
Andy Pavlo // Carnegie Mellon University // Spring 2016

Lecture #09 – Storage Models &
Data Layout

DATABASE
SYSTEMS

15-721

CMU 15-721 (Spring 2016)

TODAY ’S AGENDA

In-Memory Data Layout
Storage Models
Project #2: Performance Profiling

2

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

DATA ORGANIZATION

3

Fixed-Length
Data Blocks

Index

Memory
Address

Variable-Length
Data Blocks

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

DATA ORGANIZATION

One can think of an in-memory database as
just a large array of bytes.
→ The schema tells the DBMS how to convert the bytes

into the appropriate type.

Each tuple is prefixed with a header that
contains its meta-data.

Storing tuples with just their fixed-length data
makes it easy to compute the starting point of
any tuple.

4

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

DATA REPRESENTATION

INTEGER/BIGINT/SMALLINT/TINYINT
→ C/C++ Representation

NUMERIC
→ IEEE-754 Standard

VARCHAR/VARBINARY/TEXT/BLOB
→ Pointer to other location if type is ≥64-bits
→ Header with length and address to next location (if

segmented), followed by data bytes.

TIME/DATE/TIMESTAMP
→ 32/64-bit integer of (micro)seconds since Unix epoch

5

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
https://en.wikipedia.org/wiki/IEEE-754

CMU 15-721 (Spring 2016)

DATA REPRESENTATION

6

CREATE TABLE JoySux (
 id INT PRIMARY KEY,
 value BIGINT
);

char[]

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

DATA REPRESENTATION

6

CREATE TABLE JoySux (
 id INT PRIMARY KEY,
 value BIGINT
);

header id value

char[]

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

DATA REPRESENTATION

6

CREATE TABLE JoySux (
 id INT PRIMARY KEY,
 value BIGINT
);

header id value

char[]

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

DATA REPRESENTATION

6

CREATE TABLE JoySux (
 id INT PRIMARY KEY,
 value BIGINT
);

header id value

char[]

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

DATA REPRESENTATION

6

CREATE TABLE JoySux (
 id INT PRIMARY KEY,
 value BIGINT
);

header id value

char[]

reinterpret_cast<int32_t*>(address)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

NULL DATA TYPES

Choice #1: Special Values
→ Designate a value to represent NULL for a particular

data type (e.g., INT32_MIN).

Choice #2: Null Column Bitmap Header
→ Store a bitmap in the tuple header that specifies

what attributes are null.

Choice #3: Per Attribute Null Flag
→ Store a flag that marks that a value is null.
→ Have to use more space than just a single bit because

this messes up with word alignment.

7

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

NULL DATA TYPES

Choice #1: Special Values
→ Designate a value to represent NULL for a particular

data type (e.g., INT32_MIN).

Choice #2: Null Column Bitmap Header
→ Store a bitmap in the tuple header that specifies

what attributes are null.

Choice #3: Per Attribute Null Flag
→ Store a flag that marks that a value is null.
→ Have to use more space than just a single bit because

this messes up with word alignment.

7

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://docs.memsql.com/4.0/ref/datatypes/

CMU 15-721 (Spring 2016)

NULL DATA TYPES

Choice #1: Special Values
→ Designate a value to represent NULL for a particular

data type (e.g., INT32_MIN).

Choice #2: Null Column Bitmap Header
→ Store a bitmap in the tuple header that specifies

what attributes are null.

Choice #3: Per Attribute Null Flag
→ Store a flag that marks that a value is null.
→ Have to use more space than just a single bit because

this messes up with word alignment.

7

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://docs.memsql.com/4.0/ref/datatypes/

CMU 15-721 (Spring 2016)

NULL DATA TYPES

Choice #1: Special Values
→ Designate a value to represent NULL for a particular

data type (e.g., INT32_MIN).

Choice #2: Null Column Bitmap Header
→ Store a bitmap in the tuple header that specifies

what attributes are null.

Choice #3: Per Attribute Null Flag
→ Store a flag that marks that a value is null.
→ Have to use more space than just a single bit because

this messes up with word alignment.

7

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

NOTICE

The truth is that you only need to worry about
word-alignment for cache lines (e.g., 64 bytes).

I’m going to show you the basic idea using 64-
bit words since it’s easier to see…

8

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WORD-ALIGNED TUPLES

All attributes in a tuple must be word aligned
to enable the CPU to access it without any
unexpected behavior or additional work.

9

CREATE TABLE JoySux (
 id INT PRIMARY KEY,
 cdate TIMESTAMP,
 color CHAR(2),
 zipcode INT
);

char[]

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WORD-ALIGNED TUPLES

All attributes in a tuple must be word aligned
to enable the CPU to access it without any
unexpected behavior or additional work.

9

CREATE TABLE JoySux (
 id INT PRIMARY KEY,
 cdate TIMESTAMP,
 color CHAR(2),
 zipcode INT
);

64-bit Word 64-bit Word 64-bit Word 64-bit Word

char[]

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WORD-ALIGNED TUPLES

All attributes in a tuple must be word aligned
to enable the CPU to access it without any
unexpected behavior or additional work.

9

CREATE TABLE JoySux (
 id INT PRIMARY KEY,
 cdate TIMESTAMP,
 color CHAR(2),
 zipcode INT
);

32-bits

64-bit Word 64-bit Word 64-bit Word 64-bit Word

char[]

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WORD-ALIGNED TUPLES

All attributes in a tuple must be word aligned
to enable the CPU to access it without any
unexpected behavior or additional work.

9

CREATE TABLE JoySux (
 id INT PRIMARY KEY,
 cdate TIMESTAMP,
 color CHAR(2),
 zipcode INT
);

32-bits

64-bit Word 64-bit Word 64-bit Word 64-bit Word

id

char[]

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WORD-ALIGNED TUPLES

All attributes in a tuple must be word aligned
to enable the CPU to access it without any
unexpected behavior or additional work.

9

CREATE TABLE JoySux (
 id INT PRIMARY KEY,
 cdate TIMESTAMP,
 color CHAR(2),
 zipcode INT
);

32-bits
64-bits

64-bit Word 64-bit Word 64-bit Word 64-bit Word

id cdate

char[]

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WORD-ALIGNED TUPLES

All attributes in a tuple must be word aligned
to enable the CPU to access it without any
unexpected behavior or additional work.

9

CREATE TABLE JoySux (
 id INT PRIMARY KEY,
 cdate TIMESTAMP,
 color CHAR(2),
 zipcode INT
);

32-bits
64-bits
16-bits

64-bit Word 64-bit Word 64-bit Word 64-bit Word

id cdate c

char[]

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WORD-ALIGNED TUPLES

All attributes in a tuple must be word aligned
to enable the CPU to access it without any
unexpected behavior or additional work.

9

CREATE TABLE JoySux (
 id INT PRIMARY KEY,
 cdate TIMESTAMP,
 color CHAR(2),
 zipcode INT
);

32-bits
64-bits
16-bits
32-bits 64-bit Word 64-bit Word 64-bit Word 64-bit Word

id cdate c zipc

char[]

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WORD-ALIGNED TUPLES

All attributes in a tuple must be word aligned
to enable the CPU to access it without any
unexpected behavior or additional work.

9

CREATE TABLE JoySux (
 id INT PRIMARY KEY,
 cdate TIMESTAMP,
 color CHAR(2),
 zipcode INT
);

32-bits
64-bits
16-bits
32-bits 64-bit Word 64-bit Word 64-bit Word 64-bit Word

id cdate c zipc

char[]

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WORD-ALIGNED TUPLES

If the CPU fetches a 64-bit value that is not
word-aligned, it has four choices:
→Execute two reads to load the appropriate

parts of the data word and reassemble them.
→Read some unexpected combination of bytes

assembled into a 64-bit word.
→Throw an exception

10

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WORD-ALIGNED TUPLES

All attributes in a tuple must be word aligned
to enable the CPU to access it without any
unexpected behavior or additional work.

11

CREATE TABLE JoySux (
 id INT PRIMARY KEY,
 cdate TIMESTAMP,
 color CHAR(2),
 zipcode INT
);

32-bits
64-bits
16-bits
32-bits 64-bit Word 64-bit Word 64-bit Word 64-bit Word

id cdate c zipc
00000000
00000000
00000000
00000000

0000
0000
0000
0000

char[]

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WORD-ALIGNED TUPLES

All attributes in a tuple must be word aligned
to enable the CPU to access it without any
unexpected behavior or additional work.

11

CREATE TABLE JoySux (
 id INT PRIMARY KEY,
 cdate TIMESTAMP,
 color CHAR(2),
 zipcode INT
);

32-bits
64-bits
16-bits
32-bits 64-bit Word 64-bit Word 64-bit Word 64-bit Word

id cdate c zipc
00000000
00000000
00000000
00000000

0000
0000
0000
0000

char[]

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

STORAGE MODELS

N-ary Storage Model (NSM)
Decomposition Storage Model (DSM)
Hybrid Storage Model

12

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

N-ARY STORAGE MODEL (NSM)

The DBMS stores all of the attributes for a
single tuple contiguously.

Ideal for OLTP workloads where txns tend to
operate only on an individual entity and
insert-heavy workloads.

Use the tuple-at-a-time iterator model.

13

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

NSM PHYSICAL STORAGE

Choice #1: Heap-Organized Tables
→ Tuples are stored in blocks called a heap.
→ The heap does not necessarily define an order.

Choice #2: Index-Organized Tables
→ Tuples are stored in the index itself.
→ Not quite the same as a clustered index.

14

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

CLUSTERED INDEXES

The table is stored in the sort order specified
by the primary key.
→ Can be either heap- or index-organized storage.

Some DBMSs always use a clustered index.
→ If a table doesn’t include a pkey, the DBMS will

automatically make a hidden row id pkey.

Other DBMSs cannot use them at all.
→ A clustered index is non-practical in a MVCC DBMS

using the Insert Method.

15

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

N-ARY STORAGE MODEL (NSM)

Advantages
→ Fast inserts, updates, and deletes.
→ Good for queries that need the entire tuple.
→ Can use index-oriented physical storage.

Disadvantages
→ Not good for scanning large portions of the table

and/or a subset of the attributes.

16

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

DECOMPOSITION STORAGE MODEL (DSM)

The DBMS stores a single attribute for all
tuples contiguously in a block of data.
→ Sometimes also called vertical partitioning.

Ideal for OLAP workloads where read-only
queries perform large scans over a subset of
the table’s attributes.

Use the vector-at-a-time iterator model.

17

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

DECOMPOSITION STORAGE MODEL (DSM)

1970s: Cantor DBMS
1980s: DSM Proposal
1990s: SybaseIQ (in-memory only)
2000s: Vertica, Vectorwise, MonetDB
2010s: “The Big Three”
 Cloudera Impala, Amazon Redshift,
 SAP HANA, MemSQL

18

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://dl.acm.org/citation.cfm?id=655555

CMU 15-721 (Spring 2016)

CLUSTERED INDEXES

Some columnar DBMSs store data in sorted
order to maximize compression.
→ Bitmap indexes with RLE from last class

Vertica does not even use indexes because all
columns are sorted.

19

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TUPLE IDENTIF ICATION

Choice #1: Fixed-length Offsets
→ Each value is the same length for an attribute.

Choice #2: Embedded Tuple Ids
→ Each value is stored with its tuple id in a column.

20

Offsets

0
1
2
3

A B C D

Embedded Ids
A

0
1
2
3

B

0
1
2
3

C

0
1
2
3

D

0
1
2
3

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

DECOMPOSITION STORAGE MODEL (DSM)

Advantages
→ Reduces the amount wasted work because the DBMS

only reads the data that it needs.
→ Better compression (last lecture).

Disadvantages
→ Slow for point queries, inserts, updates, and deletes

because of tuple splitting/stitching.

21

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

OBSERVATION

Data is “hot” when first entered into database
→ A newly inserted tuple is more likely to be updated

again the near future.

As a tuple ages, it is updated less frequently.
→ At some point, a tuple is only accessed in read-only

queries along with other tuples.

What if we want to use this data to make
decisions that affect new txns?

22

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

BIFURCATED ENVIRONMENT

23

OLAP Data Warehouse OLTP Data Silos

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

BIFURCATED ENVIRONMENT

23

Extract
Transform

Load

OLAP Data Warehouse OLTP Data Silos

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

BIFURCATED ENVIRONMENT

23

Extract
Transform

Load

OLAP Data Warehouse OLTP Data Silos

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

BIFURCATED ENVIRONMENT

23

Extract
Transform

Load

OLAP Data Warehouse OLTP Data Silos

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

BIFURCATED ENVIRONMENT

23

Extract
Transform

Load

OLAP Data Warehouse OLTP Data Silos

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

BIFURCATED ENVIRONMENT

23

Extract
Transform

Load

OLAP Data Warehouse OLTP Data Silos

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

HYBRID STORAGE MODEL

Single logical database instance that uses
different storage models for hot and cold data.

Store new data in NSM for fast OLTP
Migrate data to DSM for more efficient OLAP

24

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

HYBRID STORAGE MODEL

Choice #1: Separate Execution Engines
→ Use separate execution engines that are optimized

for either NSM or DSM databases.

Choice #2: Single, Flexible Architecture
→ Use single execution engine that is able to efficiently

operate on both NSM and DSM databases.

25

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SEPARATE EXECUTION ENGINES

Run separate “internal” DBMSs that each only
operate on DSM or NSM data.
→ Need to combine query results from both engines to

appear as a single logical database to the application.
→ Have to use a synchronization method (e.g., 2PC) if a

txn spans execution engines.

Two approaches to do this:
→ Fractured Mirrors (Oracle, IBM)
→ Delta Store (SAP HANA)

26

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

FRACTURED MIRRORS

Store a second copy of the database in a DSM
layout that is automatically updated.
→ All updates are first entered in NSM then eventually

copied into DSM mirror.

27

A CASE FOR FRACTURED MIRRORS
VLDB 2002

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://dl.acm.org/citation.cfm?id=1287407
http://dl.acm.org/citation.cfm?id=1287407

CMU 15-721 (Spring 2016)

FRACTURED MIRRORS

Store a second copy of the database in a DSM
layout that is automatically updated.
→ All updates are first entered in NSM then eventually

copied into DSM mirror.

27

A CASE FOR FRACTURED MIRRORS
VLDB 2002

NSM
(Primary)

DSM
(Mirror)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://dl.acm.org/citation.cfm?id=1287407
http://dl.acm.org/citation.cfm?id=1287407

CMU 15-721 (Spring 2016)

FRACTURED MIRRORS

Store a second copy of the database in a DSM
layout that is automatically updated.
→ All updates are first entered in NSM then eventually

copied into DSM mirror.

27

A CASE FOR FRACTURED MIRRORS
VLDB 2002

OLTP Updates

NSM
(Primary)

DSM
(Mirror)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://dl.acm.org/citation.cfm?id=1287407
http://dl.acm.org/citation.cfm?id=1287407

CMU 15-721 (Spring 2016)

FRACTURED MIRRORS

Store a second copy of the database in a DSM
layout that is automatically updated.
→ All updates are first entered in NSM then eventually

copied into DSM mirror.

27

A CASE FOR FRACTURED MIRRORS
VLDB 2002

OLTP Updates

NSM
(Primary)

DSM
(Mirror)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://dl.acm.org/citation.cfm?id=1287407
http://dl.acm.org/citation.cfm?id=1287407

CMU 15-721 (Spring 2016)

FRACTURED MIRRORS

Store a second copy of the database in a DSM
layout that is automatically updated.
→ All updates are first entered in NSM then eventually

copied into DSM mirror.

27

A CASE FOR FRACTURED MIRRORS
VLDB 2002

OLTP Updates OLAP Queries

NSM
(Primary)

DSM
(Mirror)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://dl.acm.org/citation.cfm?id=1287407
http://dl.acm.org/citation.cfm?id=1287407

CMU 15-721 (Spring 2016)

DELTA STORE

Stage updates to the database in an NSM table.
A background thread migrates updates from
delta store and applies them to DSM data.

28

Delta
Store

DSM
Historical Data

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

DELTA STORE

Stage updates to the database in an NSM table.
A background thread migrates updates from
delta store and applies them to DSM data.

28

Delta
Store

DSM
Historical Data

OLTP Updates

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

DELTA STORE

Stage updates to the database in an NSM table.
A background thread migrates updates from
delta store and applies them to DSM data.

28

Delta
Store

DSM
Historical Data

OLTP Updates

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SINGLE, FLEXIBLE ARCHITECTURE

Use a single execution engine architecture that
is able to operate on both NSM and DSM data.
→ Don’t need to store two copies of the database.
→ Don’t need to sync multiple database segments.

Note that a DBMS can use the delta-store for
NSM data with a single architecture.

29

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

H 2O ADAPTIVE STORAGE

Examine the access patterns of queries and
then dynamically reconfigure the database to
optimize decomposition and layout.

Copies columns into a new layout that is
optimized for each query.
→ Think of it like a mini fractured mirror.
→ Use query compilation to speed up operations.

30

H2O: A HANDS-FREE ADAPTIVE STORE
SIGMOD 2014

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://15721.courses.cs.cmu.edu/spring2016/papers/h2o.pdf
http://15721.courses.cs.cmu.edu/spring2016/papers/h2o.pdf

CMU 15-721 (Spring 2016)

H 2O ADAPTIVE STORAGE

31

Original Data
A B C D

SELECT AVG(B)
 FROM JoyStillSux
 WHERE C = “yyy”

UPDATE JoyStillSux
 SET B = 1234
 WHERE C = “xxx”

SELECT SUM(A)
 FROM JoyStillSux

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

H 2O ADAPTIVE STORAGE

31

Original Data
A B C D

SELECT AVG(B)
 FROM JoyStillSux
 WHERE C = “yyy”

UPDATE JoyStillSux
 SET B = 1234
 WHERE C = “xxx”

SELECT SUM(A)
 FROM JoyStillSux

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

H 2O ADAPTIVE STORAGE

31

Original Data
A B C D

SELECT AVG(B)
 FROM JoyStillSux
 WHERE C = “yyy”

UPDATE JoyStillSux
 SET B = 1234
 WHERE C = “xxx”

SELECT SUM(A)
 FROM JoyStillSux

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

H 2O ADAPTIVE STORAGE

31

Original Data
A B C D

Adapted Data
A B C D

SELECT AVG(B)
 FROM JoyStillSux
 WHERE C = “yyy”

UPDATE JoyStillSux
 SET B = 1234
 WHERE C = “xxx”

SELECT SUM(A)
 FROM JoyStillSux

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

H 2O ADAPTIVE STORAGE

This approach is unable to handle updates to
the database.
It also unable to store tuples in the same table
in a different layout.

This is because they are missing the ability to
categorize whether data is hot or cold…

32

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

PELOTON ADAPTIVE STORAGE

33

Original Data
A B C D

SELECT AVG(B)
 FROM JoyStillSux
 WHERE C = “yyy”

UPDATE JoyStillSux
 SET B = 1234
 WHERE C = “xxx”

SELECT SUM(A)
 FROM JoyStillSux

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

PELOTON ADAPTIVE STORAGE

33

Original Data
A B C D

SELECT AVG(B)
 FROM JoyStillSux
 WHERE C = “yyy”

UPDATE JoyStillSux
 SET B = 1234
 WHERE C = “xxx”

SELECT SUM(A)
 FROM JoyStillSux

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

PELOTON ADAPTIVE STORAGE

33

Original Data
A B C D

SELECT AVG(B)
 FROM JoyStillSux
 WHERE C = “yyy”

UPDATE JoyStillSux
 SET B = 1234
 WHERE C = “xxx”

SELECT SUM(A)
 FROM JoyStillSux

Hot

Cold

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

PELOTON ADAPTIVE STORAGE

33

Original Data
A B C D

Adapted Data

A B C D

SELECT AVG(B)
 FROM JoyStillSux
 WHERE C = “yyy”

UPDATE JoyStillSux
 SET B = 1234
 WHERE C = “xxx”

SELECT SUM(A)
 FROM JoyStillSux

Hot

Cold

A B C D

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

PELOTON ADAPTIVE STORAGE

33

Original Data
A B C D

Adapted Data

A B C D

SELECT AVG(B)
 FROM JoyStillSux
 WHERE C = “yyy”

UPDATE JoyStillSux
 SET B = 1234
 WHERE C = “xxx”

SELECT SUM(A)
 FROM JoyStillSux

Hot

Cold

A B C D

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

CATEGORIZING DATA

Choice #1: Manual Approach
→ DBA specifies what tables should be stored as DSM.

Choice #2: Off-line Approach
→ DBMS monitors access logs offline and then makes

decision about what data to move to DSM.

Choice #3: On-line Approach
→ DBMS tracks access patterns at runtime and then

makes decision about what data to move to DSM.

34

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

PARTING THOUGHTS

A flexible architecture that supports a hybrid
storage model is the next major trend in DBMSs

This will enable relational DBMSs to support all
known database workloads except for matrices
in machine learning.

35

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

36

TIPS FOR
PROFILING

JOY’s DANK

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

MOTIVATION

Consider a hot program Z with two functions
foo and bar.

How can we speed up Z with only a debugger ?
→ Randomly pause it during execution
→ Collect the function call stack

37

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

RANDOM PAUSE METHOD

Consider this scenario
→ Collected 10 call stack samples
→ Say 6 out of the 10 samples were in foo

What percentage of time was spent in foo?
→ Roughly 60% of the time was spent in foo
→ Accuracy increases with # of samples

38

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

AMDAHL’S LAW

 Say we optimized foo to run 2 times faster
What’s the expected overall speedup ?

→ p = percentage of time spent in optimized task
→ s = speed up for the optimized task
→ Overall speedup =

 = 1.4 times faster

39

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

AMDAHL’S LAW

 Say we optimized foo to run 2 times faster
What’s the expected overall speedup ?
→ 60% of time spent in foo drops in half
→ 40% of time spent in bar unaffected

→ p = percentage of time spent in optimized task
→ s = speed up for the optimized task
→ Overall speedup =

 = 1.4 times faster

39

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

AMDAHL’S LAW

 1 0.6 2 +0.4 1 1 0.6 2 +0.4 0.6 2 0.6 0.6 2 2 0.6
2 +0.4 1 0.6 2 +0.4 = 1.4 times faster
 1 0.6 2 +0.4 1 1 0.6 2 +0.4 0.6 2 0.6 0.6 2 2 0.6
2 +0.4 1 0.6 2 +0.4 = 1.4 times faster
 1

 +(1−

)

 +(1−

) 1

+(1−

)
 Say we optimized foo to run 2 times faster
What’s the expected overall speedup ?
→ 60% of time spent in foo drops in half
→ 40% of time spent in bar unaffected

 f d k

39

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

PROFIL ING TOOLS FOR REAL

Choice #1: Valgrind
→ Heavyweight instrumentation framework with a lot

of tools
→ Sophisticated visualization tools

Choice #2: Perf
→ Lightweight tool that can record different kinds of

events
→ Console-oriented visualization tools

40

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

CHOICE #1: VALGRIND

Instrumentation framework for building
dynamic analysis tools
→ memcheck: a memory error detector
→ callgrind: a call-graph generating profiler

41

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

CHOICE #1: VALGRIND

Instrumentation framework for building
dynamic analysis tools
→ memcheck: a memory error detector
→ callgrind: a call-graph generating profiler

Using callgrind to profile the index test and
Peloton in general:

41

$ valgrind --tool=callgrind --trace-children=yes
./tests/index_test

$ valgrind --tool=callgrind --trace-children=yes
./build/src/peloton -D data &> /dev/null&

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

$ kcachegrind callgrind.out.12345

KCACHEGRIND

Profile data visualization tool

42

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

$ kcachegrind callgrind.out.12345

KCACHEGRIND

Profile data visualization tool

42

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

$ kcachegrind callgrind.out.12345

KCACHEGRIND

Profile data visualization tool

42

Cumulative Time
Distribution

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

$ kcachegrind callgrind.out.12345

KCACHEGRIND

Profile data visualization tool

42

Cumulative Time
Distribution

Callgraph
View

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

CHOICE #2: PERF

Tool for using the performance counters
subsystem in Linux.
→ -e = sample the event cycles at the user level only
→ -c = collect a sample every 2000 occurrences of event

Uses counters for tracking events
→ On counter overflow, the kernel records a sample
→ Sample contains info about program execution

43

$ perf record -e cycles:u -c 2000
./tests/index_test

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

PERF VISUALIZATION

We can also use perf to visualize the
generated profile for our application.

44

$ perf report

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

PERF VISUALIZATION

We can also use perf to visualize the
generated profile for our application.

44

$ perf report

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

PERF VISUALIZATION

We can also use perf to visualize the
generated profile for our application.

44

$ perf report

Cumulative Time
Distribution

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

PERF EVENTS

Supports several other events like:
→ L1-dcache-load-misses
→ branch-misses

To see a list of events:

Another usage example:

45

$ perf list

$ perf record -e cycles,LLC-load-misses -c 2000
./tests/index_test

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

REFERENCES

Valgrind
→ The Valgrind Quick Start Guide
→ Callgrind
→ Kcachegrind
→ Tips for the Profiling/Optimization process

Perf
→ Perf Tutorial
→ Perf Examples
→ Perf Analysis Tools

46

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://valgrind.org/docs/manual/quick-start.html
http://valgrind.org/docs/manual/cl-manual.html
https://kcachegrind.github.io/html/Usage.html
https://kcachegrind.github.io/html/Tips.html
https://perf.wiki.kernel.org/index.php/Tutorial
https://perf.wiki.kernel.org/index.php/Tutorial
https://perf.wiki.kernel.org/index.php/Tutorial
http://www.brendangregg.com/perf.html
http://www.brendangregg.com/perf.html
http://www.brendangregg.com/perf.html
https://github.com/brendangregg/perf-tools
https://github.com/brendangregg/perf-tools
https://github.com/brendangregg/perf-tools

	DATABASE SYSTEMS
	TODAY’S AGENDA
	DATA ORGANIZATION
	DATA ORGANIZATION
	DATA REPRESENTATION
	DATA REPRESENTATION
	DATA REPRESENTATION
	DATA REPRESENTATION
	DATA REPRESENTATION
	DATA REPRESENTATION
	NULL DATA TYPES
	NULL DATA TYPES
	NULL DATA TYPES
	NULL DATA TYPES
	NOTICE
	WORD-ALIGNED TUPLES
	WORD-ALIGNED TUPLES
	WORD-ALIGNED TUPLES
	WORD-ALIGNED TUPLES
	WORD-ALIGNED TUPLES
	WORD-ALIGNED TUPLES
	WORD-ALIGNED TUPLES
	WORD-ALIGNED TUPLES
	WORD-ALIGNED TUPLES
	WORD-ALIGNED TUPLES
	WORD-ALIGNED TUPLES
	STORAGE MODELS
	N-ARY STORAGE MODEL (NSM)
	NSM PHYSICAL STORAGE
	CLUSTERED INDEXES
	N-ARY STORAGE MODEL (NSM)
	DECOMPOSITION STORAGE MODEL (DSM)
	DECOMPOSITION STORAGE MODEL (DSM)
	CLUSTERED INDEXES
	TUPLE IDENTIFICATION
	DECOMPOSITION STORAGE MODEL (DSM)
	OBSERVATION
	BIFURCATED ENVIRONMENT
	BIFURCATED ENVIRONMENT
	BIFURCATED ENVIRONMENT
	BIFURCATED ENVIRONMENT
	BIFURCATED ENVIRONMENT
	BIFURCATED ENVIRONMENT
	HYBRID STORAGE MODEL
	HYBRID STORAGE MODEL
	SEPARATE EXECUTION ENGINES
	FRACTURED MIRRORS
	FRACTURED MIRRORS
	FRACTURED MIRRORS
	FRACTURED MIRRORS
	FRACTURED MIRRORS
	DELTA STORE
	DELTA STORE
	DELTA STORE
	SINGLE, FLEXIBLE ARCHITECTURE
	H2O ADAPTIVE STORAGE
	H2O ADAPTIVE STORAGE
	H2O ADAPTIVE STORAGE
	H2O ADAPTIVE STORAGE
	H2O ADAPTIVE STORAGE
	H2O ADAPTIVE STORAGE
	PELOTON ADAPTIVE STORAGE
	PELOTON ADAPTIVE STORAGE
	PELOTON ADAPTIVE STORAGE
	PELOTON ADAPTIVE STORAGE
	PELOTON ADAPTIVE STORAGE
	CATEGORIZING DATA
	PARTING THOUGHTS
	Slide Number 69
	MOTIVATION
	RANDOM PAUSE METHOD
	AMDAHL’S LAW
	AMDAHL’S LAW
	AMDAHL’S LAW
	PROFILING TOOLS FOR REAL
	CHOICE #1: VALGRIND
	CHOICE #1: VALGRIND
	KCACHEGRIND
	KCACHEGRIND
	KCACHEGRIND
	KCACHEGRIND
	CHOICE #2: PERF
	PERF VISUALIZATION
	PERF VISUALIZATION
	PERF VISUALIZATION
	PERF EVENTS
	REFERENCES

