
Andy Pavlo // Carnegie Mellon University // Spring 2016

Lecture #14 – Logging & Recovery
(Alternative Methods)

DATABASE
SYSTEMS

15-721

http://15721.courses.cs.cmu.edu/spring2016/

CMU 15-721 (Spring 2016)

TODAY ’S AGENDA

Course Announcements
Physical Logging Clarification
Command Logging
In-Memory Checkpoints
Shared Memory Restarts

2

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

COURSE ANNOUNCEMENTS

Project #2 is now due March 9th @ 11:59pm

Project #3 proposals are still due March 14th

No Mandatory Reading for March 2nd

3

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

GRADE BREAKDOWN

Reading Reviews (10%)
Project #1 (10%)
Project #2 (25%)
Project #3 (45%)
Final Exam (10%)
Extra Credit (+10%)

4

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Logical Log

LOGICAL LOGGING EXAMPLE

5

UPDATE employees
 SET salary = salary * 1.10

UPDATE employees
 SET salary = 900
 WHERE name = ‘Joy’

NAME SALARY

O.D.B. $100

El-P $666

Joy $888

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Logical Log

LOGICAL LOGGING EXAMPLE

5

UPDATE employees
 SET salary = salary * 1.10

UPDATE employees
 SET salary = 900
 WHERE name = ‘Joy’

NAME SALARY

O.D.B. $100

El-P $666

Joy $888

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Logical Log

LOGICAL LOGGING EXAMPLE

5

UPDATE employees
 SET salary = salary * 1.10

UPDATE employees
 SET salary = 900
 WHERE name = ‘Joy’

NAME SALARY

O.D.B. $100

El-P $666

Joy $888

UPDATE employees SET
salary = salary * 1.10

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Logical Log

LOGICAL LOGGING EXAMPLE

5

UPDATE employees
 SET salary = salary * 1.10

UPDATE employees
 SET salary = 900
 WHERE name = ‘Joy’

NAME SALARY

O.D.B. $100

El-P $666

Joy $888

UPDATE employees SET
salary = salary * 1.10

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Logical Log

LOGICAL LOGGING EXAMPLE

5

UPDATE employees
 SET salary = salary * 1.10

UPDATE employees
 SET salary = 900
 WHERE name = ‘Joy’

NAME SALARY

O.D.B. $100

El-P $666

Joy $888

UPDATE employees SET
salary = salary * 1.10

$110

$732

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Logical Log

LOGICAL LOGGING EXAMPLE

5

UPDATE employees
 SET salary = salary * 1.10

UPDATE employees
 SET salary = 900
 WHERE name = ‘Joy’

NAME SALARY

O.D.B. $100

El-P $666

Joy $888

UPDATE employees SET
salary = 900 WHERE
name = ‘Joy’

UPDATE employees SET
salary = salary * 1.10

$110

$732

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Logical Log

LOGICAL LOGGING EXAMPLE

5

UPDATE employees
 SET salary = salary * 1.10

UPDATE employees
 SET salary = 900
 WHERE name = ‘Joy’

NAME SALARY

O.D.B. $100

El-P $666

Joy $888

UPDATE employees SET
salary = 900 WHERE
name = ‘Joy’

UPDATE employees SET
salary = salary * 1.10

$110

$732

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Logical Log

LOGICAL LOGGING EXAMPLE

5

UPDATE employees
 SET salary = salary * 1.10

UPDATE employees
 SET salary = 900
 WHERE name = ‘Joy’

NAME SALARY

O.D.B. $100

El-P $666

Joy $888 $900

UPDATE employees SET
salary = 900 WHERE
name = ‘Joy’

UPDATE employees SET
salary = salary * 1.10

$110

$732

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Logical Log

LOGICAL LOGGING EXAMPLE

5

UPDATE employees
 SET salary = salary * 1.10

UPDATE employees
 SET salary = 900
 WHERE name = ‘Joy’

NAME SALARY

O.D.B. $100

El-P $666

Joy $888 $900

UPDATE employees SET
salary = 900 WHERE
name = ‘Joy’

UPDATE employees SET
salary = salary * 1.10

$110

$732

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Logical Log

LOGICAL LOGGING EXAMPLE

5

UPDATE employees
 SET salary = salary * 1.10

UPDATE employees
 SET salary = 900
 WHERE name = ‘Joy’

NAME SALARY

O.D.B. $100

El-P $666

Joy $888 $900

UPDATE employees SET
salary = 900 WHERE
name = ‘Joy’

UPDATE employees SET
salary = salary * 1.10

$110

$732

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

Logical Log

LOGICAL LOGGING EXAMPLE

5

UPDATE employees
 SET salary = salary * 1.10

UPDATE employees
 SET salary = 900
 WHERE name = ‘Joy’

NAME SALARY

O.D.B. $100

El-P $666

Joy $888 $900

UPDATE employees SET
salary = 900 WHERE
name = ‘Joy’

UPDATE employees SET
salary = salary * 1.10

$110

$732

X

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SILOR – ARCHITECTURE

6

Epoch
Thread

epoch=100

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SILOR – ARCHITECTURE

6

Epoch
Thread

epoch=100

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SILOR – ARCHITECTURE

6

Epoch
Thread

P epoch=100

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SILOR – ARCHITECTURE

6

Epoch
Thread

P epoch=200

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SILOR – ARCHITECTURE

6

Epoch
Thread

P

epoch=200

epoch=200

epoch=200

pepoch=200

epoch=200

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SILOR – ARCHITECTURE

6

Epoch
Thread

P

epoch=200

epoch=200

epoch=200

pepoch=200

epoch=200

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SILOR – ARCHITECTURE

6

Epoch
Thread

P

epoch=200

epoch=200

epoch=200

pepoch=200

epoch=200

Txn #101

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

LOGGING SCHEMES

Physical Logging
→ Record the changes made to a specific record in the

database.
→ Slower for execution, faster for recovery.

Logical Logging
→ Record the high-level operations executed by txns.
→ Faster for execution, slower for recovery.

7

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

OBSERVATION

Node failures in OLTP databases are rare.
→ OLTP databases are not that big.
→ They don’t need to run on hundreds of machines.

It’s better to optimize the system for runtime
operations rather than failure cases.

8

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

COMMAND LOGGING

Logical logging scheme where the DBMS only
records the stored procedure invocation
→ Stored Procedure Name
→ Input Parameters
→ Additional safety checks

Command Logging = Transaction Logging

9

RETHINKING MAIN MEMORY OLTP RECOVERY
ICDE 2014

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://15721.courses.cs.cmu.edu/spring2016/papers/malviya-icde14.pdf
http://15721.courses.cs.cmu.edu/spring2016/papers/malviya-icde14.pdf

CMU 15-721 (Spring 2016)

DETERMINISTIC CONCURRENCY CONTROL

For a given state of the database, the execution
of a serial schedule will always put the
database in the same new state if:
→ The order of txns (or their queries) is defined before

they start executing.
→ The txn logic is deterministic.

10

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

DETERMINISTIC CONCURRENCY CONTROL

For a given state of the database, the execution
of a serial schedule will always put the
database in the same new state if:
→ The order of txns (or their queries) is defined before

they start executing.
→ The txn logic is deterministic.

10

A=100

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

DETERMINISTIC CONCURRENCY CONTROL

For a given state of the database, the execution
of a serial schedule will always put the
database in the same new state if:
→ The order of txns (or their queries) is defined before

they start executing.
→ The txn logic is deterministic.

10

A=100

A = A + 1 Txn #1

A = A × 3 Txn #2

A = A - 5 Txn #3

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

DETERMINISTIC CONCURRENCY CONTROL

For a given state of the database, the execution
of a serial schedule will always put the
database in the same new state if:
→ The order of txns (or their queries) is defined before

they start executing.
→ The txn logic is deterministic.

10

A=100

A = A + 1 Txn #1

A = A × 3 Txn #2

A = A - 5 Txn #3

A=298

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

DETERMINISTIC CONCURRENCY CONTROL

For a given state of the database, the execution
of a serial schedule will always put the
database in the same new state if:
→ The order of txns (or their queries) is defined before

they start executing.
→ The txn logic is deterministic.

10

A=100

A = A + 1 Txn #1

A = A × 3 Txn #2

A = A - 5 Txn #3

A = A × NOW()

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

DETERMINISTIC CONCURRENCY CONTROL

For a given state of the database, the execution
of a serial schedule will always put the
database in the same new state if:
→ The order of txns (or their queries) is defined before

they start executing.
→ The txn logic is deterministic.

10

A=100

A = A + 1 Txn #1

A = A × 3 Txn #2

A = A - 5 Txn #3

A = A × NOW() X

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

VOLTDB – ARCHITECTURE

11

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

VOLTDB – ARCHITECTURE

11

Partitions

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

VOLTDB – ARCHITECTURE

11

Partitions

Single-threaded
Execution Engines

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

VOLTDB – ARCHITECTURE

11

Procedure Name
Input Params

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

VOLTDB – ARCHITECTURE

11

Procedure Name
Input Params run(phoneNum, contestantId, currentTime) {

 result = execute(VoteCount, phoneNum);
 if (result > MAX_VOTES) {
 return (ERROR);
 }
 execute(InsertVote, phoneNum,
 contestantId,
 currentTime);
 return (SUCCESS);
}

VoteCount:
SELECT COUNT(*)
 FROM votes
 WHERE phone_num = ?;

InsertVote:
INSERT INTO votes
 VALUES (?, ?, ?);

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

VOLTDB – ARCHITECTURE

11

Procedure Name
Input Params run(phoneNum, contestantId, currentTime) {

 result = execute(VoteCount, phoneNum);
 if (result > MAX_VOTES) {
 return (ERROR);
 }
 execute(InsertVote, phoneNum,
 contestantId,
 currentTime);
 return (SUCCESS);
}

VoteCount:
SELECT COUNT(*)
 FROM votes
 WHERE phone_num = ?;

InsertVote:
INSERT INTO votes
 VALUES (?, ?, ?);

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

VOLTDB – ARCHITECTURE

11

Procedure Name
Input Params run(phoneNum, contestantId, currentTime) {

 result = execute(VoteCount, phoneNum);
 if (result > MAX_VOTES) {
 return (ERROR);
 }
 execute(InsertVote, phoneNum,
 contestantId,
 currentTime);
 return (SUCCESS);
}

VoteCount:
SELECT COUNT(*)
 FROM votes
 WHERE phone_num = ?;

InsertVote:
INSERT INTO votes
 VALUES (?, ?, ?);

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

VOLTDB – ARCHITECTURE

11

Procedure Name
Input Params run(phoneNum, contestantId, currentTime) {

 result = execute(VoteCount, phoneNum);
 if (result > MAX_VOTES) {
 return (ERROR);
 }
 execute(InsertVote, phoneNum,
 contestantId,
 currentTime);
 return (SUCCESS);
}

VoteCount:
SELECT COUNT(*)
 FROM votes
 WHERE phone_num = ?;

InsertVote:
INSERT INTO votes
 VALUES (?, ?, ?);

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

VOLTDB – ARCHITECTURE

11

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

VOLTDB – ARCHITECTURE

11

Command Log
TxnId

Procedure Name
Input Params

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

VOLTDB – ARCHITECTURE

11

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

VOLTDB – ARCHITECTURE

11

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

VOLTDB – ARCHITECTURE

11

Snapshots

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

VOLTDB – LOGGING PROTOCOL

The DBMS logs the txn command before it
starts executing once a txn has been assigned
its serial order.

The node with the txn’s “base partition” is
responsible for writing the log record.
→ Remote partitions do not log anything.
→ Replica nodes have to log just like their master.

12

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

VOLTDB – CONSISTENT CHECKPOINTS

A special txn starts a checkpoint and switches
the DBMS into copy-on-write mode.
→ Changes are no longer made in-place to tables.
→ The DBMS tracks whether a tuple has been inserted,

deleted, or modified since the checkpoint started.

A separate thread scans the tables and writes
tuples out to the snapshot on disk.
→ Ignore anything changed after checkpoint.
→ Clean up old versions as it goes along.

13

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

VOLTDB – RECOVERY PROTOCOL

The DBMS loads in the last complete
checkpoint from disk.

Nodes then re-execute all of the txns in the log
that arrived after the checkpoint started.
→ The amount of time elapsed since the last checkpoint

in the log determines how long recovery will take.
→ Txns that are aborted the first still have to be

executed.

14

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

VOLTDB – REPLICATION

Executing a deterministic txn on the multiple
copies of the same database in the same order
provides strongly consistent replicas.
→ DBMS does not need to use Two-Phase Commit

15

Master Replica

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

VOLTDB – REPLICATION

Executing a deterministic txn on the multiple
copies of the same database in the same order
provides strongly consistent replicas.
→ DBMS does not need to use Two-Phase Commit

15

Master Replica

Procedure Name
Input Params

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

VOLTDB – REPLICATION

Executing a deterministic txn on the multiple
copies of the same database in the same order
provides strongly consistent replicas.
→ DBMS does not need to use Two-Phase Commit

15

Master Replica

Procedure Name
Input Params

TxnId
Procedure Name

Input Params

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

VOLTDB – REPLICATION

Executing a deterministic txn on the multiple
copies of the same database in the same order
provides strongly consistent replicas.
→ DBMS does not need to use Two-Phase Commit

15

Master Replica

Procedure Name
Input Params

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

VOLTDB – REPLICATION

Executing a deterministic txn on the multiple
copies of the same database in the same order
provides strongly consistent replicas.
→ DBMS does not need to use Two-Phase Commit

15

Master Replica

Procedure Name
Input Params OK

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

PROBLEMS WITH COMMAND LOGGING

If the log contains multi-node txns, then if one
node goes down and there are no more
replicas, then the entire DBMS has to restart.

16

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

PROBLEMS WITH COMMAND LOGGING

If the log contains multi-node txns, then if one
node goes down and there are no more
replicas, then the entire DBMS has to restart.

16

Partition #1 Partition #2

X ← SELECT X FROM P2
if (X == true) {
 Y ← UPDATE P2 SET Y = Y+1
} else {
 Y ← UPDATE P3 SET Y = Y+1
}
return (Y) Partition #3

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

PROBLEMS WITH COMMAND LOGGING

If the log contains multi-node txns, then if one
node goes down and there are no more
replicas, then the entire DBMS has to restart.

16

Partition #1 Partition #2

X ← SELECT X FROM P2
if (X == true) {
 Y ← UPDATE P2 SET Y = Y+1
} else {
 Y ← UPDATE P3 SET Y = Y+1
}
return (Y) Partition #3

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

PROBLEMS WITH COMMAND LOGGING

If the log contains multi-node txns, then if one
node goes down and there are no more
replicas, then the entire DBMS has to restart.

16

Partition #1 Partition #2

X ← SELECT X FROM P2
if (X == true) {
 Y ← UPDATE P2 SET Y = Y+1
} else {
 Y ← UPDATE P3 SET Y = Y+1
}
return (Y) Partition #3

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

PROBLEMS WITH COMMAND LOGGING

If the log contains multi-node txns, then if one
node goes down and there are no more
replicas, then the entire DBMS has to restart.

16

Partition #1 Partition #2

X ← SELECT X FROM P2
if (X == true) {
 Y ← UPDATE P2 SET Y = Y+1
} else {
 Y ← UPDATE P3 SET Y = Y+1
}
return (Y) Partition #3 X

??? ???

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

IN-MEMORY CHECKPOINTS

There are different approaches for how the
DBMS can create a new checkpoint for an in-
memory database.
→ The choice of approach in a DBMS is tightly coupled

with its concurrency control scheme.

The checkpoint thread scans each table and
writes out data asynchronously to disk.
→ If the DBMS provides access to each table’s heap then

the thread completely ignores indexes.

17

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

IN-MEMORY CHECKPOINTS

Approach #1: Naïve Snapshots

Approach #2: Copy-on-Update Snapshots

Approach #3: Wait-Free ZigZag

Approach #4: Wait-Free PingPong

18

FAST CHECKPOINT RECOVERY ALGORITHMS FOR
FREQUENTLY CONSISTENT APPLICATIONS
SIGMOD 2011

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://15721.courses.cs.cmu.edu/spring2016/papers/p265-cao.pdf
http://15721.courses.cs.cmu.edu/spring2016/papers/p265-cao.pdf

CMU 15-721 (Spring 2016)

NAÏVE SNAPSHOT

Create a consistent copy of the entire database
in a new location in memory and then write
the contents to disk.
→ The DBMS blocks all txns during the checkpoint.

The copying does not need to be explicit if you
fork the DBMS process.
→ Checkpoint is consistent if there are not active txns.
→ Otherwise, use the in-memory undo log to roll back

txns in the child process.

19

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

COPY-ON-UPDATE SNAPSHOT

During the checkpoint, txns create new copies
of data instead of overwriting it.
→ Copies can be at different granularities (block, tuple)

The checkpoint thread then skips anything
that was created after it started.
→ Old data is pruned after it has been written to disk

20

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

OBSERVATION

Txns have to wait for the checkpoint thread
when using naïve snapshots.

Txns may have to wait to acquire latches held
by the checkpoint thread under copy-on-update

21

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WAIT-FREE Z IGZAG

Maintain two copies of the entire database
→ Each txn write only updates one copy.

Use two BitMaps to keep track of what copy a
txn should read/write from per tuple.
→ Avoid the overhead of having to create copies on the

fly as in the copy-on-update approach.

22

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WAIT-FREE Z IGZAG

23

Copy #1

5

9

7

2

4

3

Copy #2

5

9

7

2

4

3

0

0

0

0

0

Read
BitMap

1

1

1

1

1

1

Write
BitMap

0

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WAIT-FREE Z IGZAG

23

Copy #1

5

9

7

2

4

3

Copy #2

5

9

7

2

4

3

0

0

0

0

0

Read
BitMap

1

1

1

1

1

1

Write
BitMap

0

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WAIT-FREE Z IGZAG

23

Copy #1

5

9

7

2

4

3

Copy #2

5

9

7

2

4

3

0

0

0

0

0

Read
BitMap

1

1

1

1

1

1

Write
BitMap

0

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WAIT-FREE Z IGZAG

23

Copy #1

5

9

7

2

4

3

Copy #2

5

9

7

2

4

3

0

0

0

0

0

Read
BitMap

1

1

1

1

1

1

Write
BitMap

0

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WAIT-FREE Z IGZAG

23

Copy #1

5

9

7

2

4

3

Copy #2

5

9

7

2

4

3

0

0

0

0

0

Read
BitMap

1

1

1

1

1

1

Write
BitMap

Checkpoint Thread

0

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WAIT-FREE Z IGZAG

23

Copy #1

5

9

7

2

4

3

Copy #2

5

9

7

2

4

3

0

0

0

0

0

Read
BitMap

1

1

1

1

1

1

Write
BitMap

Checkpoint Thread

0

0

0

0

0

0

0

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WAIT-FREE Z IGZAG

23

Copy #1

5

9

7

2

4

3

Copy #2

5

9

7

2

4

3

0

0

0

0

0

Read
BitMap

1

1

1

1

1

1

Write
BitMap

Checkpoint Thread

0

0

0

0

0

0

0

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WAIT-FREE Z IGZAG

23

Copy #1

5

9

7

2

4

3

Copy #2

5

9

7

2

4

3

0

0

0

0

0

Read
BitMap

1

1

1

1

1

1

Write
BitMap

0

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WAIT-FREE Z IGZAG

23

Copy #1

5

9

7

2

4

3

Copy #2

5

9

7

2

4

3

0

0

0

0

0

Read
BitMap

1

1

1

1

1

1

Write
BitMap

0

Txn Writes

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WAIT-FREE Z IGZAG

23

Copy #1

5

9

7

2

4

3

Copy #2

5

9

7

2

4

3

0

0

0

0

0

Read
BitMap

1

1

1

1

1

1

Write
BitMap

6

1

9 0

Txn Writes

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WAIT-FREE Z IGZAG

23

Copy #1

5

9

7

2

4

3

Copy #2

5

9

7

2

4

3

0

0

0

0

0

Read
BitMap

1

1

1

1

1

1

Write
BitMap

6

1

9 0

1

1

1

Txn Writes

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WAIT-FREE Z IGZAG

23

Copy #1

5

9

7

2

4

3

Copy #2

5

9

7

2

4

3

0

0

0

0

0

Read
BitMap

1

1

1

1

1

1

Write
BitMap

6

1

9 0

1

1

1

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WAIT-FREE Z IGZAG

23

Copy #1

5

9

7

2

4

3

Copy #2

5

9

7

2

4

3

0

0

0

0

0

Read
BitMap

1

1

1

1

1

1

Write
BitMap

6

1

9 0

1

1

1

Checkpoint Thread

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WAIT-FREE Z IGZAG

23

Copy #1

5

9

7

2

4

3

Copy #2

5

9

7

2

4

3

0

0

0

0

0

Read
BitMap

1

1

1

1

1

1

Write
BitMap

6

1

9 0

1

1

1

0

0

0

Checkpoint Thread

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WAIT-FREE Z IGZAG

23

Copy #1

5

9

7

2

4

3

Copy #2

5

9

7

2

4

3

0

0

0

0

0

Read
BitMap

1

1

1

1

1

1

Write
BitMap

6

1

9 0

1

1

1

0

0

0

Checkpoint Thread

1

0

1

0

0

1

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WAIT-FREE Z IGZAG

23

Copy #1

5

9

7

2

4

3

Copy #2

5

9

7

2

4

3

0

0

0

0

0

Read
BitMap

1

1

1

1

1

1

Write
BitMap

6

1

9 0

1

1

1

0

0

0

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WAIT-FREE Z IGZAG

23

Copy #1

5

9

7

2

4

3

Copy #2

5

9

7

2

4

3

0

0

0

0

0

Read
BitMap

1

1

1

1

1

1

Write
BitMap

6

1

9 0

1

1

1

0

0

0

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WAIT-FREE Z IGZAG

23

Copy #1

5

9

7

2

4

3

Copy #2

5

9

7

2

4

3

0

0

0

0

0

Read
BitMap

1

1

1

1

1

1

Write
BitMap

6

1

9 0

1

1

1

0

0

0

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WAIT-FREE Z IGZAG

23

Copy #1

5

9

7

2

4

3

Copy #2

5

9

7

2

4

3

0

0

0

0

0

Read
BitMap

1

1

1

1

1

1

Write
BitMap

6

1

9 0

1

1

1

0

0

0

3

8

0

1

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WAIT-FREE PINGPONG

Trade extra memory + CPU to avoid pauses at
the end of the checkpoint.
Maintain two copies of the entire database at
all times plus extra space for a shadow copy.
→ Pointer indicates which copy is the current master.
→ At the end of the checkpoint, swap these pointers.

24

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WAIT-FREE PINGPONG

25

Copy #1

5

9

7

2

4

3

Copy #2

-

-

-

-

-

-

0

0

0

0

0

0

Copy #3

5

9

7

2

4

3

1

1

1

1

1

1

Master: Copy #2

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WAIT-FREE PINGPONG

25

Copy #1

5

9

7

2

4

3

Copy #2

-

-

-

-

-

-

0

0

0

0

0

0

Copy #3

5

9

7

2

4

3

1

1

1

1

1

1

Master: Copy #2

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WAIT-FREE PINGPONG

25

Copy #1

5

9

7

2

4

3

Copy #2

-

-

-

-

-

-

0

0

0

0

0

0

Copy #3

5

9

7

2

4

3

1

1

1

1

1

1

Master: Copy #2

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WAIT-FREE PINGPONG

25

Copy #1

5

9

7

2

4

3

Copy #2

-

-

-

-

-

-

0

0

0

0

0

0

Copy #3

5

9

7

2

4

3

1

1

1

1

1

1

Checkpoint Thread Master: Copy #2

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WAIT-FREE PINGPONG

25

Copy #1

5

9

7

2

4

3

Copy #2

-

-

-

-

-

-

0

0

0

0

0

0

Copy #3

5

9

7

2

4

3

1

1

1

1

1

1

Checkpoint Thread Master:

Txn Writes

Copy #2

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WAIT-FREE PINGPONG

25

Copy #1

5

9

7

2

4

3

Copy #2

-

-

-

-

-

-

0

0

0

0

0

0

Copy #3

5

9

7

2

4

3

1

1

1

1

1

1

Checkpoint Thread Master:

6

1

9

6

1

9

1

1

1

Txn Writes

Copy #2

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WAIT-FREE PINGPONG

25

Copy #1

5

9

7

2

4

3

Copy #2

-

-

-

-

-

-

0

0

0

0

0

0

Copy #3

5

9

7

2

4

3

1

1

1

1

1

1

Checkpoint Thread Master:

6

1

9

6

1

9

1

1

1

Txn Writes

Copy #2

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WAIT-FREE PINGPONG

25

Copy #1

5

9

7

2

4

3

Copy #2

-

-

-

-

-

-

0

0

0

0

0

0

Copy #3

5

9

7

2

4

3

1

1

1

1

1

1

Checkpoint Thread Master:

6

1

9

6

1

9

1

1

1

-

-

-

-

-

-

0

0

0

0

0

0 Txn Writes

Copy #2

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WAIT-FREE PINGPONG

25

Copy #1

5

9

7

2

4

3

Copy #2

-

-

-

-

-

-

0

0

0

0

0

0

Copy #3

5

9

7

2

4

3

1

1

1

1

1

1

Master:

6

1

9

6

1

9

1

1

1

-

-

-

-

-

-

0

0

0

0

0

0

Copy #2

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WAIT-FREE PINGPONG

25

Copy #1

5

9

7

2

4

3

Copy #2

-

-

-

-

-

-

0

0

0

0

0

0

Copy #3

5

9

7

2

4

3

1

1

1

1

1

1

Master:

6

1

9

6

1

9

1

1

1

-

-

-

-

-

-

0

0

0

0

0

0

Copy #3

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WAIT-FREE PINGPONG

25

Copy #1

5

9

7

2

4

3

Copy #2

-

-

-

-

-

-

0

0

0

0

0

0

Copy #3

5

9

7

2

4

3

1

1

1

1

1

1

Master:

6

1

9

6

1

9

1

1

1

-

-

-

-

-

-

0

0

0

0

0

0

Copy #3 Checkpoint Thread

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WAIT-FREE PINGPONG

25

Copy #1

5

9

7

2

4

3

Copy #2

-

-

-

-

-

-

0

0

0

0

0

0

Copy #3

5

9

7

2

4

3

1

1

1

1

1

1

Master:

6

1

9

6

1

9

1

1

1

-

-

-

-

-

-

0

0

0

0

0

0

Copy #3 Checkpoint Thread

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WAIT-FREE PINGPONG

25

Copy #1

5

9

7

2

4

3

Copy #2

-

-

-

-

-

-

0

0

0

0

0

0

Copy #3

5

9

7

2

4

3

1

1

1

1

1

1

Master:

6

1

9

6

1

9

1

1

1

-

-

-

-

-

-

0

0

0

0

0

0

Copy #3 Checkpoint Thread

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WAIT-FREE PINGPONG

25

Copy #1

5

9

7

2

4

3

Copy #2

-

-

-

-

-

-

0

0

0

0

0

0

Copy #3

5

9

7

2

4

3

1

1

1

1

1

1

Master:

6

1

9

6

1

9

1

1

1

-

-

-

-

-

-

0

0

0

0

0

0

Copy #3 Checkpoint Thread

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

CHECKPOINT IMPLEMENTATIONS

Bulk State Copying
→ Pause txn execution to take a snapshot.

Locking
→ Use latches to isolate the checkpoint thread from the

worker threads if they operate on shared regions.

Bulk Bit-Map Reset:
→ If DBMS uses BitMap to track dirty regions, it must

perform a bulk reset at the start of a new checkpoint.

Memory Usage:
→ To avoid synchronous writes, the method may need

to allocate additional memory for data copies.

26

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

IN-MEMORY CHECKPOINTS

27

Bulk
Copying Locking

Bulk Bit-
Map Reset

Memory
Usage

Naïve Snapshot Yes No No 2x

Copy-on-Update No Yes Yes 2x

Wait-Free ZigZag No No Yes 2x

Wait-Free Ping-Pong No No No 3x

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

OBSERVATION

Not all DBMS restarts are due to crashes.
→ Updating OS libraries
→ Hardware upgrades/fixes
→ Updating DBMS software

Need a way to be able to quickly restart the
DBMS without having to re-read the entire
database from disk again.

28

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

OBSERVATION

Not all DBMS restarts are due to crashes.
→ Updating OS libraries
→ Hardware upgrades/fixes
→ Updating DBMS software

Need a way to be able to quickly restart the
DBMS without having to re-read the entire
database from disk again.

28

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

FACEBOOK SCUBA

Distributed, in-memory DBMS for time-series
event analysis and anomaly detection.

Heterogeneous architecture
→ Leaf Nodes: Execute scans/filters on in-memory data
→ Aggregator Nodes: Combine results from leaf nodes

29

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

FACEBOOK SCUBA – ARCHITECTURE

30

Leaf Node Leaf Node Leaf Node Leaf Node

Aggregate Node

Aggregate Node

Aggregate Node

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

FAST RESTARTS

Decouple the in-memory database lifetime
from the process lifetime.

By storing the database shared memory, the
DBMS process can restart and the memory
contents will survive.

31

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SHARED MEMORY RESTARTS

Approach #1: Shared Memory Heaps
→ All data is allocated in SM during normal operations.
→ Have to use a custom allocator to subdivide memory

segments for thread safety and scalability.

Approach #2: Copy on Shutdown
→ All data is allocated in local memory during normal

operations.
→ On shutdown, copy data from heap to SM.

32

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SCUBA – FAST RESTARTS

When the admin initiates restart command,
the leaf node halts ingesting updates.

DBMS starts copying data from heap memory
to shared memory.
→ Delete blocks in heap once they are in SM.

Once snapshot finishes, the DBMS restarts.
→ On start up, check to see whether the there is a valid

database in SM to copy into its heap.
→ Otherwise, the DBMS restarts from disk.

33

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

PARTING THOUGHTS

Logical logging is faster at runtime but difficult
to implement recovery.

I think that copy-on-update checkpoints are
the way to go especially if you are using MVCC

Shared memory does have some use after all…

34

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SEMESTER PROGRESS

35

Concurrency Control
Storage Models
Indexes
Scheduling & Execution
Join Algorithms
Logging & Recovery

Compression
Query Optimization
Vectorization
Scan Sharing
JIT Compilation
Mat. Views
NVM / HTM

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

NEXT CLASS

Project #3 Topics
Extra Credit

Project #2 is now due March 9th @ 11:59pm
Project #3 proposals are still due March 14th
No Mandatory Reading for March 2nd

36

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

	DATABASE SYSTEMS
	TODAY’S AGENDA
	COURSE ANNOUNCEMENTS
	GRADE BREAKDOWN
	LOGICAL LOGGING EXAMPLE
	LOGICAL LOGGING EXAMPLE
	LOGICAL LOGGING EXAMPLE
	LOGICAL LOGGING EXAMPLE
	LOGICAL LOGGING EXAMPLE
	LOGICAL LOGGING EXAMPLE
	LOGICAL LOGGING EXAMPLE
	LOGICAL LOGGING EXAMPLE
	LOGICAL LOGGING EXAMPLE
	LOGICAL LOGGING EXAMPLE
	LOGICAL LOGGING EXAMPLE
	SILOR – ARCHITECTURE
	SILOR – ARCHITECTURE
	SILOR – ARCHITECTURE
	SILOR – ARCHITECTURE
	SILOR – ARCHITECTURE
	SILOR – ARCHITECTURE
	SILOR – ARCHITECTURE
	LOGGING SCHEMES
	OBSERVATION
	COMMAND LOGGING
	DETERMINISTIC CONCURRENCY CONTROL
	DETERMINISTIC CONCURRENCY CONTROL
	DETERMINISTIC CONCURRENCY CONTROL
	DETERMINISTIC CONCURRENCY CONTROL
	DETERMINISTIC CONCURRENCY CONTROL
	DETERMINISTIC CONCURRENCY CONTROL
	VOLTDB – ARCHITECTURE
	VOLTDB – ARCHITECTURE
	VOLTDB – ARCHITECTURE
	VOLTDB – ARCHITECTURE
	VOLTDB – ARCHITECTURE
	VOLTDB – ARCHITECTURE
	VOLTDB – ARCHITECTURE
	VOLTDB – ARCHITECTURE
	VOLTDB – ARCHITECTURE
	VOLTDB – ARCHITECTURE
	VOLTDB – ARCHITECTURE
	VOLTDB – ARCHITECTURE
	VOLTDB – ARCHITECTURE
	VOLTDB – LOGGING PROTOCOL
	VOLTDB – CONSISTENT CHECKPOINTS
	VOLTDB – RECOVERY PROTOCOL
	VOLTDB – REPLICATION
	VOLTDB – REPLICATION
	VOLTDB – REPLICATION
	VOLTDB – REPLICATION
	VOLTDB – REPLICATION
	PROBLEMS WITH COMMAND LOGGING
	PROBLEMS WITH COMMAND LOGGING
	PROBLEMS WITH COMMAND LOGGING
	PROBLEMS WITH COMMAND LOGGING
	PROBLEMS WITH COMMAND LOGGING
	IN-MEMORY CHECKPOINTS
	IN-MEMORY CHECKPOINTS
	NAÏVE SNAPSHOT
	COPY-ON-UPDATE SNAPSHOT
	OBSERVATION
	WAIT-FREE ZIGZAG
	WAIT-FREE ZIGZAG
	WAIT-FREE ZIGZAG
	WAIT-FREE ZIGZAG
	WAIT-FREE ZIGZAG
	WAIT-FREE ZIGZAG
	WAIT-FREE ZIGZAG
	WAIT-FREE ZIGZAG
	WAIT-FREE ZIGZAG
	WAIT-FREE ZIGZAG
	WAIT-FREE ZIGZAG
	WAIT-FREE ZIGZAG
	WAIT-FREE ZIGZAG
	WAIT-FREE ZIGZAG
	WAIT-FREE ZIGZAG
	WAIT-FREE ZIGZAG
	WAIT-FREE ZIGZAG
	WAIT-FREE ZIGZAG
	WAIT-FREE ZIGZAG
	WAIT-FREE ZIGZAG
	WAIT-FREE PINGPONG
	WAIT-FREE PINGPONG
	WAIT-FREE PINGPONG
	WAIT-FREE PINGPONG
	WAIT-FREE PINGPONG
	WAIT-FREE PINGPONG
	WAIT-FREE PINGPONG
	WAIT-FREE PINGPONG
	WAIT-FREE PINGPONG
	WAIT-FREE PINGPONG
	WAIT-FREE PINGPONG
	WAIT-FREE PINGPONG
	WAIT-FREE PINGPONG
	WAIT-FREE PINGPONG
	WAIT-FREE PINGPONG
	CHECKPOINT IMPLEMENTATIONS
	IN-MEMORY CHECKPOINTS
	OBSERVATION
	OBSERVATION
	FACEBOOK SCUBA
	FACEBOOK SCUBA – ARCHITECTURE
	FAST RESTARTS
	SHARED MEMORY RESTARTS
	SCUBA – FAST RESTARTS
	PARTING THOUGHTS
	SEMESTER PROGRESS
	NEXT CLASS

