
Andy Pavlo // Carnegie Mellon University // Spring 2016

Lecture #10 – Query Execution &
Scheduling

DATABASE
SYSTEMS

15-721

CMU 15-721 (Spring 2016)

TODAY ’S AGENDA

Process Models
Query Parallelization
Data Placement
Scheduling
10 Crack Commandments

2

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

MULTI -USER DATABASE APP STACK

3

Server Client End Users

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

MULTI -USER DATABASE APP STACK

3

Server Client End Users

SQL
PL/SQL

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

MULTI -USER DATABASE APP STACK

3

Server Client End Users

REST
SOAP

SQL
PL/SQL

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

MULTI -USER DATABASE APP STACK

3

Server Client End Users

REST
SOAP

SQL
PL/SQL

BACK-END
APPLICATION

FRONT-END
APPLICATION DBMS

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

QUERY EXECUTION

A query plan is comprised of operators.

An operator instance is an invocation of an
operator on some segment of data.

A task is the execution of a sequence of one or
more operator instances.

4

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

PROCESS MODEL

A DBMS’s process model defines how the
system is architected to support concurrent
requests from a multi-user application.

A worker is the DBMS component that is
responsible for executing tasks on behalf of the
client and returning the results.

5

ARCHITECTURE OF A DATABASE SYSTEM
Foundations and Trends in Databases 2007

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://db.cs.berkeley.edu/papers/fntdb07-architecture.pdf
http://db.cs.berkeley.edu/papers/fntdb07-architecture.pdf

CMU 15-721 (Spring 2016)

PROCESS MODELS

Approach #1: Process per DBMS Worker

Approach #2: Process Pool

Approach #3: Thread per DBMS Worker

6

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

PROCESS PER WORKER

Each worker is a separate OS process.
→ Relies on OS scheduler.
→ Use shared-memory for global data structures.
→ Examples: IBM DB2, Postgres, Oracle

7

Dispatcher Worker

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

PROCESS PER WORKER

Each worker is a separate OS process.
→ Relies on OS scheduler.
→ Use shared-memory for global data structures.
→ Examples: IBM DB2, Postgres, Oracle

7

Dispatcher Worker

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

PROCESS PER WORKER

Each worker is a separate OS process.
→ Relies on OS scheduler.
→ Use shared-memory for global data structures.
→ Examples: IBM DB2, Postgres, Oracle

7

Dispatcher Worker

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

PROCESS PER WORKER

Each worker is a separate OS process.
→ Relies on OS scheduler.
→ Use shared-memory for global data structures.
→ Examples: IBM DB2, Postgres, Oracle

7

Dispatcher Worker

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

PROCESS PER WORKER

Each worker is a separate OS process.
→ Relies on OS scheduler.
→ Use shared-memory for global data structures.
→ Examples: IBM DB2, Postgres, Oracle

7

Dispatcher Worker

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

PROCESS POOL

A worker uses any process that is free in a pool
→ Still relies on OS scheduler and shared memory.
→ Bad for CPU cache locality.
→ Examples: IBM DB2

8

Worker Pool Dispatcher

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

PROCESS POOL

A worker uses any process that is free in a pool
→ Still relies on OS scheduler and shared memory.
→ Bad for CPU cache locality.
→ Examples: IBM DB2

8

Worker Pool Dispatcher

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

THREAD PER WORKER

Single process with multiple worker threads.
→ DBMS has to manage its own scheduling.
→ May or may not use a dispatcher thread.
→ Examples: IBM DB2, MSSQL, MySQL, Oracle (Newer)

9

Worker Threads

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

PROCESS MODELS

Using a multi-threaded architecture has
several advantages:
→ Less overhead per context switch.
→ Don’t have to manage shared memory.

The thread per worker model does not mean
that you have intra-query parallelism.

I am not aware of any new DBMS built in the
last 7-8 years that doesn’t use threads.

10

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SCHEDULING

For each query plan, the DBMS has to decide
where, when, and how to execute it.
→ How many tasks should it use?
→ How many CPU cores should it use?
→ What CPU core should the tasks execute on?
→ Where should a task store its output?

The DBMS always knows more than the OS.

11

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

INTER-QUERY PARALLELISM

Improve overall performance by allowing
multiple queries to execute simultaneously.
→ Provide the illusion of isolation through concurrency

control scheme.

The difficulty of implementing a concurrency
control scheme is not significantly affected by
the DBMS’s process model.

12

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

INTRA-QUERY PARALLELISM

Improve the performance of a single query by
executing its operators in parallel.

Approach #1: Intra-Operator (Horizontal)
→ Operators are decomposed into independent

instances that perform the same function on
different subsets of data.

Approach #2: Inter-Operator (Vertical)
→ Operations are overlapped in order to pipeline data

from one stage to the next without materialization.

13

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

INTRA-OPERATOR PARALLELISM

14

SELECT A.id, B.value
 FROM A, B
 WHERE A.id = B.id
 AND A.value < 99
 AND B.value > 100

A B

⨝
σ

π

σ

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

INTRA-OPERATOR PARALLELISM

14

SELECT A.id, B.value
 FROM A, B
 WHERE A.id = B.id
 AND A.value < 99
 AND B.value > 100

A B

⨝
σ

π

σ

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

INTRA-OPERATOR PARALLELISM

14

SELECT A.id, B.value
 FROM A, B
 WHERE A.id = B.id
 AND A.value < 99
 AND B.value > 100

A2 A1 A3
A B

⨝
σ

π

σ

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

INTRA-OPERATOR PARALLELISM

14

SELECT A.id, B.value
 FROM A, B
 WHERE A.id = B.id
 AND A.value < 99
 AND B.value > 100

A2 A1 A3
1 2 3 A B

⨝
σ

π

σ

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

INTRA-OPERATOR PARALLELISM

14

SELECT A.id, B.value
 FROM A, B
 WHERE A.id = B.id
 AND A.value < 99
 AND B.value > 100

A2 A1 A3
1 2 3 A B

⨝
σ

π

σ

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

INTRA-OPERATOR PARALLELISM

14

SELECT A.id, B.value
 FROM A, B
 WHERE A.id = B.id
 AND A.value < 99
 AND B.value > 100

A2 A1 A3
1 2 3 A B

⨝
σ

π

σ σ σ σ

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

INTRA-OPERATOR PARALLELISM

14

SELECT A.id, B.value
 FROM A, B
 WHERE A.id = B.id
 AND A.value < 99
 AND B.value > 100

A2 A1 A3

Build HT Build HT Build HT

1 2 3 A B

⨝
σ

π

σ σ σ σ

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

INTRA-OPERATOR PARALLELISM

14

SELECT A.id, B.value
 FROM A, B
 WHERE A.id = B.id
 AND A.value < 99
 AND B.value > 100

A2 A1 A3

Build HT Build HT Build HT

1 2 3

Exchange

A B

⨝
σ

π

σ σ σ σ

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

INTRA-OPERATOR PARALLELISM

14

SELECT A.id, B.value
 FROM A, B
 WHERE A.id = B.id
 AND A.value < 99
 AND B.value > 100

A2 A1 A3

Build HT Build HT Build HT

1 2 3

Exchange

A B

⨝
σ

π

σ σ σ σ

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

INTRA-OPERATOR PARALLELISM

14

SELECT A.id, B.value
 FROM A, B
 WHERE A.id = B.id
 AND A.value < 99
 AND B.value > 100

A2 A1 A3

Build HT Build HT Build HT

B1 B2
1 2 3 4 5

Exchange

A B

⨝
σ

π

σ σ σ σ

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

INTRA-OPERATOR PARALLELISM

14

SELECT A.id, B.value
 FROM A, B
 WHERE A.id = B.id
 AND A.value < 99
 AND B.value > 100

A2 A1 A3

Build HT Build HT Build HT

B1 B2

Build HT Build HT

1 2 3 4 5

Exchange Exchange

σ σ

A B

⨝
σ

π

σ σ σ σ

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

INTRA-OPERATOR PARALLELISM

14

SELECT A.id, B.value
 FROM A, B
 WHERE A.id = B.id
 AND A.value < 99
 AND B.value > 100

A2 A1 A3

Build HT Build HT Build HT

B1 B2

Build HT Build HT

1 2 3 4 5

Exchange Exchange

σ σ

A B

⨝
σ

π

σ σ σ σ

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

INTRA-OPERATOR PARALLELISM

14

SELECT A.id, B.value
 FROM A, B
 WHERE A.id = B.id
 AND A.value < 99
 AND B.value > 100

A2 A1 A3

Build HT Build HT Build HT

B1 B2

Build HT Build HT

1 2 3 4 5

⨝
Exchange Exchange

σ σ

A B

⨝
σ

π

σ σ σ σ

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

INTRA-OPERATOR PARALLELISM

14

SELECT A.id, B.value
 FROM A, B
 WHERE A.id = B.id
 AND A.value < 99
 AND B.value > 100

A2 A1 A3

Build HT Build HT Build HT

B1 B2

Build HT Build HT

1 2 3 4 5

1 2 3 4

Probe HT Probe HT Probe HT Probe HT

⨝
Exchange Exchange

Exchange

σ σ

A B

⨝
σ

π

σ σ σ σ

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SELECT A.id, B.value
 FROM A, B
 WHERE A.id = B.id
 AND A.value < 99
 AND B.value > 100

INTER-OPERATOR PARALLELISM

15

A B

⨝
σ

π

σ

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SELECT A.id, B.value
 FROM A, B
 WHERE A.id = B.id
 AND A.value < 99
 AND B.value > 100

INTER-OPERATOR PARALLELISM

15

A B

⨝
σ

π

σ

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SELECT A.id, B.value
 FROM A, B
 WHERE A.id = B.id
 AND A.value < 99
 AND B.value > 100

INTER-OPERATOR PARALLELISM

15

1 ⨝
for r1 ∊ outer:
 for r2 ∊ inner:
 emit(r1⨝r2) A B

⨝
σ

π

σ

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SELECT A.id, B.value
 FROM A, B
 WHERE A.id = B.id
 AND A.value < 99
 AND B.value > 100

INTER-OPERATOR PARALLELISM

15

1 ⨝
for r1 ∊ outer:
 for r2 ∊ inner:
 emit(r1⨝r2)

2 π for r ∊ incoming:
 emit(πr)

A B

⨝
σ

π

σ

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SELECT A.id, B.value
 FROM A, B
 WHERE A.id = B.id
 AND A.value < 99
 AND B.value > 100

INTER-OPERATOR PARALLELISM

15

1 ⨝
for r1 ∊ outer:
 for r2 ∊ inner:
 emit(r1⨝r2)

2 π for r ∊ incoming:
 emit(πr)

A B

⨝
σ

π

σ

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

OBSERVATION

Coming up with the right number of workers
to use for a query plan depends on the number
of CPU cores, the size of the data, and
functionality of the operators.

16

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WORKER ALLOCATION

Approach #1: One Worker per Core
→ Each core is assigned one thread that is pinned to

that core in the OS.
→ See sched_setaffinity

Approach #2: Multiple Workers per Core
→ Use a pool of workers per core (or per socket).
→ Allows CPU cores to be fully utilized in case one

worker at a core blocks.

17

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://man7.org/linux/man-pages/man2/sched_setaffinity.2.html

CMU 15-721 (Spring 2016)

TASK ASSIGNMENT

Approach #1: Push
→ A centralized dispatcher assigns tasks to workers and

monitors their progress.
→ When the worker notifies the dispatcher that it is

finished, it is given a new task.

Approach #1: Pull
→ Workers pull the next task from a queue, process it,

and then return to get the next task.

18

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

OBSERVATION

Regardless of what worker allocation or task
assignment policy the DBMS uses, it’s
important that workers operate on local data.

The DBMS’s scheduler has to be aware of it’s
underlying hardware’s memory layout.
→ Uniform vs. Non-Uniform Memory Access

19

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

UNIFORM MEMORY ACCESS

20

Bus

Cache Cache Cache Cache

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

NON-UNIFORM MEMORY ACCESS

21

Ca
ch

e
Ca

ch
e Cache

Cache

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

DATA PLACEMENT

The DBMS can partition memory for a database
and assign each partition to a CPU.
By controlling and tracking the location of
partitions, it can schedule operators to execute
on workers at the closest CPU core.

See Linux’s move_pages

22

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://man7.org/linux/man-pages/man2/move_pages.2.html

CMU 15-721 (Spring 2016)

MEMORY ALLOCATION

What happens when the DBMS calls malloc?
→ Assume that the allocator doesn’t already have an

chunk of memory that it can give out.

23

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

MEMORY ALLOCATION

What happens when the DBMS calls malloc?
→ Assume that the allocator doesn’t already have an

chunk of memory that it can give out.

Actually, almost nothing:

23

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

MEMORY ALLOCATION

What happens when the DBMS calls malloc?
→ Assume that the allocator doesn’t already have an

chunk of memory that it can give out.

Actually, almost nothing:
→ The allocator will extend the process’ data segment.
→ But this new virtual memory is not immediately

backed by physical memory.
→ The OS only allocates physical memory when there is

a page fault.

23

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

MEMORY ALLOCATION LOCATION

Now after a page fault, where does the OS
allocate physical memory in a NUMA system?

Approach #1: Interleaving
→ Distribute allocated memory uniformly across CPUs.

Approach #2: First-Touch
→ At the CPU of the thread that accessed the memory

location that caused the page fault.

24

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

DATA PLACEMENT

25

Source: Danica Porobic

0

4000

8000

12000

Spread Group Mix OS

Th
ro

ug
hp

ut
 (t

xn
/s

ec
)

Workload: TPC-C Payment using 4 Workers
Processor: NUMA with 4 sockets (6 cores each)

? ?
? ?

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://15721.courses.cs.cmu.edu/spring2016/papers/p1447-porobic.pdf
http://15721.courses.cs.cmu.edu/spring2016/papers/p1447-porobic.pdf

CMU 15-721 (Spring 2016)

DATA PLACEMENT

25

Source: Danica Porobic

0

4000

8000

12000

Spread Group Mix OS

Th
ro

ug
hp

ut
 (t

xn
/s

ec
)

Workload: TPC-C Payment using 4 Workers
Processor: NUMA with 4 sockets (6 cores each)

? ?
? ?

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://15721.courses.cs.cmu.edu/spring2016/papers/p1447-porobic.pdf
http://15721.courses.cs.cmu.edu/spring2016/papers/p1447-porobic.pdf

CMU 15-721 (Spring 2016)

PARTITIONING VS. PLACEMENT

A partitioning scheme is used to split the
database based on some policy.
→ Round-robin
→ Attribute Ranges
→ Hashing
→ Partial/Full Replication

A placement scheme then tells the DBMS
where to put those partitions.
→ Round-robin
→ Interleave across cores

26

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

OBSERVATION

We have the following so far:
→ Process Model
→ Worker Allocation Model
→ Task Assignment Model
→ Data Placement Policy
→ Solid appreciation for the CMU-DB fam.

But how do we decide how to create a set of
tasks from a logical query plan?
→ This is relatively easy for OLTP queries.
→ Much harder for OLAP queries…

27

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

STATIC SCHEDULING

The DBMS decides how many threads to use to
execute the query when it generates the plan.

It does not change while the query executes.
→ The easiest approach is to just use the same # of tasks

as the # of cores.

28

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

MORSEL-DRIVEN SCHEDULING

Dynamic scheduling of tasks that operate over
horizontal partitions called “morsels” that are
distributed across cores.
→ One worker per core
→ Pull-based task assignment
→ Round-robin data placement

Supports parallel, NUMA-aware operator
implementations.

29

MORSEL-DRIVEN PARALLELISM: A NUMA-
AWARE QUERY EVALUATION FRAMEWORK FOR
THE MANY-CORE AGE
SIGMOD 2014

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://dl.acm.org/citation.cfm?id=1287407
http://dl.acm.org/citation.cfm?id=1287407

CMU 15-721 (Spring 2016)

HYPER: ARCHITECTURE

No separate dispatcher thread.
The threads perform cooperative scheduling
for each query plan.
→ Each worker has a queue of tasks that will execute on

morsels that are local to it.
→ It pulls the next task from a global work queue.

30

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Data Table

HYPER: DATA PARTITIONING

31

id a1 a2 a3

SELECT A.id, B.value
 FROM A, B
 WHERE A.id = B.id
 AND A.value < 99
 AND B.value > 100

A B

⨝
σ

π

σ

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Data Table

HYPER: DATA PARTITIONING

31

id a1 a2 a3

A2

A1

A3

Morsels

SELECT A.id, B.value
 FROM A, B
 WHERE A.id = B.id
 AND A.value < 99
 AND B.value > 100

A B

⨝
σ

π

σ

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Data Table

HYPER: DATA PARTITIONING

31

1

2

3

id a1 a2 a3

A2

A1

A3

Morsels

SELECT A.id, B.value
 FROM A, B
 WHERE A.id = B.id
 AND A.value < 99
 AND B.value > 100

A B

⨝
σ

π

σ

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Task Queues

HYPER: EXECUTION EXAMPLE

32

SELECT A.id, B.value
 FROM A, B
 WHERE A.id = B.id
 AND A.value < 99
 AND B.value > 100

A B

⨝
σ

π

σ 1

Morsels

Local Data

2

Morsels

Local Data

3

Morsels

Local Data

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Task Queues

HYPER: EXECUTION EXAMPLE

32

SELECT A.id, B.value
 FROM A, B
 WHERE A.id = B.id
 AND A.value < 99
 AND B.value > 100

A B

⨝
σ

π

σ 1

Morsels

Local Data

2

Morsels

Local Data

3

Morsels

Local Data

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Task Queues

HYPER: EXECUTION EXAMPLE

32

SELECT A.id, B.value
 FROM A, B
 WHERE A.id = B.id
 AND A.value < 99
 AND B.value > 100

A B

⨝
σ

π

σ 1

Morsels

Local Data

2

Morsels

Local Data

3

Morsels

Local Data

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Task Queues

HYPER: EXECUTION EXAMPLE

32

SELECT A.id, B.value
 FROM A, B
 WHERE A.id = B.id
 AND A.value < 99
 AND B.value > 100

A B

⨝
σ

π

σ 1

Morsels

Local Data

2

Morsels

Local Data

3

Morsels

Local Data

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Task Queues

HYPER: EXECUTION EXAMPLE

32

SELECT A.id, B.value
 FROM A, B
 WHERE A.id = B.id
 AND A.value < 99
 AND B.value > 100

A B

⨝
σ

π

σ 1

Morsels

Local Data

2

Morsels

Local Data

3

Morsels

Local Data

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Task Queues

HYPER: EXECUTION EXAMPLE

32

SELECT A.id, B.value
 FROM A, B
 WHERE A.id = B.id
 AND A.value < 99
 AND B.value > 100

A B

⨝
σ

π

σ 1

Morsels

Local Data

2

Morsels

Local Data

3

Morsels

Local Data

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Task Queues

HYPER: EXECUTION EXAMPLE

32

SELECT A.id, B.value
 FROM A, B
 WHERE A.id = B.id
 AND A.value < 99
 AND B.value > 100

A B

⨝
σ

π

σ 1

Morsels

Local Data

2

Morsels

Local Data

3

Morsels

Local Data

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Task Queues

HYPER: EXECUTION EXAMPLE

32

SELECT A.id, B.value
 FROM A, B
 WHERE A.id = B.id
 AND A.value < 99
 AND B.value > 100

A B

⨝
σ

π

σ 1

Morsels

Local Data

2

Morsels

Local Data

3

Morsels

Local Data

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Task Queues

HYPER: EXECUTION EXAMPLE

32

SELECT A.id, B.value
 FROM A, B
 WHERE A.id = B.id
 AND A.value < 99
 AND B.value > 100

A B

⨝
σ

π

σ 1

Morsels

Local Data

2

Morsels

Local Data

3

Morsels

Local Data

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Task Queues

HYPER: EXECUTION EXAMPLE

32

SELECT A.id, B.value
 FROM A, B
 WHERE A.id = B.id
 AND A.value < 99
 AND B.value > 100

A B

⨝
σ

π

σ 1

Morsels

Local Data

2

Morsels

Local Data

3

Morsels

Local Data

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Task Queues

HYPER: EXECUTION EXAMPLE

32

SELECT A.id, B.value
 FROM A, B
 WHERE A.id = B.id
 AND A.value < 99
 AND B.value > 100

A B

⨝
σ

π

σ 1

Morsels

Local Data

2

Morsels

Local Data

3

Morsels

Local Data

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Task Queues

HYPER: EXECUTION EXAMPLE

32

SELECT A.id, B.value
 FROM A, B
 WHERE A.id = B.id
 AND A.value < 99
 AND B.value > 100

A B

⨝
σ

π

σ 1

Morsels

Local Data

2

Morsels

Local Data

3

Morsels

Local Data

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Task Queues

HYPER: EXECUTION EXAMPLE

32

SELECT A.id, B.value
 FROM A, B
 WHERE A.id = B.id
 AND A.value < 99
 AND B.value > 100

A B

⨝
σ

π

σ 1

Morsels

Local Data

2

Morsels

Local Data

3

Morsels

Local Data

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Task Queues

HYPER: EXECUTION EXAMPLE

32

SELECT A.id, B.value
 FROM A, B
 WHERE A.id = B.id
 AND A.value < 99
 AND B.value > 100

A B

⨝
σ

π

σ 1

Morsels

Local Data

2

Morsels

Local Data

3

Morsels

Local Data

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Task Queues

HYPER: EXECUTION EXAMPLE

32

SELECT A.id, B.value
 FROM A, B
 WHERE A.id = B.id
 AND A.value < 99
 AND B.value > 100

A B

⨝
σ

π

σ 1

Morsels

Local Data

2

Morsels

Local Data

3

Morsels

Local Data

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

MORSEL-DRIVEN SCHEDULING

Because there is only one worker per core,
they have to use work stealing because
otherwise threads could sit idle waiting for
stragglers.

Uses a lock-free hash table to maintain the
global work queues.
→ We will discuss hash tables next class…

33

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

HANA NUMA-AWARE SCHEDULER

Pull-based scheduling with multiple worker
threads that are organized into groups (pools).
→ Each CPU can have multiple groups.
→ Each group has a soft and hard priority queue.

Uses a separate “watchdog” thread to check
whether groups are saturated and can reassign
tasks dynamically.

34

SCALING UP CONCURRENT MAIN-MEMORY
COLUMN-STORE SCANS: TOWARDS ADAPTIVE
NUMA-AWARE DATA AND TASK PLACEMENT
VLDB 2015

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://15721.courses.cs.cmu.edu/spring2016/papers/p1442-psaroudakis.pdf
http://15721.courses.cs.cmu.edu/spring2016/papers/p1442-psaroudakis.pdf

CMU 15-721 (Spring 2016)

HANA THREAD GROUPS

Each thread group has a soft and hard priority
task queues.
→ Threads are allowed to steal tasks from other groups’

soft queues.

Four different pools of thread per group:
→ Working: Actively executing a task.
→ Inactive: Blocked inside of the kernel due to a latch.
→ Free: Sleeps for a little, wake up to see whether there

is a new task to execute.
→ Parked: Like free but doesn’t wake up on its own.

35

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

HANA NUMA-AWARE SCHEDULER

Can dynamically adjust thread pinning based
on whether a task is CPU or memory bound.

Found that work stealing was not as beneficial
for systems with a larger number of sockets.

Using thread groups allows cores to execute
other tasks instead of just only queries.

36

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

PARTING THOUGHTS

A DBMS is a beautiful, strong-willed
independent piece of software.
But it has to make sure that it uses its
underlying hardware correctly.
→ Data location is an important aspect of this.
→ Tracking memory location in a single-node DBMS is

the same as tracking shards in a distributed DBMS

Don’t let the OS ruin your life.

37

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

10 CRACK COMMANDMENTS

In 1997, Christopher Wallace wrote a
prophetic list of rules to follow if you
are hustling product out on the streets.

Almost 20 years later, these rules are still apt
for both trapping and databases.

38

Wallace

10 CRACK COMMANDMENTS
BAD BOY RECORDS 1997

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
https://en.wikipedia.org/wiki/The_Notorious_B.I.G.
https://www.youtube.com/watch?v=ZYb_8MM1tGQ
https://www.youtube.com/watch?v=ZYb_8MM1tGQ

CMU 15-721 (Spring 2016)

10 CRACK COMMANDMENTS

39

6. Never lend anybody credit.

7. Never mix your family with your
business affairs.

8. Never keep a large amount of
product on yourself.

9. Never talk to the police.

10. Never take a consignment if you
do not have the clientele.

1. Never let people know how much
money you have.

2. Never let people know your next
move.

3. Never trust anybody.

4. Never sample your own supply.

5. Never sling where you live.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

NEXT CLASS

Parallel Hash Joins!

Project #2 Checkpoint: Monday Feb 22

40

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

	DATABASE SYSTEMS
	TODAY’S AGENDA
	MULTI-USER DATABASE APP STACK
	MULTI-USER DATABASE APP STACK
	MULTI-USER DATABASE APP STACK
	MULTI-USER DATABASE APP STACK
	QUERY EXECUTION
	PROCESS MODEL
	PROCESS MODELS
	PROCESS PER WORKER
	PROCESS PER WORKER
	PROCESS PER WORKER
	PROCESS PER WORKER
	PROCESS PER WORKER
	PROCESS POOL
	PROCESS POOL
	THREAD PER WORKER
	PROCESS MODELS
	SCHEDULING
	INTER-QUERY PARALLELISM
	INTRA-QUERY PARALLELISM
	INTRA-OPERATOR PARALLELISM
	INTRA-OPERATOR PARALLELISM
	INTRA-OPERATOR PARALLELISM
	INTRA-OPERATOR PARALLELISM
	INTRA-OPERATOR PARALLELISM
	INTRA-OPERATOR PARALLELISM
	INTRA-OPERATOR PARALLELISM
	INTRA-OPERATOR PARALLELISM
	INTRA-OPERATOR PARALLELISM
	INTRA-OPERATOR PARALLELISM
	INTRA-OPERATOR PARALLELISM
	INTRA-OPERATOR PARALLELISM
	INTRA-OPERATOR PARALLELISM
	INTRA-OPERATOR PARALLELISM
	INTER-OPERATOR PARALLELISM
	INTER-OPERATOR PARALLELISM
	INTER-OPERATOR PARALLELISM
	INTER-OPERATOR PARALLELISM
	INTER-OPERATOR PARALLELISM
	OBSERVATION
	WORKER ALLOCATION
	TASK ASSIGNMENT
	OBSERVATION
	UNIFORM MEMORY ACCESS
	NON-UNIFORM MEMORY ACCESS
	DATA PLACEMENT
	MEMORY ALLOCATION
	MEMORY ALLOCATION
	MEMORY ALLOCATION
	MEMORY ALLOCATION LOCATION
	DATA PLACEMENT
	DATA PLACEMENT
	PARTITIONING VS. PLACEMENT
	OBSERVATION
	STATIC SCHEDULING
	MORSEL-DRIVEN SCHEDULING
	HYPER: ARCHITECTURE
	HYPER: DATA PARTITIONING
	HYPER: DATA PARTITIONING
	HYPER: DATA PARTITIONING
	HYPER: EXECUTION EXAMPLE
	HYPER: EXECUTION EXAMPLE
	HYPER: EXECUTION EXAMPLE
	HYPER: EXECUTION EXAMPLE
	HYPER: EXECUTION EXAMPLE
	HYPER: EXECUTION EXAMPLE
	HYPER: EXECUTION EXAMPLE
	HYPER: EXECUTION EXAMPLE
	HYPER: EXECUTION EXAMPLE
	HYPER: EXECUTION EXAMPLE
	HYPER: EXECUTION EXAMPLE
	HYPER: EXECUTION EXAMPLE
	HYPER: EXECUTION EXAMPLE
	HYPER: EXECUTION EXAMPLE
	HYPER: EXECUTION EXAMPLE
	MORSEL-DRIVEN SCHEDULING
	HANA NUMA-AWARE SCHEDULER
	HANA THREAD GROUPS
	HANA NUMA-AWARE SCHEDULER
	PARTING THOUGHTS
	10 CRACK COMMANDMENTS
	10 CRACK COMMANDMENTS
	NEXT CLASS

