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DATA ORGANIZATION 
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DATA ORGANIZATION 

One can think of an in-memory database as 
just a large array of bytes. 
→ The schema tells the DBMS how to convert the bytes 

into the appropriate type. 

Each tuple is prefixed with a header that 
contains its meta-data. 
 

Storing tuples with just their fixed-length data 
makes it easy to compute the starting point of 
any tuple. 
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DATA REPRESENTATION 

INTEGER/BIGINT/SMALLINT/TINYINT 
→ C/C++ Representation 

NUMERIC 
→ IEEE-754 Standard 

VARCHAR/VARBINARY/TEXT/BLOB 
→ Pointer to other location if type is ≥64-bits 
→ Header with length and address to next location (if 

segmented), followed by data bytes. 

TIME/DATE/TIMESTAMP 
→ 32/64-bit integer of (micro)seconds since Unix epoch 
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DATA REPRESENTATION 
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CREATE TABLE JoySux ( 
  id INT PRIMARY KEY, 
  value BIGINT 
); 

char[] 
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DATA REPRESENTATION 
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NULL DATA TYPES 

Choice #1: Special Values 
→ Designate a value to represent NULL for a particular 

data type (e.g., INT32_MIN). 
 

Choice #2: Null Column Bitmap Header 
→ Store a bitmap in the tuple header that specifies 

what attributes are null. 
 

Choice #3: Per Attribute Null Flag 
→ Store a flag that marks that a value is null. 
→ Have to use more space than just a single bit because 

this messes up with word alignment. 
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NOTICE 

The truth is that you only need to worry about 
word-alignment for cache lines (e.g., 64 bytes). 
 
I’m going to show you the basic idea using 64-
bit words since it’s easier to see… 
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WORD-ALIGNED TUPLES 

All attributes in a tuple must be word aligned 
to enable the CPU to access it without any 
unexpected behavior or additional work. 
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  id INT PRIMARY KEY, 
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WORD-ALIGNED TUPLES 

If the CPU fetches a 64-bit value that is not 
word-aligned, it has four choices: 
→Execute two reads to load the appropriate 

parts of the data word and reassemble them. 
→Read some unexpected combination of bytes 

assembled into a 64-bit word. 
→Throw an exception 
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STORAGE MODELS 

N-ary Storage Model (NSM) 
Decomposition Storage Model (DSM) 
Hybrid Storage Model 
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N-ARY STORAGE MODEL (NSM) 

The DBMS stores all of the attributes for a 
single tuple contiguously. 
 

Ideal for OLTP workloads where txns tend to 
operate only on an individual entity and 
insert-heavy workloads. 
 

Use the tuple-at-a-time iterator model. 
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NSM PHYSICAL STORAGE 

Choice #1: Heap-Organized Tables 
→ Tuples are stored in blocks called a heap. 
→ The heap does not necessarily define an order. 
 

Choice #2: Index-Organized Tables 
→ Tuples are stored in the index itself. 
→ Not quite the same as a clustered index. 
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CLUSTERED INDEXES 

The table is stored in the sort order specified 
by the primary key. 
→ Can be either heap- or index-organized storage. 
 

Some DBMSs always use a clustered index. 
→ If a table doesn’t include a pkey, the DBMS will 

automatically make a hidden row id pkey. 
 

Other DBMSs cannot use them at all. 
→ A clustered index is non-practical in a MVCC DBMS 

using the Insert Method. 
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N-ARY STORAGE MODEL (NSM) 

Advantages 
→ Fast inserts, updates, and deletes. 
→ Good for queries that need the entire tuple. 
→ Can use index-oriented physical storage. 

 
Disadvantages 
→ Not good for scanning large portions of the table 

and/or a subset of the attributes. 
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DECOMPOSITION STORAGE MODEL (DSM) 

The DBMS stores a single attribute for all 
tuples contiguously in a block of data. 
→ Sometimes also called vertical partitioning. 

 

Ideal for OLAP workloads where read-only 
queries perform large scans over a subset of 
the table’s attributes. 
 

Use the vector-at-a-time iterator model. 
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DECOMPOSITION STORAGE MODEL (DSM) 

1970s:  Cantor DBMS 
1980s:  DSM Proposal 
1990s:  SybaseIQ (in-memory only) 
2000s:  Vertica, Vectorwise, MonetDB 
2010s:  “The Big Three” 
              Cloudera Impala, Amazon Redshift, 
              SAP HANA, MemSQL 
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CLUSTERED INDEXES 

Some columnar DBMSs store data in sorted 
order to maximize compression. 
→ Bitmap indexes with RLE from last class 

 
Vertica does not even use indexes because all 
columns are sorted. 
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TUPLE IDENTIF ICATION 

Choice #1: Fixed-length Offsets 
→ Each value is the same length for an attribute. 

Choice #2: Embedded Tuple Ids 
→ Each value is stored with its tuple id in a column. 
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DECOMPOSITION STORAGE MODEL (DSM) 

Advantages 
→ Reduces the amount wasted work because the DBMS 

only reads the data that it needs. 
→ Better compression (last lecture). 

 
Disadvantages 
→ Slow for point queries, inserts, updates, and deletes 

because of tuple splitting/stitching. 
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OBSERVATION 

Data is “hot” when first entered into database 
→ A newly inserted tuple is more likely to be updated 

again the near future. 
 

As a tuple ages, it is updated less frequently. 
→ At some point, a tuple is only accessed in read-only 

queries along with other tuples. 
 

What if we want to use this data to make 
decisions that affect new txns? 
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BIFURCATED ENVIRONMENT 

23 
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HYBRID STORAGE MODEL 

Single logical database instance that uses 
different storage models for hot and cold data. 
 
Store new data in NSM for fast OLTP 
Migrate data to DSM for more efficient OLAP 
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HYBRID STORAGE MODEL 

Choice #1: Separate Execution Engines 
→ Use separate execution engines that are optimized 

for either NSM or DSM databases. 
 

Choice #2: Single, Flexible Architecture 
→ Use single execution engine that is able to efficiently 

operate on both NSM and DSM databases. 
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SEPARATE EXECUTION ENGINES 

Run separate “internal” DBMSs that each only 
operate on DSM or NSM data. 
→ Need to combine query results from both engines to 

appear as a single logical database to the application. 
→ Have to use a synchronization method (e.g., 2PC) if a 

txn spans execution engines. 
 

Two approaches to do this: 
→ Fractured Mirrors (Oracle, IBM) 
→ Delta Store (SAP HANA) 
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FRACTURED MIRRORS 

Store a second copy of the database in a DSM 
layout that is automatically updated. 
→ All updates are first entered in NSM then eventually 

copied into DSM mirror. 

27 
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FRACTURED MIRRORS 
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DELTA STORE 

Stage updates to the database in an NSM table. 
A background thread migrates updates from 
delta store and applies them to DSM data. 

28 
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SINGLE,  FLEXIBLE ARCHITECTURE 

Use a single execution engine architecture that 
is able to operate on both NSM and DSM data. 
→ Don’t need to store two copies of the database. 
→ Don’t need to sync multiple database segments. 

 

Note that a DBMS can use the delta-store for 
NSM data with a single architecture. 
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H 2O ADAPTIVE STORAGE 

Examine the access patterns of queries and 
then dynamically reconfigure the database to 
optimize decomposition and layout. 
 

Copies columns into a new layout that is 
optimized for each query. 
→ Think of it like a mini fractured mirror. 
→ Use query compilation to speed up operations. 

30 
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H 2O ADAPTIVE STORAGE 

31 
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H 2O ADAPTIVE STORAGE 

31 

Original Data 
A B C D 

Adapted Data 
A B C D 

SELECT AVG(B) 
  FROM JoyStillSux 
 WHERE C = “yyy” 

UPDATE JoyStillSux 
   SET B = 1234 
 WHERE C = “xxx” 

SELECT SUM(A) 
  FROM JoyStillSux 

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016


CMU 15-721 (Spring 2016) 

H 2O ADAPTIVE STORAGE 

This approach is unable to handle updates to 
the database. 
It also unable to store tuples in the same table 
in a different layout. 
 
This is because they are missing the ability to 
categorize whether data is hot or cold… 
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PELOTON ADAPTIVE STORAGE 
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A B C D 
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PELOTON ADAPTIVE STORAGE 
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PELOTON ADAPTIVE STORAGE 
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PELOTON ADAPTIVE STORAGE 
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PELOTON ADAPTIVE STORAGE 
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CATEGORIZING DATA 

Choice #1: Manual Approach 
→ DBA specifies what tables should be stored as DSM. 
 

Choice #2: Off-line Approach 
→ DBMS monitors access logs offline and then makes 

decision about what data to move to DSM. 
 

Choice #3: On-line Approach 
→ DBMS tracks access patterns at runtime and then 

makes decision about what data to move to DSM. 
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PARTING THOUGHTS 

A flexible architecture that supports a hybrid 
storage model is the next major trend in DBMSs 
 

This will enable relational DBMSs  to support all 
known database workloads except for matrices 
in machine learning. 
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TIPS FOR 
PROFILING 

JOY’s DANK 
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MOTIVATION 

Consider a hot program Z with two functions 
foo and bar. 
 
How can we speed up Z with only a debugger ? 
→ Randomly pause it during execution 
→ Collect the function call stack 
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RANDOM PAUSE METHOD 

Consider this scenario 
→ Collected 10 call stack samples 
→ Say 6 out of the 10 samples were in foo 
 
What percentage of time was spent in foo? 
→ Roughly 60% of the time was spent in foo 
→ Accuracy increases with # of samples 
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AMDAHL’S  LAW 

 Say we optimized foo to run 2 times faster 
What’s the expected overall speedup ? 
                                        
                                     
 

                                    
 

 
→ p = percentage of time spent in optimized task 
→ s = speed up for the optimized  task 
→ Overall speedup =
            

 = 1.4 times faster 
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AMDAHL’S  LAW 

 Say we optimized foo to run 2 times faster 
What’s the expected overall speedup ? 
→ 60% of time spent in foo drops in half 
→ 40% of time spent in bar unaffected 
 

                                    
 

 
→ p = percentage of time spent in optimized task 
→ s = speed up for the optimized  task 
→ Overall speedup =
            

 = 1.4 times faster 
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AMDAHL’S  LAW 
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PROFIL ING TOOLS FOR REAL 

Choice #1: Valgrind 
→ Heavyweight instrumentation framework with a lot 

of tools 
→ Sophisticated visualization tools 
 

Choice #2: Perf 
→ Lightweight tool that can record different kinds of 

events 
→ Console-oriented visualization tools 
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CHOICE #1:  VALGRIND 

Instrumentation framework for building 
dynamic analysis tools 
→ memcheck: a memory error detector 
→ callgrind: a call-graph generating profiler 
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CHOICE #1:  VALGRIND 

Instrumentation framework for building 
dynamic analysis tools 
→ memcheck: a memory error detector 
→ callgrind: a call-graph generating profiler 
 

Using callgrind to profile the index test and 
Peloton in general: 
 
 

41 

$ valgrind --tool=callgrind --trace-children=yes 
./tests/index_test 
 
$ valgrind --tool=callgrind --trace-children=yes 
./build/src/peloton -D data &> /dev/null& 
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$ kcachegrind callgrind.out.12345 

KCACHEGRIND 

Profile data visualization tool 
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$ kcachegrind callgrind.out.12345 

KCACHEGRIND 

Profile data visualization tool 
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$ kcachegrind callgrind.out.12345 

KCACHEGRIND 

Profile data visualization tool 

42 

Cumulative Time 
Distribution 
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$ kcachegrind callgrind.out.12345 

KCACHEGRIND 

Profile data visualization tool 
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Cumulative Time 
Distribution 

Callgraph 
View 
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CHOICE #2:  PERF 

Tool for using the performance counters 
subsystem in Linux. 
→ -e = sample the event cycles at the user level only 
→ -c = collect a sample every 2000 occurrences of event 

 
 
Uses counters for tracking events 
→ On counter overflow, the kernel records a sample 
→ Sample contains info about program execution 
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$ perf record -e cycles:u -c 2000 
./tests/index_test 
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PERF VISUALIZATION 

We can also use perf to visualize the 
generated profile for our application. 
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$ perf report 

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016


CMU 15-721 (Spring 2016) 

PERF VISUALIZATION 

We can also use perf to visualize the 
generated profile for our application. 
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$ perf report 
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PERF VISUALIZATION 

We can also use perf to visualize the 
generated profile for our application. 
 
 
 
 
 

44 

$ perf report 

Cumulative Time 
Distribution 
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PERF EVENTS 

Supports several other events like: 
→ L1-dcache-load-misses 
→ branch-misses 
 

To see a list of events: 
 
 

Another usage example: 
 
 

45 

$ perf list 

$ perf record -e cycles,LLC-load-misses -c 2000 
./tests/index_test 
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REFERENCES 

Valgrind 
→ The Valgrind Quick Start Guide 
→ Callgrind 
→ Kcachegrind 
→ Tips for the Profiling/Optimization process 
 

Perf 
→ Perf Tutorial 
→ Perf Examples 
→ Perf Analysis Tools 
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