1
WRITE(C)

|_
__WRITE(B)
ROLLBACK TO 1
| COMMIT

COMMIT

& @ CARNEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

10

TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

WRITE(A) A

WRITE(B)
ROLLBACK TO 1
WRITE(C)

Savepoint#2

|_
__WRITE(B)
ROLLBACK TO 1
| COMMIT

COMMIT

& @ CARNEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

10

TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

WRITE(A) A

SAVEPOINT 1

Savepoint#2

ROLLBACK TO 1
WRITE(C)

i
" e
o

COMMIT

& @ CARNEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

10

TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

WRITE(A) A

SAVEPOINT 1

Savepoint#2

ROLLBACK TO 1
WRITE(C)

i
" e
o

COMMIT

& @ CARNEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

10

TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

WRITE(A) A

int#
SAVEPOINT 1 Savepoint#2

WRITE (B) B |

ROLLBACK TO 1
WRITE(C)
COMMIT

& @ CARNEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

10

TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

WRITE(A) A

SAVEPOINT 1

Savepoint#2

WRITE(B)
ROLLBACK TO 1
WRITE(C)
COMMIT

X

& @ CARNEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

10

TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

WRITE(A) “

int#
SAVEPOINT 1 Savepoint#2

WRITE(B) »
ROLLBACK TO 1 Savepoint#3

WRITE(C)
COMMIT

& @ CARNEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

10

TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

___BEGIN __
T
o o7
™

WRITE(A
(2) “ Savepoint#2

SAVEPOINT 1
WRITE(B) »
ROLLBACK TO 1 Savepoint#3

COMMIT

& @ CARNEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

10

TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

WRITE(A
(2) “ Savepoint#2

SAVEPOINT 1
WRITE(B) »
ROLLBACK TO 1 Savepoint#3

COMMIT

il

& @ CARNEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

10

TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

___BEGIN __
__WRITE(A)
_SAVEPOINT 1 _
__WRITE(B)
| WRITE(C) |

WRITE(A
(2) “ Savepoint#2

SAVEPOINT 1
WRITE(B) »
ROLLBACK TO 1 Savepoint#3

WRITE(C)

& @ CARNEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

11

TRANSACTION SAVEPOINTS

Txn #1

WRITE(A)
SAVEPOINT 1
WRITE(B)
SAVEPOINT 2
WRITE(C)
SAVEPOINT 3
RELEASE 2
WRITE (D)
ROLLBACK TO 3

& @ CARNEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

11

TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

WRITE(A)
SAVEPOINT 1
WRITE(B)
SAVEPOINT 2
WRITE(C)
SAVEPOINT 3
RELEASE 2
WRITE (D)
ROLLBACK TO 3

i

& @ CARNEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

11

TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

SAVEPOINT 1
WRITE(B)
SAVEPOINT 2
WRITE(C)
SAVEPOINT 3
RELEASE 2
WRITE (D)
ROLLBACK TO 3

N

& @ CARNEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

11

TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

WRITE(A) A

WRITE(B)
SAVEPOINT 2
WRITE(C)
SAVEPOINT 3
RELEASE 2
WRITE (D)
ROLLBACK TO 3

Savepoint#2

Kt

& @ CARNEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

11

TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

WRITE(A) A

SAVEPOINT 1

Savepoint#2

SAVEPOINT 2
WRITE(C)
SAVEPOINT 3
RELEASE 2
WRITE (D)
ROLLBACK TO 3

Hie

& @ CARNEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

11

TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

WRITE(A) A

int#
SAVEPOINT 1 Savepoint#2

WRITE (B) B |

WRITE(C)
SAVEPOINT 3
RELEASE 2
WRITE (D)
ROLLBACK TO 3

K

& @ CARNEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

11

TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

WRITE(A) A

int#
SAVEPOINT 1 Savepoint#2

WRITE (B) B |

WRITE(C)
SAVEPOINT 3

RELEASE 2

WRITE (D)
ROLLBACK TO 3

Savepoint#3

K

& @ CARNEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

11

TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

WRITE(A) A

int#
SAVEPOINT 1 Savepoint#2

WRITE (B) B |

SAVEPOINT 2

Savepoint#3

SAVEPOINT 3
RELEASE 2
WRITE (D)

ROLLBACK TO 3

& @ CARNEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

11

TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

WRITE(A) A

int#
SAVEPOINT 1 Savepoint#2

WRITE (B) B |

SAVEPOINT 2
WRITE(C)

Savepoint#3

Savepoint#4

RELEASE 2

WRITE (D)
ROLLBACK TO 3

i

& @ CARNEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

11

TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

WRITE(A) A

int#
SAVEPOINT 1 Savepoint#2

WRITE (B) B |

SAVEPOINT 2
WRITE(C)

Savepoint#3

SAVEPOINT 3 Savepoint#4

WRITE (D)
ROLLBACK TO 3

L

& @ CARNEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

WRITE(A) A

SAVEPOINT 1

WRITE(B)
SAVEPOINT 2

WRITE(C)
SAVEPOINT 3

WRITE (D)
ROLLBACK TO 3

L

Fﬁ CARNEGIE MELLON
&2 DATABASE GROUP

Savepoint#3

11

Savepoint#4

CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

11

TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

WRITE(A) A

SAVEPOINT 1

WRITE (B) B |

SAVEPOINT 2
WRITE(C)

Savepoint#3

SAVEPOINT 3 Savepoint#4

RELEASE 2

CMU 15-721 (Spring 2016)

Jin

ROLLBACK TO 3

Fﬁ CARNEGIE MELLON
&2 DATABASE GROUP

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

11

TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

WRITE(A) A

SAVEPOINT 1
WRITE (B) B |
SAVEPOINT 2

WRITE(C)

SAVEPOINT 3 Savepoint#4
RELEASE 2

WRITE(D) n

ROLLBACK TO 3

Savepoint#3

[liig

& @ CARNEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

11

TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

WRITE(A) A

SAVEPOINT 1

WRITE (B) B |

SAVEPOINT 2
WRITE(C)

Savepoint#3

SAVEPOINT 3 Savepoint#4

RELEASE 2

WRITE(D) n

ROLLBACK TO 3 Y& s

i

& @ CARNEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

11

TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

WRITE(A) A

SAVEPOINT 1

WRITE (B) ﬂ
Savepoint#3

SAVEPOINT 2
WRITE(C)

SAVEPOINT 3 Savepoint#4

RELEASE 2

WRITE(D) n

ROLLBACK TO 3 Y& s

[l

& @ CARNEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

11

TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

WRITE(A) A

SAVEPOINT 1

WRITE (B) ﬂ
Savepbint#3

SAVEPOINT 2
WRITE(C)

SAVEPOINT 3 Savepoint#4

RELEASE 2

WRITE(D) n

ROLLBACK TO 3 Y& s

[l

& @ CARNEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

11

TRANSACTION SAVEPOINTS

Txn #1 Savepoint#1

WRITE(A) A

SAVEPOINT 1

WRITE (B) ﬂ]

SAVEPOINT 2
WRITE(C)

SAVEPOINT 3 Savepoint#4

RELEASE 2

WRITE(D) n

ROLLBACK TO 3 Y& s

[l

& @ CARNEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

o

TRANSACTION CHAINS

Multiple txns executed one after another.
Combined COMMIT / BEGIN operation is atomic.

— No other txn can change the state of the database as
seen by the second txn from the time that the first txn
commits and the second txn begins.

Differences with savepoints:
e COMMIT allows the DBMS to free locks.
» Cannot rollback previous txns in chain.

12

CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

13

TRANSACTION CHAINS

Txn #1

WRITE(A)
COMMIT

Txn #2

WRITE(B)
COMMIT

Txn #3

WRITE(C)
ROLLBACK

S @ CARNEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

13

TRANSACTION CHAINS

Txn #1

WRITE(A)
COMMIT

Txn #2

WRITE(B)
COMMIT

Txn #3

WRITE(C)
ROLLBACK

S @ CARNEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

_s._a CARNEGIE MELLON
&2 DATABASE GROUP

TRANSACTION CHAINS

Txn #1
"~ BEGIN |
T commIT [xn #2
BN™REGIN |
,
[xn #3

WRITE(C)
ROLLBACK

13

CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

_s._a CARNEGIE MELLON
&2 DATABASE GROUP

TRANSACTION CHAINS

Txn #1
"~ BEGIN |
T commIT [xn #2
BN™REGIN |

Fen 43
_ COMMIT gy

WRITE(C)
ROLLBACK

13

CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

o

NESTED TRANSACTIONS

Savepoints organize a transaction as a
sequence of actions that can be rolled back

individually.

Nested txns form a hierarchy of work.
— The outcome of a child txn depends on the outcome
of its parent txn.

14

CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

15

NESTED TRANSACTIONS

Txn #1

WRITE(A)

WRITE(B)

WRITE(C)
COMMIT
WRITE(D)
ROLLBACK
COMMIT

& & CARMEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

15

NESTED TRANSACTIONS
Txn #1
WRITE(A)
WRITE(B)
WRITE(C)
COMMIT

WRITE(D)
ROLLBACK

& & CARMEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

15

NESTED TRANSACTIONS

Txn #1

WRITE(A)

WRITE(B)

WRITE(C)
COMMIT
WRITE(D)
ROLLBACK
COMMIT

& & CARMEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

15

NESTED TRANSACTIONS

Txn #1

WRITE(A)

WRITE(B)

WRITE(C)
COMMIT
WRITE(D)
ROLLBACK
COMMIT

& & CARMEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

15

NESTED TRANSACTIONS

Txn #1

WRITE(A)

»

WRITE(B)

WRITE(C)
COMMIT
WRITE(D)
ROLLBACK
COMMIT

& & CARMEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

15

NESTED TRANSACTIONS

Txn #1

WRITE(A)

\ 4

WRITE(B)

WRITE(C)
COMMIT
WRITE(D)
ROLLBACK
COMMIT

& & CARMEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

o

\ 4

NESTED TRANSACTIONS

Txn #1

WRITE(B)

WRITE(C)
COMMIT
WRITE(D)
ROLLBACK
COMMIT

15

CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

o

NESTED TRANSACTIONS

Txn #1

Sub-Txn #1.1
| BEGIN

WRITE(C)

COMMIT
WRITE (D)
ROLLBACK

COMMIT

15

CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

o

NESTED TRANSACTIONS

Txn #1

WRITE(A)

COMMIT

»

Sub-Txn #1.1

WRITE(B)

WRITE(C)

COMMIT
WRITE (D)
ROLLBACK

15

CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

o

NESTED TRANSACTIONS

Txn #1

WRITE(A)

COMMIT

n

Sub-Txn #1.1

WRITE(B)

WRITE(C)

COMMIT
WRITE (D)
ROLLBACK

15

CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

o

NESTED TRANSACTIONS

Txn #1

WRITE(A)

COMMIT

n

Sub-Txn #1.1

WRITE(B)

WRITE(C)

COMMIT
WRITE (D)
ROLLBACK

Sub-Txn #1.1.1

15

CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

o

NESTED TRANSACTIONS

Txn #1

__BEGIN __
Sub-Txn #1.1
BEGIN o BEGIN
Sub-Txn #1.1.1

T BrGIN NNy
»

WRITE(D)
ROLLBACK

COMMIT

15

CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

o

NESTED TRANSACTIONS

Txn #1

Sub-Txn #1.1
| BEGIN oemmeemd BEGIN

WRITE (D)
ROLLBACK

COMMIT

Sub-Txn #1.1.1

WRITE(C)
COMMIT

15

CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

NESTED TRANSACTIONS

Txn #1

Sub-Txn #1.1
BEGIN gl BEGIN
Sub-Txn #1.1.1
BEGIN _ enel BEGIN

WRITE(D)
ROLLBACK

COMMIT

o

15

CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

o

NESTED TRANSACTIONS

Txn #1

Sub-Txn #1.1
BEGIN o BEGIN

Sub-Txn #1.1.1
T ST

WRITE(C)
COMMIT
‘ WRITE(D)

ROLLBACK
COMMIT

15

CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

NESTED TRANSACTIONS

Txn #1

Sub-Txn #1.1
BEGIN o BEGIN

Sub-Txn #1.1.1
T ST

)
COMMIT
WRITE(D)

ROLLBACK

»

COMMIT

o

15

CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

NESTED TRANSACTIONS

Txn #1

Sub-Txn #1.1
BEGIN o BEGIN

Sub-Txn #1.1.1
T BrGIN NNy

)
COMMIT
WRITE(D)

ROLLBACK

»

COMMIT

15

CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

NESTED TRANSACTIONS

Txn #1

Sub-Txn #1.1
BEGIN o BEGIN

Sub-Txn #1.1.1
T BrGIN NNy

COMMIT
ROLLBACK
‘

15

CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

o

BULK UPDATE PROBLEM

These other txn models are nice, but they still
do not solve our bulk update problem.

Chained txns seems like the right idea but they
require the application to handle failures and

maintain it’s own state.
— Has to be able to reverse changes when things fail.

16

CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

o

COMPENSATING TRANSACTIONS

A special type of txn that is designed to
semantically reverse the effects of another
already committed txn.

Reversal has to be logical instead of physical.
— Example: Decrement a counter by one instead of
reverting to the original value.

17

CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

o

ARNEGIE M
TABASE

. SAGAS
% | SIGMOD, pp. 249-259, 2014.

ELLON
GROUP

SAGA TRANSACTIONS

A sequence of chained txns T,,...,T, and

compensating txns C,,...,C, ; where one of the
following is guaranteed:

— The txns will commit in the order
T1,...,Tn

— The txns will commit in the order

T, 5.y TjCjpo.e,C; (Where j <)

18

CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://dl.acm.org/citation.cfm?id=38742
http://dl.acm.org/citation.cfm?id=38742

FQ CARNEGIE MELLON
&2 DATABASE GROUP

SAGA TRANSACTIONS

Txn #2

Txn #1

WRITE(A+1)
COMMIT

Comp Txn #1

WRITE(A-1)

COMMIT

WRITE(B+1)
COMMIT

Comp Txn #2

WRITE(B-1)
COMMIT

Txn #3

WRITE(C+1)

Comp Txn #3

WRITE(C-1)
COMMIT

19

CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

FQ CARNEGIE MELLON
&2 DATABASE GROUP

SAGA TRANSACTIONS

Txn #2

Txn #1

WRITE(A+1)
COMMIT

Comp Txn #1

WRITE(A-1)

COMMIT

WRITE(B+1)
COMMIT

Comp Txn #2

WRITE(B-1)
COMMIT

Txn #3

WRITE(C+1)

Comp Txn #3

WRITE(C-1)
COMMIT

19

CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

FQ CARNEGIE MELLON
&2 DATABASE GROUP

SAGA TRANSACTIONS

Txn #1

WRITE(A+1)

Txn #2
—

WRITE(B+1)

Comp Txn #1

WRITE(A-1)

COMMIT

COMMIT

Comp Txn #2

WRITE(B-1)
COMMIT

Txn #3

WRITE(C+1)

Comp Txn #3

WRITE(C-1)
COMMIT

19

CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

SAGA TRANSACTIONS

Txn #1 Txn #2 Txn #3
__ BEGIN ey BEGIN
WRITE (C+1)
_ COMMIT ol COMMIT _ guuy
Comp Txn #1 Comp Txn #2 Comp Txn #3

WRITE(A-1)

WRITE(B-1) WRITE(C-1)
COMMIT COMMIT

COMMIT

19

CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

FQ CARNEGIE MELLON
&2 DATABASE GROUP

SAGA TRANSACTIONS

Txn #1 Txn #2 Txn #3
__ BEGIN ey BEGIN
WRITE (C+1)
_ COMMIT ol COMMIT _ guuy -’
2.
Comp Txn #1 Comp Txn #2 Comp Txn #3

WRITE(A-1)

WRITE(B-1) WRITE(C-1)
COMMIT COMMIT

COMMIT

19

CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

19

SAGA TRANSACTIONS

Txn #1 Txn #2 Txn #3
__ BEGIN ey BEGIN
WRITE (C+1)
_ COMMIT ol COMMIT _ guuy -’
.
Comp Txn #1 Comp Txn #2 Comp Txn #3

WRITE(A-1) WRITE(B-1)

COMMIT

WRITE(C-1)
COMMIT

i
i

COMMIT

CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

19

SAGA TRANSACTIONS

Txn #1 Txn #2 Txn #3
__ BEGIN ey BEGIN
WRITE (C+1)
_ COMMIT ol COMMIT _ guuy -’
.
Comp Txn #1 Comp Txn #2 Comp Txn #3

WRITE(A-1) WRITE(B-1)

COMMIT

WRITE(C-1)
COMMIT

I
i

COMMIT

CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

o

CONCURRENCY CONTROL

The protocol to allow txns to access a database
in a multi-programmed fashion while
preserving the illusion that each of them is

executing alone on a dedicated system.
— The goal is to have the effect of a group of txns on

the database’s state is equivalent to any serial
execution of all txns.

Provides Atomicity + Isolation in ACID

20

CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

21

TXN INTERNAL STATE

Undo Log Entries
— Stored in an in-memory data structure.
— Dropped on commit.

Redo Log Entries
— Append to the in-memory tail of WAL.
— Flushed to disk on commit.

Read/Write Set

— Depends on the concurrency control scheme.

& & CARMEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

o

CONCURRENCY CONTROL SCHEMES

Two-Phase Locking (2PL)

— Assume txns will conflict so they must acquire locks
on elements before they are allowed to access them.

Timestamp Ordering (T/0)
— Assume that conflicts are rare so txns do not need to

acquire locks and instead check for conflicts at
commit time.

22

CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

23

TWO-PHASE LOCKING

Txn #1

N

Lq

WRITE(B) | UNLOCK(A) | UNLOCK(B)

& @ CARNEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

23

TWO-PHASE LOCKING

Txn #1

N

Lq

WRITE(B) | UNLOCK(A) | UNLOCK(B)

& @ CARNEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

23

TWO-PHASE LOCKING

Txn #1

N

Lq

WRITE(B) | UNLOCK(A) | UNLOCK(B)

& @ CARNEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

23

TWO-PHASE LOCKING

Txn #1

Growing Phase

N

Lq

WRITE(B) | UNLOCK(A) | UNLOCK(B)

& @ CARNEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

23

TWO-PHASE LOCKING

Txn #1

7.
LOCK(A) READ(A) LOCK(B) WRITE(B) | UNLOCK(A) | UNLOCK(B)

Growing Phase Shrinking Phase

& @ CARNEGIE MELLON)
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

23

TWO-PHASE LOCKING

Txn #1

N

Lq

WRITE(B) | UNLOCK(A) | UNLOCK(B)

& @ CARNEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

23

TWO-PHASE LOCKING

Txn #1
TN B
LOCK(A) READ(A) LOCK(B) WRITE(B)

Txn #2

= | O
LOCK(B) WRITE(B) | LOCK(A)

ommse GROUP CMU 15-721 (Spring 2016)

WRITE(A) | UNLOCK(A) | UNLOCK(B)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

23

TWO-PHASE LOCKING

N

Lq

WRITE(B)

Txn #2

WRITE(A) | UNLOCK(A) | UNLOCK(B)

DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

23

TWO-PHASE LOCKING

Txn #1
E

Txn #2

= | O
LOCK(B) WRITE(B) | LOCK(A) | WRITE(A) | UNLOCK(A) | UNLOCK(B)

ommse GROUP CMU 15-721 (Spring 2016)

N

Lq

WRITE(B)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

23

TWO-PHASE LOCKING

A @
LOCK(B) | WRITE(B)

Txn #1

E

Txn #2

= | O
LOCK(B) WRITE(B) | LOCK(A) | WRITE(A) | UNLOCK(A) | UNLOCK(B)

ommse GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

23

TWO-PHASE LOCKING

Txn #1

LOCK(A)

Txn #2

LocK(B) | WRITE(B) | LOcK(A) | WRITE(A) | UNLOCK(A) | UNLOCK(B)

& @ CARNEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

23

TWO-PHASE LOCKING

Txn #1

LOCK(A)

Txn #2

LocK(B) | WRITE(B) | LOcK(A) | WRITE(A) | UNLOCK(A) | UNLOCK(B)

& @ CARNEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

23

TWO-PHASE LOCKING

UNLOCK(B)

& @ CARNEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

23

TWO-PHASE LOCKING

UNLOCK(A) | UNLOCK(B)

& & CARMEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

o

TWO-PHASE LOCKING

Deadlock Detection

— Each txn maintains a queue of the txns that hold the
locks that it waiting for.

— A separate thread checks these queues for deadlocks.

— If deadlock found, use a heuristic to decide what txn
to kill in order to break deadlock.

Deadlock Prevention

— Check whether another txn already holds a lock
when another txn requests it.

— If lock is not available, the txn will either (1) wait, (2)
commit suicide, or (3) kill the other txn.

24

CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

25

TIMESTAMP ORDERING

Txn #1

N N
66 l' ® & o o l' o o o
READ(A) | WRITE(B) WRITE(A)

& @ CARNEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

25

TIMESTAMP ORDERING

#1
N N

66 l' ® & o o l' o o o
READ(A) | WRITE(B) WRITE(A)

& @ CARNEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

25

TIMESTAMP ORDERING

#1
N N

66 l' ® & o o l' o o o
READ(A) | WRITE(B) WRITE(A)

& @ CARNEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

25

TIMESTAMP ORDERING

"-1
N >
65| R &
READ(A) WRITE(B) WRITE(A)

_ Read Write
Timestamp Timestamp

10001

Record

A 10000 10000
B 10000 10000

_c..—a CARNEGIE MELLON
&2 DATABASE GROUP

CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

25

TIMESTAMP ORDERING

READ(A) | WRITE(B)

WRITE(A)

Read Write

Record Timestamp Timestamp

A | 10000 | 10000
B 10000 | 10000

&= @ CARNEGIE MELLON

L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

25

TIMESTAMP ORDERING

READ(A) | WRITE(B)

WRITE(A)

Read Write

Record Timestamp Timestamp

A | 10001 | 10000
B 10000 | 10000

&= @ CARNEGIE MELLON

L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

25

TIMESTAMP ORDERING

READ(A) | WRITE(B)

WRITE(A)

Read Write

Record Timestamp Timestamp

A | 10001 | 10000
B 10000 | 10000

&= @ CARNEGIE MELLON

L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

25

TIMESTAMP ORDERING
10001 |,

®. O e 6 0 o @\

READ (A - : WRITE(A)

BEGIN

10001 10000
10000 10000

W | >

&= @ CARNEGIE MELLON

L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

25

TIMESTAMP ORDERING
10001 |,

®. O e 6 0 o @\

READ (A - : WRITE(A)

BEGIN

10001 10000
10000 10001

W | >

&= @ CARNEGIE MELLON

L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

25

TIMESTAMP ORDERING

"-1
N >
65| R &
READ(A) WRITE(B) WRITE(A)

_ Read Write
Timestamp Timestamp

10001

Record

A 10001 10000
B 10000 10001

_c..—a CARNEGIE MELLON
&2 DATABASE GROUP

CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

25

TIMESTAMP ORDERING

"-1

Record

10001

WRITE(A)

_ Read Write
Timestamp Timestamp

A 10001 10000
B 10000 10001

_c..—a CARNEGIE MELLON
&2 DATABASE GROUP

CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

25

TIMESTAMP ORDERING

"-1

Record

10001

WRITE(A)

_ Read Write
Timestamp Timestamp

A 10001 10005
B 10000 10001

_c..—a CARNEGIE MELLON
&2 DATABASE GROUP

CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

25

TIMESTAMP ORDERING

"-1
N >
6| @ @
READ(A) WRITE(B) WRITE(A)

_ Read Write
Timestamp Timestam-

10001

Record

_c..—a CARNEGIE MELLON
&2 DATABASE GROUP

CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

25

TIMESTAMP ORDERING

"-1
N >
6| @ @
READ(A) WRITE(B) WRITE(A)

_ Read Write
Timestamp Timestam-

10001

Record

_c..—a CARNEGIE MELLON
&2 DATABASE GROUP

CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

_s._a CARNEGIE MELLON
&2 DATABASE GROUP

26

TIMESTAMP ORDERING

Basic T/O
— Check for conflicts on each read/write.
— Copy tuples on each access to ensure repeatable reads.

Multi-Version Concurrency Control (MVCC)

— Create a new version of a tuple whenever a txn
modifies it. Use timestamps as version id.

— Check visibility on every read/write.

Optimistic Currency Control (OCC)
— Store all changes in private workspace.
— Check for conflicts at commit time and then merge.

CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

27

CONCURRENCY CONTROL SCHEMES
DL_DETECT 2PL w/ Deadlock Detection

NO_WAIT 2PL w/ Non-waiting Prevention
WAIT_DIE 2PL w/ Wait-and-Die Prevention
TIMESTAMP Basic T/O Algorithm

MVCC Multi-Version T/0O

0OCC Optimistic Concurrency Control

o

ARMNEGIE MELLON A
DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

27

CONCURRENCY CONTROL SCHEMES
DL_DETECT 2PL w/ Deadlock Detection

NO_WAIT 2PL w/ Non-waiting Prevention
WAIT_DIE 2PL w/ Wait-and-Die Prevention

& @ CARNEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

27

CONCURRENCY CONTROL SCHEMES
DL_DETECT 2PL w/ Deadlock Detection

NO_WAIT 2PL w/ Non-waiting Prevention
WAIT_DIE 2PL w/ Wait-and-Die Prevention

Microsoft® . =
>QL Server i,SQLne 0
! SYB ASE CUBRID

CCCCC -721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

27

CONCURRENCY CONTROL SCHEMES
DL_DETECT 2PL w/ Deadlock Detection

NO_WAIT 2PL w/ Non-waiting Prevention
WAIT_DIE 2PL w/ Wait-and-Die Prevention
TIMESTAMP Basic T/O Algorithm

MVCC Multi-Version T/0O

0OCC Optimistic Concurrency Control

o

ARMNEGIE MELLON A
DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

27

CONCURRENCY CONTROL SCHEMES

TIMESTAMP Basic T/O Algorithm
MVCC Multi-Version T/0O

0OCC Optimistic Concurrency Control

& @ CARNEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

27

CONCURRENCY CONTROL SCHEMES

TIMESTAMP Basic T/O Algorithm
MVCC Multi-Version T/0O

Optimistic Concurrency Control
PostgreSQL ORACLE Inf orm Z'g v
\ 4 memsal deopdb MANA nuo

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

27

CONCURRENCY CONTROL SCHEMES
DL_DETECT 2PL w/ Deadlock Detection

NO_WAIT 2PL w/ Non-waiting Prevention
WAIT_DIE 2PL w/ Wait-and-Die Prevention
TIMESTAMP Basic T/O Algorithm

MVCC Multi-Version T/0O

0OCC Optimistic Concurrency Control

o

ARMNEGIE MELLON A
DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

1000-CORE CPU SIMULATOR

DBx1000 Database System

— In-memory DBMS with pluggable lock manager.
— No network access, logging, or concurrent indexes

MIT Graphite CPU Simulator

— Single-socket, tile-based CPU.
— Shared L2 cache for groups of cores.
— Tiles communicate over 2D-mesh network.

—— | STARING INTO THE ABYSS: AN EVALUATION
OF CONCURRENCY CONTROL WITH ONE
THOUSAND CORES

VLDB, pp. 209-220, 2014,

Fﬁ CARNEGIE MELLON
&2 DATABASE GROUP

28

CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
https://github.com/yxymit/DBx1000
http://groups.csail.mit.edu/carbon/?page_id=111
http://15721.courses.cs.cmu.edu/spring2016/papers/p209-yu.pdf
http://15721.courses.cs.cmu.edu/spring2016/papers/p209-yu.pdf

o

TARGET WORKLOAD

Yahoo! Cloud Serving Benchmark (YCSB)

— 20 million tuples
— Each tuple is 1KB (total database is ~20GB)

Each transactions reads/modifies 16 tuples.

Varying skew in transaction access patterns.

Serializable isolation level.

29

CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

30

READ-ONLY WORKLOAD

14 ‘ T T
ig o—e DL DETECT a=a TIMESTAMP
X 12 o= NO_WAIT e~ © MVCC
c oo WAIT DIE += + 0OCC
S 10} =
= gl
= 6 4
-
5 6f ~Z |
Q
§ 4 T e e
>
2 2
=
0

0 200 400 600 800 1000

Number of Cores

S @ CARNEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

30

READ-ONLY WORKLOAD

14 ‘ T T
ig o—e DL DETECT a=a TIMESTAMP
X 12F o= NO_WAIT e~ © MVCC
c oo WAIT DIE += + 0OCC
S 10} =
= gl
= 6 4
-
5 6} -~ |
Q
S 4 T e — o]
>
2 2
=
0

0 200 400 600 800 1000

Number of Cores

S @ CARNEGIE MELLON '
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

30

READ-ONLY WORKLOAD

14 ‘ . .
ig o—e DL DETECT a=a TIMESTAMP
X 12F o= NO_WAIT e~ © MVCC
c o-a WAIT DIE 4=+ OCC
S 10f =
= 8_ .-"'-‘. ——
E o~ . T
-
5 6} ~Z |
Q
S a4 T e
3
e 2
=
0

0 200 400 600 800 1000

Number of Cores

S @ CARNEGIE MELLON '
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

READ-ONLY WORKLOAD

14 ‘ T T
ig o—e DL DETECT a=a TIMESTAMP
X 12F o= NO_WAIT e~ © MVCC
c oo WAIT DIE += + 0OCC
S 10} =
= gl
= 6 4
-
5 6} -~ |
Q
§ 4 T e e
>
2 2
=
0

0 200 400

Number of Cores

e 2 CARNEGIE MELLON
&2 DATABASE GROUP

600

800 1000

30

.

CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

31

WRITE-INTENSIVE / MEDIUM-CONTENTION

4.5r{e—e DL DETECT a—a TIMESTAMP|— ' '
4.0l o~ NO wAIT o o MVCC a

o-a WAIT_DIE + 4 OCC
3.5F = 7

3.0F
2.5F

= = N
o U O
I

Throughput (Million txn/s)

o o
o U

0 200 400 600 800 1000
Number of Cores

S @ CARNEGIE MELLON '
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

31

WRITE-INTENSIVE / MEDIUM-CONTENTION

4.5r{e—e DL DETECT a—a TIMESTAMP|— ' '
4.0l o~ NO wAIT o o MVCC a

o-a WAIT_DIE + 4 OCC
3.5F = 7

3.0F
2.5F

= = N
o U O
I

Throughput (Million txn/s)

o o
o U

0 200 400 600 800 1000
Number of Cores

S @ CARNEGIE MELLON '
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

31

WRITE-INTENSIVE / MEDIUM-CONTENTION

4.5r{e—e DL DETECT a—a TIMESTAMP|— ' '
4.0l o~ NO wAIT o o MVCC a

o-a WAIT_DIE + 4 OCC
3.5F = 7

3.0F
2.5F

= = N
o U O
I

Throughput (Million txn/s)

o o
o U

0 200 400 600 800 1000
Number of Cores

S @ CARNEGIE MELLON '
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

31

WRITE-INTENSIVE / MEDIUM-CONTENTION

4.5r{e—e DL DETECT a—a TIMESTAMP|— ' '
4.0l o~ NO wAIT o o MVCC a

o-a WAIT_DIE + 4 OCC
3.5F = 7

3.0F
2.5F

= = N
o U O
I

Throughput (Million txn/s)

o o
o U

0 200 400 600 800 1000
Number of Cores

S @ CARNEGIE MELLON '
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

32

WRITE-INTENSIVE / HIGH-CONTENTION

= 0.25 . . o—e DL DETECT a—a TIMESTAMP
= -0 NO_WAIT oo MVCC
5 0.20F ° ¢ o |7 ® WATDE =+ OCC
c
Q
= 0.15
2
5 0.10
3 0.
L
S
3 0.05
| -
=
0.00 =

0 200 400 600 800 100-0
Number of Cores

S @ CARNEGIE MELLON '
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

32

WRITE-INTENSIVE / HIGH-CONTENTION

= 0.25 . . o—e DL DETECT a—a TIMESTAMP
= o0 NO_WAIT oo MVCC
5 0.20F " ° o |P® WATDE =+ OCC
c
Q
= 0.15
2
5 0.10
3 0.
L
S
3 0.05
| -
=
0.00 =

0 200 400 600 800 100-0
Number of Cores

S @ CARNEGIE MELLON '
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

32

WRITE-INTENSIVE / HIGH-CONTENTION

~ 0.25 . ' o—o DL DETECT a—a TIMESTAMP
Z ¢ NO_WAIT o o MVCC
5 020 ° ¢ o |P® WATDE =+ OCC
C
o
E
5
o
L
o
-]
o
=
0'000 200 400 600 800 100-0

Number of Cores

S @ CARNEGIE MELLON '
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

32

WRITE-INTENSIVE / HIGH-CONTENTION

~ 0.25 . ' o—o DL DETECT a—a TIMESTAMP
Z ¢ NO_WAIT o o MVCC
5 020 ° ¢ o |P® WATDE =+ OCC
C
o
E
5
o
L
o
-]
o
=
0'000 200 400 600 800 100-0

Number of Cores

S @ CARNEGIE MELLON '
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

32

WRITE-INTENSIVE / HIGH-CONTENTION

= 0.25 . . o—e DL DETECT a—a TIMESTAMP
= -0 NO_WAIT oo MVCC
5 0.20F ° ¢ o |7 ® WATDE =+ OCC
c
Q
= 0.15
2
5 0.10
3 0.
L
S
3 0.05
| -
=
0.00 =

0 200 400 600 800 100-0
Number of Cores

S @ CARNEGIE MELLON '
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

32

WRITE-INTENSIVE / HIGH-CONTENTION

= 0.25 . . o—e DL DETECT a—a TIMESTAMP
= o0 NO_WAIT oo MVCC
5 0.20F " ° o |P® WATDE =+ OCC
c
Q
= 0.15
2
5 0.10
3 0.
L
S
3 0.05
| -
L
-
0.00 e

0 200 400 600
Number of Cores

S @ CARNEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

32

WRITE-INTENSIVE / HIGH-CONTENTION

= 0.25 . . o—o DL _DETECT a—a TIMESTAMP
= o-¢ NO_WAIT o- 0 MVCC
5 0. o-a WAIT DIE += + OCC
S o
= 0. -
2
50
2 0.
i
g ————————
O 0- -—y -— - -
— -
=
0.00 =

0 200 400 600
Number of Cores

S @ CARNEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

32

WRITE-INTENSIVE / HIGH-CONTENTION

N N

0.8 \ \ \

EEE Useful Work
0.6\ N Abort

E=] Ts Alloc.
0.4 3 Index
0.2 = Wait

Il Manager

(,’C

P\\’ﬂ

N

S @ CARNEGIE MELLON '
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

33

BOTTLENECKS

Lock Thrashing
— DL_DETECT, WAIT_DIE

Timestamp Allocation
— All T/0 algorithms + WAIT_DIE

Memory Allocations
— OCC + MVCC

S @ CARNEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

o

34

LOCK THRASHING

Each txn waits longer to acquire locks, causing
other txn to wait longer to acquire locks.

Can measure this phenomenon by removing

deadlock detection/prevention overhead.
— Force txns to acquire locks in primary key order.
— Deadlocks are not possible.

CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

e 2 CARNEGIE MELLON
&2 DATABASE GROUP

Throughput (Million txn/s)

LOCK THRASHING

oo theta=0 O
= theta=0.6
o—0 theta=0.8

10° 10
Number of Cores

35

CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

35

LOCK THRASHING

— 1
© =
- oo theta=0 O]
ﬁ x> theta=0.6
(- o—0 theta=0.8
0
2 10°}
=
et
>
< 10"
m o
-}
(@]
| -
c
F L 1
0 1 2 3
10 10 10 10

Number of Cores

S @ CARNEGIE MELLON '
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

.
6.4 Performance 155

]

convens e wpdate Jock 1o @ wile fock. This lack conversian can’t lead to @ Jock conversian deadloek, hecalse

at mest one prapsacticn can fhave an updaie jock on the data jtem. (Two (ransactions must iy o gomvert the lock K

at the same vme 1© create i lock CumVErsien deadlock) Q0 (he ather tand, the penefit of s approach s thap an ’ I S H | N
uphate Jock does 108 block oiher (ranselions iyt vead without expecting 10 wpdate later on. The weakness 1# hat ‘ E
e request 19 convert the update Jock 1@ write jock may he delayed by ather read locks. 1 large numbe of data

items are read and anly a few of them are updated, the wradestf i worthwhite. THis approach is used in Mierasaft

0L Server SQL Serves algo allows wpdate ks o Be obined in W GELECT (i pead) staneinent. but in 1his

case, it will not downgrade the wpdate focks 1o vead lncks, sinee it Aoesn’t know when it is safe 1@ dir 50

Lock Thrashing

By reducing the frequency of lock conversion Qeadlocks, we Tave dispensed with deadlock a5 @ majer perfors L .

manee eensider i, S0 We are jeft with blocking situations. Blocking affects pesforatance in a rather dramatic
way. Unt {nck usage reaches 8 garuration paitt it introduces anly modest dcl:zys——signilicunl, bt ot & ser-
ons probleim. Al soime poink when too many 1 Lons Tequest Jocks. a large aumber of \parsacions sul- r .

denly becomie tacked. and few ramsactions G mioke Progress. Thus, {ransaction iheoughpul SOPS growing. T
Surprisinglys if enought ransaclions 4 initiated, throw ghpnt actunlly decreases. This is calted lack thrashing

(see Figurs 6.71. The main issuc in focking pecformance i to maximiEe theonghput without reaching the point O

a
=t

where thrashing DECLTE,

Dme way © wndersiond Jock thrashing 16 1o consider (he effect of slowly ncreasing the {ransaction Toad,
which is measured bY fhe pumbes of active transactions. when (he system is idle, the first ransaction 16 U0

cannnt Block due 10 locks, hecaust it's the only one requesting {ocks. As the surther of activ transactions N
EIOWE, cach successve LransRTkioT has a higher pmhub’\h\}- of breoming blacked due 2 \runsactions already
cyaning. Whet fhe puinber of active fransaclions High eno ugh, the next (ransaetion e started Bas virmally
o chanee of running 1@ completion without plocking for some lack. Worse. it pmhnbly will get some locks
hefore encauntering One that biocks it and these locks contribute e e Jikelihood that other active ransacs
Jipns will heeomie blocked. S0, not only does iL ool contribute 10 increased \hroughput, but by geiting soUC
Jocks that hlock other (ransuelions. it netuadly reduces roughput: This leads & thrashing, where nerensing
he workload decreases ihe thraughpat.

Throughph®
High

- -
* Thrashing
: Region

Law : Nurber of Active
Low High Transactions
FIGURE €.7 L .
Lack Thrashing. \When thi number of active ransachions g21s (oo high, many fransachions suddenty hecorms blocked, 1 . A T |]
and few jransactions can make prOEress: ‘ L . .
. L

10°
Number of Cores 10

C
MU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

—

6.4 Performance 155

convens e wpdate Jock 1o @ wile fock. This lack conversian can’t lead to @ Jock conversian deadloek, hecalse
at mest one prapsacticn can have an updaie jock on the data e {Two fransactions mupst iy 1@ convert the lock
at the same vme 1© create i lock CumVErsien deadlock) Q0 (he ather tand, the penefit of s approach s thap an
uphate Jock does 108 plock oiher transetions thiat vead withowt expecting 10 wpdate later on. The weakness is hat
e request 19 convert the update Jock 1@ write Jock may be delayed by ather read locks. 1 large numbe of data
items are read and eoly a few of them are updated, the tradentf i5 worthwhite. THis approach is used in Mierasaft
0L Server SQL Serves algo allows wpdate ks o Be obined in W GELECT fie. pead) staneinent. but in 1his
case, it will not downgrade the wpdate focks 1o vead lncks, sinee it Aoesn’t know when it is safe 1@ dir 50

Lock Thrashing

By reducing the frequency of lock conversion Qeadlocks, we Tave dispensed with deadlock a5 @ majer perfors
manee consideration, se We are Teft with plocking sitwaions. Blncking affects pesforatance in @ vather dramatic
way. Unt {nck usage reaches 8 garuration peint ¢ iniroduces only mioidest dcl:zys——sigmlicnnl, bt ot & ser-
ons probleim. Al soime poink when too METY \ransuctions Tequest Jocks. a large aumber of \parsacions sul-
denly becomie blocked, and few transactions can mike progress. Thus, {ransaclion dhroughput s10pS growing.
Surprisinglys if enough ransaclions 4 ininiaed, ot actually decreases. This is called lock thrashing
(see Figurs 6.71. The main issuc in focking pecformance is to maximize ¢ ghput without reaching the point

where thrashing DECLTE,

Dme way W understand Jock thrashing 16 1o consider e effect of slowl crensing the transaction Toad,
which is measured by e pUmber of active transactions. when (he system is idle, the firat ransaction & pun
cannnt Block due 10 tncks, becaust it's the only one requesting {ocks. As the surther of active transactions
ETOWS, euch supcessive rans jan has 2 higher pruhab’\h\}- of hecoming blacked due 2 \runsactions alveady
nning- When the umber of active iras Crons 1% high end ugh, the next (ransaetion e started Bas virmally
o chanee of rupning ©@ completion without plocking for some lack. Worse. it pmhi\bly will get some locks
hefore encauniering o that biocks it and these locks contribute e e Jikelihood that other active ransacs
Jions will hecomie blocked. S0, not only does it mot contribute 10 inereased \hroughput, but by geiting soUC
Jocks that hlock other (ransuelions. it netuadly reduces throughput. This leads & thrashing, where inerensing
ool decreases NS roughinul

he work

Throughph®

Nutmber of Active
Transaction®

Lack Thrashing. \When thi number of active lransas tions gels e high, many rransacions suddenty hecomE blocked,

and few pransactions c20 maks IORrEss.

S G

'K THRASHING

O

10°
Number of Cores

C
MU 15-721 (Spring 2016)

35

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

_s._a CARNEGIE MELLON
&2 DATABASE GROUP

TIMESTAMP ALLOCATION

Mutex
— Worst option.

Atomic Addition

— Requires cache invalidation on write.

Batched Atomic Addition

— Needs a back-off mechanism to prevent fast burn.

Hardware Clock
— Not sure if it will exist in future CPUs.

Hardware Counter
— Not implemented in existing CPUs.

36

CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

37

TIMESTAMP ALLOCATION

__10000f o—e C(Clock

w | &= Hardware

b [| »~a Atomic batch=16

S 1000f[o o Atomic batch=8

E = = Atomic

:-: 100_ Mutex

-] :]

Q_ i

< []

S 10f :

o : z

=]

< 1
1 10 100 1000

Number of Cores

S @ CARNEGIE MELLON '
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

o

MEMORY ALLOCATIONS

Copying data on every read/write access slows
down the DBMS because of contention on the

memory controller.
— In-place updates and non-copying reads are not
affected as much.

Default libc malloc is slow. Never use it.

38

CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

_s._a CARNEGIE MELLON
&2 DATABASE GROUP

PARTITION-LEVEL LOCKING

The database is split up into horizontal partitions:

— Each partition is assigned a single-threaded execution
engine that has exclusive access to its data.
— In-place updates.

Only one txn can execute at a time per partition.

— Order txns based on when they arrive at the DBMS.

— A txn acquires the lock for a partition when it has the
lowest timestamp.

— It is not allowed to access any partition that it does not
hold the lock for.

39

CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

40

READ-ONLY WORKLOAD

=
o

co
T

o—e DL DETECT oo MVCC
o-¢ NO_WAIT =+ 0CC
6l WAIT DIE = HSTORE
a—a TIMESTAMP

Throughput (Million txn/s)

400 600 800
Number of Cores

S @ CARNEGIE MELLON '
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

41

MULTI-PARTITION WORKLOADS

« 10

“‘2‘ ||:I I o]
5 g

c

RS P
= 6 oo part=1 |7
.__E__, p

-

S5

a

e

o

S

o

c

— 0

200 400 600 800 1000
Number of Cores

&= @ CARNEGIE MELLON
-

E MELLOI
DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

o

PARTING THOUGHTS

Concurrency control is hard to get correct and
perform well.

Evaluation did not consider HTAP workloads.

42

CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

43

NEXT CLASS

Isolation Levels
Modern MVCC

& & CARMEGIE MELLON .
L2 DATABASE GROUP CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

	DATABASE SYSTEMS
	TODAY’S AGENDA
	TRANSACTION DEFINITION
	TRANSACTION DEFINITION
	ACTION CLASSIFICATION
	TRANSACTION MODELS
	FLAT TRANSACTIONS
	LIMITATIONS OF FLAT TRANSACTIONS
	LIMITATIONS OF FLAT TRANSACTIONS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION SAVEPOINTS
	TRANSACTION CHAINS
	TRANSACTION CHAINS
	TRANSACTION CHAINS
	TRANSACTION CHAINS
	TRANSACTION CHAINS
	NESTED TRANSACTIONS
	NESTED TRANSACTIONS
	NESTED TRANSACTIONS
	NESTED TRANSACTIONS
	NESTED TRANSACTIONS
	NESTED TRANSACTIONS
	NESTED TRANSACTIONS
	NESTED TRANSACTIONS
	NESTED TRANSACTIONS
	NESTED TRANSACTIONS
	NESTED TRANSACTIONS
	NESTED TRANSACTIONS
	NESTED TRANSACTIONS
	NESTED TRANSACTIONS
	NESTED TRANSACTIONS
	NESTED TRANSACTIONS
	NESTED TRANSACTIONS
	NESTED TRANSACTIONS
	NESTED TRANSACTIONS
	BULK UPDATE PROBLEM
	COMPENSATING TRANSACTIONS
	SAGA TRANSACTIONS
	SAGA TRANSACTIONS
	SAGA TRANSACTIONS
	SAGA TRANSACTIONS
	SAGA TRANSACTIONS
	SAGA TRANSACTIONS
	SAGA TRANSACTIONS
	SAGA TRANSACTIONS
	CONCURRENCY CONTROL
	TXN INTERNAL STATE
	CONCURRENCY CONTROL SCHEMES
	TWO-PHASE LOCKING
	TWO-PHASE LOCKING
	TWO-PHASE LOCKING
	TWO-PHASE LOCKING
	TWO-PHASE LOCKING
	TWO-PHASE LOCKING
	TWO-PHASE LOCKING
	TWO-PHASE LOCKING
	TWO-PHASE LOCKING
	TWO-PHASE LOCKING
	TWO-PHASE LOCKING
	TWO-PHASE LOCKING
	TWO-PHASE LOCKING
	TWO-PHASE LOCKING
	TWO-PHASE LOCKING
	TIMESTAMP ORDERING
	TIMESTAMP ORDERING
	TIMESTAMP ORDERING
	TIMESTAMP ORDERING
	TIMESTAMP ORDERING
	TIMESTAMP ORDERING
	TIMESTAMP ORDERING
	TIMESTAMP ORDERING
	TIMESTAMP ORDERING
	TIMESTAMP ORDERING
	TIMESTAMP ORDERING
	TIMESTAMP ORDERING
	TIMESTAMP ORDERING
	TIMESTAMP ORDERING
	TIMESTAMP ORDERING
	CONCURRENCY CONTROL SCHEMES
	CONCURRENCY CONTROL SCHEMES
	CONCURRENCY CONTROL SCHEMES
	CONCURRENCY CONTROL SCHEMES
	CONCURRENCY CONTROL SCHEMES
	CONCURRENCY CONTROL SCHEMES
	CONCURRENCY CONTROL SCHEMES
	1000-CORE CPU SIMULATOR
	TARGET WORKLOAD
	READ-ONLY WORKLOAD
	READ-ONLY WORKLOAD
	READ-ONLY WORKLOAD
	READ-ONLY WORKLOAD
	WRITE-INTENSIVE / MEDIUM-CONTENTION
	WRITE-INTENSIVE / MEDIUM-CONTENTION
	WRITE-INTENSIVE / MEDIUM-CONTENTION
	WRITE-INTENSIVE / MEDIUM-CONTENTION
	WRITE-INTENSIVE / HIGH-CONTENTION
	WRITE-INTENSIVE / HIGH-CONTENTION
	WRITE-INTENSIVE / HIGH-CONTENTION
	WRITE-INTENSIVE / HIGH-CONTENTION
	WRITE-INTENSIVE / HIGH-CONTENTION
	WRITE-INTENSIVE / HIGH-CONTENTION
	WRITE-INTENSIVE / HIGH-CONTENTION
	WRITE-INTENSIVE / HIGH-CONTENTION
	BOTTLENECKS
	LOCK THRASHING
	LOCK THRASHING
	LOCK THRASHING
	LOCK THRASHING
	LOCK THRASHING
	TIMESTAMP ALLOCATION
	TIMESTAMP ALLOCATION
	MEMORY ALLOCATIONS
	PARTITION-LEVEL LOCKING
	READ-ONLY WORKLOAD
	MULTI-PARTITION WORKLOADS
	PARTING THOUGHTS
	NEXT CLASS

