
Andy Pavlo // Carnegie Mellon University // Spring 2016

Lecture #13 – Physical Logging

DATABASE
SYSTEMS

15-721

CMU 15-721 (Spring 2016)

TODAY ’S AGENDA

Logging Schemes
Crash Course on ARIES
In-Memory Database Logging & Recovery
Evaluation

2

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

LOGGING & RECOVERY

Recovery algorithms are techniques to ensure
database consistency, txn atomicity and
durability despite failures.

Recovery algorithms have two parts:
→ Actions during normal txn processing to ensure that

the DBMS can recover from a failure.
→ Actions after a failure to recover the database to a

state that ensures atomicity, consistency, and
durability.

3

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

LOGGING SCHEMES

Physical Logging
→ Record the changes made to a specific record in the

database.
→ Example: Store the original value and after value for

an attribute that is changed by a query.

Logical Logging
→ Record the high-level operations executed by txns.
→ Example: The UPDATE, DELETE, and INSERT queries

invoked by a txn.

4

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

PHYSICAL VS. LOGICAL LOGGING

Logical logging writes less data in each log
record than physical logging.

Difficult to implement recovery with logical
logging if you have concurrent txns.
→ Hard to determine which parts of the database may

have been modified by a query before crash.
→ Also takes longer to recover because you must re-

execute every txn all over again.

5

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Logical Log

LOGICAL LOGGING EXAMPLE

6

UPDATE employees
 SET salary = salary * 1.10

UPDATE employees
 SET salary = 900
 WHERE name = ‘Joy’

NAME SALARY

O.D.B. $100

El-P $666

Joy $888

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Logical Log

LOGICAL LOGGING EXAMPLE

6

UPDATE employees
 SET salary = salary * 1.10

UPDATE employees
 SET salary = 900
 WHERE name = ‘Joy’

NAME SALARY

O.D.B. $100

El-P $666

Joy $888

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Logical Log

LOGICAL LOGGING EXAMPLE

6

UPDATE employees
 SET salary = salary * 1.10

UPDATE employees
 SET salary = 900
 WHERE name = ‘Joy’

NAME SALARY

O.D.B. $100

El-P $666

Joy $888

UPDATE employees SET
salary = salary * 1.10

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Logical Log

LOGICAL LOGGING EXAMPLE

6

UPDATE employees
 SET salary = salary * 1.10

UPDATE employees
 SET salary = 900
 WHERE name = ‘Joy’

NAME SALARY

O.D.B. $100

El-P $666

Joy $888

UPDATE employees SET
salary = salary * 1.10

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Logical Log

LOGICAL LOGGING EXAMPLE

6

UPDATE employees
 SET salary = salary * 1.10

UPDATE employees
 SET salary = 900
 WHERE name = ‘Joy’

NAME SALARY

O.D.B. $100

El-P $666

Joy $888

UPDATE employees SET
salary = salary * 1.10

$110

$732

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Logical Log

LOGICAL LOGGING EXAMPLE

6

UPDATE employees
 SET salary = salary * 1.10

UPDATE employees
 SET salary = 900
 WHERE name = ‘Joy’

NAME SALARY

O.D.B. $100

El-P $666

Joy $888

UPDATE employees SET
salary = 900 WHERE
name = ‘Joy’

UPDATE employees SET
salary = salary * 1.10

$110

$732

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Logical Log

LOGICAL LOGGING EXAMPLE

6

UPDATE employees
 SET salary = salary * 1.10

UPDATE employees
 SET salary = 900
 WHERE name = ‘Joy’

NAME SALARY

O.D.B. $100

El-P $666

Joy $888

UPDATE employees SET
salary = 900 WHERE
name = ‘Joy’

UPDATE employees SET
salary = salary * 1.10

$110

$732

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Logical Log

LOGICAL LOGGING EXAMPLE

6

UPDATE employees
 SET salary = salary * 1.10

UPDATE employees
 SET salary = 900
 WHERE name = ‘Joy’

NAME SALARY

O.D.B. $100

El-P $666

Joy $888 $900

UPDATE employees SET
salary = 900 WHERE
name = ‘Joy’

UPDATE employees SET
salary = salary * 1.10

$110

$732

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Logical Log

LOGICAL LOGGING EXAMPLE

6

UPDATE employees
 SET salary = salary * 1.10

UPDATE employees
 SET salary = 900
 WHERE name = ‘Joy’

NAME SALARY

O.D.B. $100

El-P $666

Joy $888 $900

UPDATE employees SET
salary = 900 WHERE
name = ‘Joy’

UPDATE employees SET
salary = salary * 1.10

$110

$732

$990

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Logical Log

LOGICAL LOGGING EXAMPLE

6

UPDATE employees
 SET salary = salary * 1.10

UPDATE employees
 SET salary = 900
 WHERE name = ‘Joy’

NAME SALARY

O.D.B. $100

El-P $666

Joy $888 $900

UPDATE employees SET
salary = 900 WHERE
name = ‘Joy’

UPDATE employees SET
salary = salary * 1.10

$110

$732

$990 X

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Logical Log

LOGICAL LOGGING EXAMPLE

6

UPDATE employees
 SET salary = salary * 1.10

UPDATE employees
 SET salary = 900
 WHERE name = ‘Joy’

NAME SALARY

O.D.B. $100

El-P $666

Joy $888 $900

UPDATE employees SET
salary = 900 WHERE
name = ‘Joy’

UPDATE employees SET
salary = salary * 1.10

$110

$732

SALARY

$110

$732

$900 $990 X

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

DISK-ORIENTED LOGGING & RECOVERY

The “gold standard” for physical logging &
recovery in a disk-oriented DBMS is ARIES.
→ Algorithms for Recovery and Isolation Exploiting

Semantics
→ Invented by IBM Research in the early 1990s.

Relies on STEAL and NO-FORCE buffer pool
management policies.

7

ARIES: A TRANSACTION RECOVERY METHOD
SUPPORTING FINE-GRANULARITY LOCKING AND
PARTIAL ROLLBACKS USING WRITE-AHEAD LOGGING
ACM Transactions on Database Systems 1992

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://dl.acm.org/citation.cfm?id=128770
http://dl.acm.org/citation.cfm?id=128770

CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

ARIES – MAIN IDEAS

Write-Ahead Logging:
→ Any change is recorded in log on stable storage

before the database change is written to disk.

Repeating History During Redo:
→ On restart, retrace actions and restore database to

exact state before crash.

Logging Changes During Undo:
→ Record undo actions to log to ensure action is not

repeated in the event of repeated failures.

9

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

ARIES – RUNTIME LOGGING

For each modification to the database, the
DBMS appends a record to the tail of the log.

When a txn commits, its log records are
flushed to durable storage.

10

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

ARIES – RUNTIME CHECKPOINTS

Use fuzzy checkpoints to allow txns to keep on
running while writing checkpoint.
→ The checkpoint may contain updates from txns that

have not committed and may abort later on.

The DBMS records internal system state as of
the beginning of the checkpoint.
→ Active Transaction Table (ATT)
→ Dirty Page Table (DPT)

11

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

LOG SEQUENCE NUMBERS

Every log record has a globally unique log
sequence number (LSN) that is used to
determine the serial order of those records.

The DBMS keeps track of various LSNs in both
volatile and non-volatile storage to determine
the order of almost everything in the system…

12

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

LOG SEQUENCE NUMBERS

Each page contains a pageLSN that represents
the LSN of the most recent update to that page.

The DBMS keeps track of the max log record
written to disk (flushedLSN).

For a page i to be written, the DBMS must flush
log at least to the point where pageLSNi ≤
flushedLSN

13

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Non-Volatile Storage

Buffer Pool

WAL (Tail)

LOG SEQUENCE NUMBERS

14

015:<T5 begin>
016:<T5, A, 99, 88>
017:<T5, B, 5, 10>
018:<T5 commit>
 ⋮

pageLSN

A=99 B=5 C=12

pageLSN

A=99 B=5 C=12

001:<T1 begin>
002:<T1, A, 1, 2>
003:<T1 commit>
004:<T2 begin>
005:<T2, A, 2, 3>
006:<T3 begin>
007:<CHECKPOINT>
008:<T2 commit>
009:<T4 begin>
010:<T4, X, 5, 6>
011:<T3, B, 4, 2>
012:<T3 commit>
013:<T4, B, 2, 3>
014:<T4, C, 1, 2>

flushedLSN Master Record

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Non-Volatile Storage

Buffer Pool

WAL (Tail)

LOG SEQUENCE NUMBERS

14

015:<T5 begin>
016:<T5, A, 99, 88>
017:<T5, B, 5, 10>
018:<T5 commit>
 ⋮

pageLSN

A=99 B=5 C=12

pageLSN

A=99 B=5 C=12

001:<T1 begin>
002:<T1, A, 1, 2>
003:<T1 commit>
004:<T2 begin>
005:<T2, A, 2, 3>
006:<T3 begin>
007:<CHECKPOINT>
008:<T2 commit>
009:<T4 begin>
010:<T4, X, 5, 6>
011:<T3, B, 4, 2>
012:<T3 commit>
013:<T4, B, 2, 3>
014:<T4, C, 1, 2>

flushedLSN Master Record

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Non-Volatile Storage

Buffer Pool

WAL (Tail)

LOG SEQUENCE NUMBERS

14

015:<T5 begin>
016:<T5, A, 99, 88>
017:<T5, B, 5, 10>
018:<T5 commit>
 ⋮

pageLSN

A=99 B=5 C=12

pageLSN

A=99 B=5 C=12

001:<T1 begin>
002:<T1, A, 1, 2>
003:<T1 commit>
004:<T2 begin>
005:<T2, A, 2, 3>
006:<T3 begin>
007:<CHECKPOINT>
008:<T2 commit>
009:<T4 begin>
010:<T4, X, 5, 6>
011:<T3, B, 4, 2>
012:<T3 commit>
013:<T4, B, 2, 3>
014:<T4, C, 1, 2>

flushedLSN Master Record

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Non-Volatile Storage

Buffer Pool

WAL (Tail)

LOG SEQUENCE NUMBERS

14

015:<T5 begin>
016:<T5, A, 99, 88>
017:<T5, B, 5, 10>
018:<T5 commit>
 ⋮

pageLSN

A=99 B=5 C=12

pageLSN

A=99 B=5 C=12

001:<T1 begin>
002:<T1, A, 1, 2>
003:<T1 commit>
004:<T2 begin>
005:<T2, A, 2, 3>
006:<T3 begin>
007:<CHECKPOINT>
008:<T2 commit>
009:<T4 begin>
010:<T4, X, 5, 6>
011:<T3, B, 4, 2>
012:<T3 commit>
013:<T4, B, 2, 3>
014:<T4, C, 1, 2>

flushedLSN Master Record

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Non-Volatile Storage

Buffer Pool

WAL (Tail)

LOG SEQUENCE NUMBERS

14

015:<T5 begin>
016:<T5, A, 99, 88>
017:<T5, B, 5, 10>
018:<T5 commit>
 ⋮

pageLSN

A=99 B=5 C=12

pageLSN

A=99 B=5 C=12

001:<T1 begin>
002:<T1, A, 1, 2>
003:<T1 commit>
004:<T2 begin>
005:<T2, A, 2, 3>
006:<T3 begin>
007:<CHECKPOINT>
008:<T2 commit>
009:<T4 begin>
010:<T4, X, 5, 6>
011:<T3, B, 4, 2>
012:<T3 commit>
013:<T4, B, 2, 3>
014:<T4, C, 1, 2>

flushedLSN Master Record

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Non-Volatile Storage

Buffer Pool

WAL (Tail)

LOG SEQUENCE NUMBERS

14

015:<T5 begin>
016:<T5, A, 99, 88>
017:<T5, B, 5, 10>
018:<T5 commit>
 ⋮

pageLSN

A=99 B=5 C=12

pageLSN

A=99 B=5 C=12

001:<T1 begin>
002:<T1, A, 1, 2>
003:<T1 commit>
004:<T2 begin>
005:<T2, A, 2, 3>
006:<T3 begin>
007:<CHECKPOINT>
008:<T2 commit>
009:<T4 begin>
010:<T4, X, 5, 6>
011:<T3, B, 4, 2>
012:<T3 commit>
013:<T4, B, 2, 3>
014:<T4, C, 1, 2>

flushedLSN Master Record

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Non-Volatile Storage

Buffer Pool

WAL (Tail)

LOG SEQUENCE NUMBERS

14

015:<T5 begin>
016:<T5, A, 99, 88>
017:<T5, B, 5, 10>
018:<T5 commit>
 ⋮

pageLSN

A=99 B=5 C=12

pageLSN

A=99 B=5 C=12

001:<T1 begin>
002:<T1, A, 1, 2>
003:<T1 commit>
004:<T2 begin>
005:<T2, A, 2, 3>
006:<T3 begin>
007:<CHECKPOINT>
008:<T2 commit>
009:<T4 begin>
010:<T4, X, 5, 6>
011:<T3, B, 4, 2>
012:<T3 commit>
013:<T4, B, 2, 3>
014:<T4, C, 1, 2>

flushedLSN Master Record

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Non-Volatile Storage

Buffer Pool

WAL (Tail)

LOG SEQUENCE NUMBERS

14

015:<T5 begin>
016:<T5, A, 99, 88>
017:<T5, B, 5, 10>
018:<T5 commit>
 ⋮

pageLSN

A=99 B=5 C=12

pageLSN

A=99 B=5 C=12

001:<T1 begin>
002:<T1, A, 1, 2>
003:<T1 commit>
004:<T2 begin>
005:<T2, A, 2, 3>
006:<T3 begin>
007:<CHECKPOINT>
008:<T2 commit>
009:<T4 begin>
010:<T4, X, 5, 6>
011:<T3, B, 4, 2>
012:<T3 commit>
013:<T4, B, 2, 3>
014:<T4, C, 1, 2>

flushedLSN Master Record

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Non-Volatile Storage

Buffer Pool

WAL (Tail)

LOG SEQUENCE NUMBERS

14

015:<T5 begin>
016:<T5, A, 99, 88>
017:<T5, B, 5, 10>
018:<T5 commit>
 ⋮

pageLSN

A=99 B=5 C=12

pageLSN

A=99 B=5 C=12

001:<T1 begin>
002:<T1, A, 1, 2>
003:<T1 commit>
004:<T2 begin>
005:<T2, A, 2, 3>
006:<T3 begin>
007:<CHECKPOINT>
008:<T2 commit>
009:<T4 begin>
010:<T4, X, 5, 6>
011:<T3, B, 4, 2>
012:<T3 commit>
013:<T4, B, 2, 3>
014:<T4, C, 1, 2>

flushedLSN Master Record

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Non-Volatile Storage

Buffer Pool

WAL (Tail)

LOG SEQUENCE NUMBERS

14

015:<T5 begin>
016:<T5, A, 99, 88>
017:<T5, B, 5, 10>
018:<T5 commit>
 ⋮

pageLSN

A=99 B=5 C=12

pageLSN

A=99 B=5 C=12

001:<T1 begin>
002:<T1, A, 1, 2>
003:<T1 commit>
004:<T2 begin>
005:<T2, A, 2, 3>
006:<T3 begin>
007:<CHECKPOINT>
008:<T2 commit>
009:<T4 begin>
010:<T4, X, 5, 6>
011:<T3, B, 4, 2>
012:<T3 commit>
013:<T4, B, 2, 3>
014:<T4, C, 1, 2>

flushedLSN Master Record

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Non-Volatile Storage

Buffer Pool

WAL (Tail)

LOG SEQUENCE NUMBERS

14

015:<T5 begin>
016:<T5, A, 99, 88>
017:<T5, B, 5, 10>
018:<T5 commit>
 ⋮

pageLSN

A=99 B=5 C=12

pageLSN

A=99 B=5 C=12

001:<T1 begin>
002:<T1, A, 1, 2>
003:<T1 commit>
004:<T2 begin>
005:<T2, A, 2, 3>
006:<T3 begin>
007:<CHECKPOINT>
008:<T2 commit>
009:<T4 begin>
010:<T4, X, 5, 6>
011:<T3, B, 4, 2>
012:<T3 commit>
013:<T4, B, 2, 3>
014:<T4, C, 1, 2>

flushedLSN Master Record
X

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

DISK-ORIENTED DBMS OVERHEAD

15

BUFFER POOL

LOCKING

RECOVERY

REAL WORK

28%
30%

30%
12%

Measured CPU Cycles

OLTP THROUGH THE LOOKING GLASS,
AND WHAT WE FOUND THERE
SIGMOD, pp. 981-992, 2008.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://hstore.cs.brown.edu/papers/hstore-lookingglass.pdf

CMU 15-721 (Spring 2016)

ARIES – RECOVERY PHASES

Phase #1: Analysis
→ Read the WAL to identify dirty pages in the buffer

pool and active txns at the time of the crash.

Phase #2: Redo
→ Repeat all actions starting from an appropriate point

in the log.
→ Log redo steps in case of crash during recovery.

Phase #3: Undo
→ Reverse the actions of txns that did not commit

before the crash.

16

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

OBSERVATION

Often the slowest part of the txn is waiting for
the DBMS to flush the log records to disk.

Have to wait until the records are safely
written before the DBMS can return the
acknowledgement to the client.

17

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

GROUP COMMIT

Batch together log records from multiple txns
and flush them together with a single fsync.
→ Logs are flushed either after a timeout or when the

buffer gets full.
→ Originally developed in IBM IMS FastPath in the 1980s

This amortizes the cost of I/O over several txns.

18

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
https://en.wikipedia.org/wiki/IBM_Information_Management_System

CMU 15-721 (Spring 2016)

EARLY LOCK RELEASE

A txn’s locks can be released before its commit
record is written to disk as long as it does not
return results to the client before becoming
durable.

Other txns that read data updated by a pre-
committed txn become dependent on it and
also have to wait for their predecessor’s log
records to reach disk.

19

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

IN-MEMORY DATABASE RECOVERY

Recovery is slightly easier because the DBMS
does not have to worry about tracking dirty
pages in case of a crash during recovery.
An in-memory DBMS also does not need to
store undo records.

But the DBMS is still stymied by the slow sync
time of non-volatile storage

20

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

OBSERVATION

The early papers (1980s) on recovery for in-
memory DBMSs assume that there is non-
volatile memory.

This hardware is still not widely available so
we want to use existing SSD/HDDs.

21

A RECOVERY ALGORITHM FOR A HIGH-
PERFORMANCE MEMORY-RESIDENT
DATABASE SYSTEM
SIGMOD 1987

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://15721.courses.cs.cmu.edu/spring2016/papers/p85-balkesen.pdf
http://15721.courses.cs.cmu.edu/spring2016/papers/p85-balkesen.pdf

CMU 15-721 (Spring 2016)

SILO – LOGGING AND RECOVERY

SiloR uses the epoch-based OCC that we
discussed previously.
It achieves high performance by parallelizing
all aspects of logging, checkpointing, and
recovery.

Again, Eddie Kohler is unstoppable.

22

FAST DATABASES WITH FAST DURABILITY AND
RECOVERY THROUGH MULTICORE PARALLELISM
OSDI 2014

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
https://en.wikipedia.org/wiki/File:EddieKohlerHarvard-MaleTears-August2014.jpg
http://15721.courses.cs.cmu.edu/spring2016/papers/p85-balkesen.pdf
http://15721.courses.cs.cmu.edu/spring2016/papers/p85-balkesen.pdf

CMU 15-721 (Spring 2016)

SILOR – LOGGING PROTOCOL

The DBMS assumes that there is one storage
device per CPU socket.
→ Assigns one logger thread per device.
→ Worker threads are grouped per CPU socket.

As the worker executes a txn, it creates new
log records that contain the values that were
written to the database (i.e., REDO).

23

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SILOR – LOGGING PROTOCOL

Each logger thread maintains a pool of log
buffers that are given to its worker threads.

When a worker’s buffer is full, it gives it back
to the logger thread to flush to disk and
attempts to acquire a new one.
→ If there are no available buffers, then it stalls.

24

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SILOR – LOG FILES

The logger threads write buffers out to files
→ After 100 epochs, it creates a new file.
→ The old file is renamed with a marker indicating the

max epoch of records that it contains.

Log record format:
→ Id of the txn that modified the record (TID).
→ A set of value log triplets (Table, Key, Value).
→ The value can be a list of attribute + value pairs.

25

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SILOR – LOG FILES

The logger threads write buffers out to files
→ After 100 epochs, it creates a new file.
→ The old file is renamed with a marker indicating the

max epoch of records that it contains.

Log record format:
→ Id of the txn that modified the record (TID).
→ A set of value log triplets (Table, Key, Value).
→ The value can be a list of attribute + value pairs.

25

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SILOR – LOG FILES

The logger threads write buffers out to files
→ After 100 epochs, it creates a new file.
→ The old file is renamed with a marker indicating the

max epoch of records that it contains.

Log record format:
→ Id of the txn that modified the record (TID).
→ A set of value log triplets (Table, Key, Value).
→ The value can be a list of attribute + value pairs.

25

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SILOR – LOG FILES

The logger threads write buffers out to files
→ After 100 epochs, it creates a new file.
→ The old file is renamed with a marker indicating the

max epoch of records that it contains.

Log record format:
→ Id of the txn that modified the record (TID).
→ A set of value log triplets (Table, Key, Value).
→ The value can be a list of attribute + value pairs.

25

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SILOR – LOG FILES

The logger threads write buffers out to files
→ After 100 epochs, it creates a new file.
→ The old file is renamed with a marker indicating the

max epoch of records that it contains.

Log record format:
→ Id of the txn that modified the record (TID).
→ A set of value log triplets (Table, Key, Value).
→ The value can be a list of attribute + value pairs.

25

UPDATE people
 SET isLame = true
 WHERE name IN (‘Joy’,‘Andy’)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SILOR – LOG FILES

The logger threads write buffers out to files
→ After 100 epochs, it creates a new file.
→ The old file is renamed with a marker indicating the

max epoch of records that it contains.

Log record format:
→ Id of the txn that modified the record (TID).
→ A set of value log triplets (Table, Key, Value).
→ The value can be a list of attribute + value pairs.

25

UPDATE people
 SET isLame = true
 WHERE name IN (‘Joy’,‘Andy’)

Txn#1001
[people, 888, (isLame→true)]
[people, 999, (isLame→true)]

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Storage

SILOR – ARCHITECTURE

26

Epoch
Thread

Worker Logger
Free
Buffers

Flushing
Buffers

Log Files

epoch=100

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Storage

SILOR – ARCHITECTURE

26

Epoch
Thread

Worker Logger
Free
Buffers

Flushing
Buffers

Log Files

epoch=100

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Storage

SILOR – ARCHITECTURE

26

Epoch
Thread

Worker Logger
Free
Buffers

Flushing
Buffers

Log Files

epoch=100

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Storage

SILOR – ARCHITECTURE

26

Epoch
Thread

Worker Logger
Free
Buffers

Flushing
Buffers

Log Files

epoch=100

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Storage

SILOR – ARCHITECTURE

26

Epoch
Thread

Worker Logger
Free
Buffers

Flushing
Buffers

Log Files

epoch=100

Log Records

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Storage

SILOR – ARCHITECTURE

26

Epoch
Thread

Worker Logger
Free
Buffers

Flushing
Buffers

Log Files

epoch=100

Log Records

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Storage

SILOR – ARCHITECTURE

26

Epoch
Thread

Worker Logger
Free
Buffers

Flushing
Buffers

Log Files

epoch=100

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Storage

SILOR – ARCHITECTURE

26

Epoch
Thread

Worker Logger
Free
Buffers

Flushing
Buffers

Log Files

epoch=100

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Storage

SILOR – ARCHITECTURE

26

Epoch
Thread

Worker Logger
Free
Buffers

Flushing
Buffers

Log Files

epoch=100

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Storage

SILOR – ARCHITECTURE

26

Epoch
Thread

Worker Logger
Free
Buffers

Flushing
Buffers

Log Files

epoch=200

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Storage

SILOR – ARCHITECTURE

26

Epoch
Thread

Worker Logger
Free
Buffers

Flushing
Buffers

Log Files

epoch=200

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Storage

SILOR – ARCHITECTURE

26

Epoch
Thread

Worker Logger
Free
Buffers

Flushing
Buffers

Log Files

epoch=200

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Storage

SILOR – ARCHITECTURE

26

Epoch
Thread

Worker Logger
Free
Buffers

Flushing
Buffers

Log Files

epoch=200

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Storage

SILOR – ARCHITECTURE

26

Epoch
Thread

Worker Logger
Free
Buffers

Flushing
Buffers

Log Files

epoch=200

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Storage

SILOR – ARCHITECTURE

26

Epoch
Thread

Worker Logger
Free
Buffers

Flushing
Buffers

Log Files

epoch=200

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Storage

SILOR – ARCHITECTURE

26

Epoch
Thread

Worker Logger
Free
Buffers

Flushing
Buffers

Log Files

epoch=200

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Storage

SILOR – ARCHITECTURE

26

Epoch
Thread

Worker Logger
Free
Buffers

Flushing
Buffers

Log Files

epoch=200

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Storage

SILOR – ARCHITECTURE

26

Epoch
Thread

Worker Logger
Free
Buffers

Flushing
Buffers

Log Files

epoch=200

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Storage

SILOR – ARCHITECTURE

26

Epoch
Thread

Worker Logger
Free
Buffers

Flushing
Buffers

Log Files

epoch=200

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SILOR – PERSISTENT EPOCH

A special logger thread keeps track of the
current persistent epoch (pepoch)
→ Special log file that maintains the highest epoch that

is durable across all loggers.

Txns that executed in epoch e can only release
their results when the pepoch is durable to
non-volatile storage.

27

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SILOR – ARCHITECTURE

28

Epoch
Thread

epoch=100

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SILOR – ARCHITECTURE

28

Epoch
Thread

epoch=100

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SILOR – ARCHITECTURE

28

Epoch
Thread

epoch=100

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SILOR – ARCHITECTURE

28

Epoch
Thread

epoch=100

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SILOR – ARCHITECTURE

28

Epoch
Thread

P epoch=100

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SILOR – ARCHITECTURE

28

Epoch
Thread

P epoch=200

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SILOR – ARCHITECTURE

28

Epoch
Thread

P

epoch=200

epoch=200

epoch=200

pepoch=200

epoch=200

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SILOR – ARCHITECTURE

28

Epoch
Thread

P

epoch=200

epoch=200

epoch=200

pepoch=200

epoch=200

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SILOR – CHECKPOINT PROTOCOL

One checkpointer thread per disk.
→ The database is range partitioned and each thread

writes to multiple file on a single disk.

Even though the database does not contain
changes for uncommitted txns, it still may not
see a consistent view of the database.
→ Multiple tuple changes are not atomic.

29

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

OBSERVATION

Creating a checkpoint in an MVCC DBMS is
easy because older versions are still available.

VoltDB switches into a “multi-version” mode
when it takes checkpoints.

30

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

CHECKPOINTS – FREQUENCY

Checkpointing too often causes the runtime
performance to degrade.
→ The DBMS will spend too much time flushing buffers.

But waiting a long time between checkpoints is
just as bad:
→ It will make recovery time much longer because the

DBMS will have to replay a large log.

31

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

OBSERVATION

Certain segments of the database may not have
changed from the last checkpoint.

Why can’t the DBMS keep track of what blocks
haven’t changed since the last checkpoint and
store a pointer to them in that checkpoint?

32

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SILOR – RECOVERY PROTOCOL

Phase #1: Load Last Checkpoint
→ Install the contents of the last checkpoint that was

saved into the database.
→ All indexes have to be rebuilt.

Phase #2: Replay Log
→ Process logs in reverse order to reconcile the latest

version of each tuple.

33

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

CHECKPOINT RECOVERY

Multiple threads process the different
checkpoint files on each disk.

Sequentially scan the records in each
checkpoint file and insert them into database.

34

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

LOG RECOVERY

First check the pepoch file to determine the
most recent persistent epoch.
→ Any log record from after the pepoch is ignored.

Log files are processed from newest to oldest.
→ Value logging is able to be replayed in any order.
→ For each log record, the thread checks to see whether

the tuple already exists.
→ If it does not, then it is created with the value.
→ If it does, then the tuple’s value is overwritten only if

the log TID is newer than tuple’s TID.

35

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SILOR – RECOVERY PROTOCOL

36

P

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SILOR – RECOVERY PROTOCOL

36

P

pepoch=200

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SILOR – RECOVERY PROTOCOL

36

P

pepoch=200

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SILOR – RECOVERY PROTOCOL

36

P

pepoch=200

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SILOR – RECOVERY PROTOCOL

36

P

pepoch=200

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SILOR – RECOVERY PROTOCOL

36

P

pepoch=200

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SILOR – RECOVERY PROTOCOL

36

P

pepoch=200

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SILOR – RECOVERY PROTOCOL

36

P

pepoch=200

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

OBSERVATION

The txn ids generated at runtime are enough
to determine the serial order on recovery.

This is why SiloR does not need to maintain
separate log sequence numbers for each entry.

37

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

EVALUATION

Comparing Silo performance with and without
logging and checkpoints
YCSB + TPC-C Benchmarks

Hardware:
→ Four Intel Xeon E7-4830 CPUs (8 cores per socket)
→ 256 GB of DRAM
→ Three Fusion ioDrive2
→ RAID-5 Disk Array

38

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

EVALUATION

Comparing Silo performance with and without
logging and checkpoints
YCSB + TPC-C Benchmarks

Hardware:
→ Four Intel Xeon E7-4830 CPUs (8 cores per socket)
→ 256 GB of DRAM
→ Three Fusion ioDrive2
→ RAID-5 Disk Array

38

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

YCSB-A

39

70% Reads / 30% Writes

Average Throughput
 SiloR: 8.76M txns/s
 LogSilo: 9.01M txns/s
 MemSilo: 10.83M txns/s

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

TPC-C

40

 28 workers, 4 loggers, 4 checkpoint threads

Logging+Checkpoints Logging Only No Recovery

Average Throughput
 SiloR: 548K txns/s
 LogSilo: 575K txns/s
 MemSilo: 592 txns/s

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

RECOVERY T IMES

41

Recovered
Database Checkpoint Log Total

Y
CS

B
 Size 43.2 GB 36 GB 64 GB 100 GB

Recovery - 33 sec 73 sec 106 sec

TP
C-

C Size 72.2 GB 16.7 GB 180 GB 195.7 GB

Recovery - 17 sec 194 sec 211 sec

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

PARTING THOUGHTS

Physical logging is a general purpose approach
that supports all concurrency control schemes.

42

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

NEXT CLASS

Checkpoint Schemes
Logical Logging
Facebook’s Fast Restarts

43

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

	DATABASE SYSTEMS
	TODAY’S AGENDA
	LOGGING & RECOVERY
	LOGGING SCHEMES
	PHYSICAL VS. LOGICAL LOGGING
	LOGICAL LOGGING EXAMPLE
	LOGICAL LOGGING EXAMPLE
	LOGICAL LOGGING EXAMPLE
	LOGICAL LOGGING EXAMPLE
	LOGICAL LOGGING EXAMPLE
	LOGICAL LOGGING EXAMPLE
	LOGICAL LOGGING EXAMPLE
	LOGICAL LOGGING EXAMPLE
	LOGICAL LOGGING EXAMPLE
	LOGICAL LOGGING EXAMPLE
	LOGICAL LOGGING EXAMPLE
	DISK-ORIENTED LOGGING & RECOVERY
	Slide Number 18
	Slide Number 19
	ARIES – MAIN IDEAS
	ARIES – RUNTIME LOGGING
	ARIES – RUNTIME CHECKPOINTS
	LOG SEQUENCE NUMBERS
	LOG SEQUENCE NUMBERS
	LOG SEQUENCE NUMBERS
	LOG SEQUENCE NUMBERS
	LOG SEQUENCE NUMBERS
	LOG SEQUENCE NUMBERS
	LOG SEQUENCE NUMBERS
	LOG SEQUENCE NUMBERS
	LOG SEQUENCE NUMBERS
	LOG SEQUENCE NUMBERS
	LOG SEQUENCE NUMBERS
	LOG SEQUENCE NUMBERS
	LOG SEQUENCE NUMBERS
	DISK-ORIENTED DBMS OVERHEAD
	ARIES – RECOVERY PHASES
	OBSERVATION
	GROUP COMMIT
	EARLY LOCK RELEASE
	IN-MEMORY DATABASE RECOVERY
	OBSERVATION
	SILO – LOGGING AND RECOVERY
	SILOR – LOGGING PROTOCOL
	SILOR – LOGGING PROTOCOL
	SILOR – LOG FILES
	SILOR – LOG FILES
	SILOR – LOG FILES
	SILOR – LOG FILES
	SILOR – LOG FILES
	SILOR – LOG FILES
	SILOR – ARCHITECTURE
	SILOR – ARCHITECTURE
	SILOR – ARCHITECTURE
	SILOR – ARCHITECTURE
	SILOR – ARCHITECTURE
	SILOR – ARCHITECTURE
	SILOR – ARCHITECTURE
	SILOR – ARCHITECTURE
	SILOR – ARCHITECTURE
	SILOR – ARCHITECTURE
	SILOR – ARCHITECTURE
	SILOR – ARCHITECTURE
	SILOR – ARCHITECTURE
	SILOR – ARCHITECTURE
	SILOR – ARCHITECTURE
	SILOR – ARCHITECTURE
	SILOR – ARCHITECTURE
	SILOR – ARCHITECTURE
	SILOR – ARCHITECTURE
	SILOR – PERSISTENT EPOCH
	SILOR – ARCHITECTURE
	SILOR – ARCHITECTURE
	SILOR – ARCHITECTURE
	SILOR – ARCHITECTURE
	SILOR – ARCHITECTURE
	SILOR – ARCHITECTURE
	SILOR – ARCHITECTURE
	SILOR – ARCHITECTURE
	SILOR – CHECKPOINT PROTOCOL
	OBSERVATION
	CHECKPOINTS – FREQUENCY
	OBSERVATION
	SILOR – RECOVERY PROTOCOL
	CHECKPOINT RECOVERY
	LOG RECOVERY
	SILOR – RECOVERY PROTOCOL
	SILOR – RECOVERY PROTOCOL
	SILOR – RECOVERY PROTOCOL
	SILOR – RECOVERY PROTOCOL
	SILOR – RECOVERY PROTOCOL
	SILOR – RECOVERY PROTOCOL
	SILOR – RECOVERY PROTOCOL
	SILOR – RECOVERY PROTOCOL
	OBSERVATION
	EVALUATION
	EVALUATION
	YCSB-A
	TPC-C
	RECOVERY TIMES
	PARTING THOUGHTS
	NEXT CLASS

