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TODAY ’S  AGENDA 

Course Announcements 
Physical Logging Clarification 
Command Logging 
In-Memory Checkpoints 
Shared Memory Restarts 
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COURSE ANNOUNCEMENTS 

Project #2 is now due March 9th @ 11:59pm 
 

Project #3 proposals are still due March 14th  
 

No Mandatory Reading for March 2nd  
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GRADE BREAKDOWN 

Reading Reviews (10%) 
Project #1 (10%) 
Project #2 (25%) 
Project #3 (45%) 
Final Exam (10%) 
Extra Credit (+10%) 
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Logical Log 

LOGICAL LOGGING EXAMPLE 

5 

UPDATE employees 
   SET salary = salary * 1.10 

UPDATE employees 
   SET salary = 900 
 WHERE name = ‘Joy’ 

NAME SALARY 

O.D.B. $100 

El-P $666 

Joy $888 
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SILOR –  ARCHITECTURE 

6 

Epoch 
Thread 

epoch=100 
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SILOR –  ARCHITECTURE 
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SILOR –  ARCHITECTURE 
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SILOR –  ARCHITECTURE 
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LOGGING SCHEMES 

Physical Logging 
→ Record the changes made to a specific record in the 

database. 
→ Slower for execution, faster for recovery. 
 

Logical Logging 
→ Record the high-level operations executed by txns. 
→ Faster for execution, slower for recovery. 
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OBSERVATION 

Node failures in OLTP databases are rare. 
→ OLTP databases are not that big. 
→ They don’t need to run on hundreds of machines. 

 
It’s better to optimize the system for runtime 
operations rather than failure cases. 
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COMMAND LOGGING 

Logical logging scheme where the DBMS only 
records the stored procedure invocation 
→ Stored Procedure Name 
→ Input Parameters 
→ Additional safety checks 

 

Command Logging = Transaction Logging 

9 

RETHINKING MAIN MEMORY OLTP RECOVERY 
ICDE 2014 
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DETERMINISTIC CONCURRENCY CONTROL 

For a given state of the database, the execution 
of a serial schedule will always put the 
database in the same new state if: 
→ The order of txns (or their queries) is defined before 

they start executing. 
→ The txn logic is deterministic. 
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A=100 

A = A + 1 Txn #1 

A = A × 3 Txn #2 

A = A - 5 Txn #3 
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DETERMINISTIC CONCURRENCY CONTROL 
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A=100 

A = A + 1 Txn #1 

A = A × 3 Txn #2 

A = A - 5 Txn #3 

A = A × NOW() 
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VOLTDB –  ARCHITECTURE 
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VOLTDB –  ARCHITECTURE 
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VOLTDB –  ARCHITECTURE 

11 

Partitions 

Single-threaded 
Execution Engines 
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VOLTDB –  ARCHITECTURE 
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Procedure Name 
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VOLTDB –  ARCHITECTURE 

11 

Procedure Name 
Input Params run(phoneNum, contestantId, currentTime) { 

  result = execute(VoteCount, phoneNum); 
  if (result > MAX_VOTES) { 
    return (ERROR); 
  } 
  execute(InsertVote, phoneNum, 
                      contestantId, 
                      currentTime); 
  return (SUCCESS); 
} 

VoteCount: 
SELECT COUNT(*) 
  FROM votes 
 WHERE phone_num = ?;  

InsertVote: 
INSERT INTO votes 
 VALUES (?, ?, ?); 
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Command Log 
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Procedure Name 
Input Params 
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VOLTDB –  ARCHITECTURE 
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Snapshots 
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VOLTDB –  LOGGING PROTOCOL 

The DBMS logs the txn command before it 
starts executing once a txn has been assigned 
its serial order. 
 

The node with the txn’s “base partition” is 
responsible for writing the log record. 
→ Remote partitions do not log anything. 
→ Replica nodes have to log just like their master. 
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VOLTDB –  CONSISTENT CHECKPOINTS 

A special txn starts a checkpoint and switches 
the DBMS into copy-on-write mode. 
→ Changes are no longer made in-place to tables. 
→ The DBMS tracks whether a tuple has been inserted, 

deleted, or modified since the checkpoint started. 
 

A separate thread scans the tables and writes 
tuples out to the snapshot on disk. 
→ Ignore anything changed after checkpoint. 
→ Clean up old versions as it goes along. 

13 

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016


CMU 15-721 (Spring 2016) 

VOLTDB –  RECOVERY PROTOCOL 

The DBMS loads in the last complete 
checkpoint from disk. 
 

Nodes then re-execute all of the txns in the log 
that arrived after the checkpoint started. 
→ The amount of time elapsed since the last checkpoint 

in the log determines how long recovery will take. 
→ Txns that are aborted the first still have to be 

executed. 
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VOLTDB –  REPLICATION 

Executing a deterministic txn on the multiple 
copies of the same database in the same order 
provides strongly consistent replicas. 
→ DBMS does not need to use Two-Phase Commit 

15 

Master Replica 
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Master Replica 

Procedure Name 
Input Params OK 
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PROBLEMS WITH COMMAND LOGGING 

If the log contains multi-node txns, then if one 
node goes down and there are no more 
replicas, then the entire DBMS has to restart. 

16 
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Partition #1 Partition #2 

X ← SELECT X FROM P2 
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return (Y) Partition #3 
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IN-MEMORY CHECKPOINTS 

There are different approaches for how the 
DBMS can create a new checkpoint for an in-
memory database. 
→ The choice of approach in a DBMS is tightly coupled 

with its concurrency control scheme. 
 

The checkpoint thread scans each table and 
writes out data asynchronously to disk. 
→ If the DBMS provides access to each table’s heap then 

the thread completely ignores indexes. 
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IN-MEMORY CHECKPOINTS 

Approach #1: Naïve Snapshots 
 

Approach #2: Copy-on-Update Snapshots 
 

Approach #3: Wait-Free ZigZag 
 

Approach #4: Wait-Free PingPong 

18 

FAST CHECKPOINT RECOVERY ALGORITHMS FOR 
FREQUENTLY CONSISTENT APPLICATIONS 
SIGMOD 2011 

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://15721.courses.cs.cmu.edu/spring2016/papers/p265-cao.pdf
http://15721.courses.cs.cmu.edu/spring2016/papers/p265-cao.pdf


CMU 15-721 (Spring 2016) 

NAÏVE SNAPSHOT 

Create a consistent copy of the entire database 
in a new location in memory and then write 
the contents to disk. 
→ The DBMS blocks all txns during the checkpoint. 
 

The copying does not need to be explicit if you 
fork the DBMS process. 
→ Checkpoint is consistent if there are not active txns. 
→ Otherwise, use the in-memory undo log to roll back 

txns in the child process. 
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COPY-ON-UPDATE SNAPSHOT 

During the checkpoint, txns create new copies 
of data instead of overwriting it. 
→ Copies can be at different granularities (block, tuple) 

 
The checkpoint thread then skips anything 
that was created after it started. 
→ Old data is pruned after it has been written to disk 
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OBSERVATION 

Txns have to wait for the checkpoint thread 
when using naïve snapshots. 
 

Txns may have to wait to acquire latches held 
by the checkpoint thread under copy-on-update 

21 
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WAIT-FREE Z IGZAG 

Maintain two copies of the entire database 
→ Each txn write only updates one copy. 
 

Use two BitMaps to keep track of what copy a 
txn should read/write from per tuple. 
→ Avoid the overhead of having to create copies on the 

fly as in the copy-on-update approach. 
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WAIT-FREE Z IGZAG 
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WAIT-FREE PINGPONG 

Trade extra memory + CPU to avoid pauses at 
the end of the checkpoint. 
Maintain two copies of the entire database at 
all times plus extra space for a shadow copy. 
→ Pointer indicates which copy is the current master. 
→ At the end of the checkpoint, swap these pointers. 
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CHECKPOINT IMPLEMENTATIONS 

Bulk State Copying 
→ Pause txn execution to take a snapshot. 

Locking 
→ Use latches to isolate the checkpoint thread from the 

worker threads if they operate on shared regions. 

Bulk Bit-Map Reset: 
→ If DBMS uses BitMap to track dirty regions, it must 

perform a bulk reset at the start of a new checkpoint. 

Memory Usage: 
→ To avoid synchronous writes, the method may need 

to allocate additional memory for data copies. 
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IN-MEMORY CHECKPOINTS 

27 

Bulk 
Copying Locking 

Bulk Bit-
Map Reset 

Memory 
Usage 

Naïve Snapshot Yes No No 2x 

Copy-on-Update No Yes Yes 2x 

Wait-Free ZigZag No No Yes 2x 

Wait-Free Ping-Pong No No No 3x 
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OBSERVATION 

Not all DBMS restarts are due to crashes. 
→ Updating OS libraries 
→ Hardware upgrades/fixes 
→ Updating DBMS software 
 

Need a way to be able to quickly restart the 
DBMS without having to re-read the entire 
database from disk again. 

28 

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016


CMU 15-721 (Spring 2016) 

OBSERVATION 

Not all DBMS restarts are due to crashes. 
→ Updating OS libraries 
→ Hardware upgrades/fixes 
→ Updating DBMS software 
 

Need a way to be able to quickly restart the 
DBMS without having to re-read the entire 
database from disk again. 

28 

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016


CMU 15-721 (Spring 2016) 

FACEBOOK SCUBA 

Distributed, in-memory DBMS for time-series 
event analysis and anomaly detection. 
 

Heterogeneous architecture 
→ Leaf Nodes: Execute scans/filters on in-memory data 
→ Aggregator Nodes:  Combine results from leaf nodes 

29 
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FACEBOOK SCUBA –  ARCHITECTURE 
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Leaf Node Leaf Node Leaf Node Leaf Node 

Aggregate Node 

Aggregate Node 
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FAST RESTARTS 

Decouple the in-memory database lifetime 
from the process lifetime. 
 

By storing the database shared memory, the 
DBMS process can restart and the memory 
contents will survive.  

31 
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SHARED MEMORY RESTARTS 

Approach #1: Shared Memory Heaps 
→ All data is allocated in SM during normal operations. 
→ Have to use a custom allocator to subdivide memory 

segments for thread safety and scalability. 
 

Approach #2: Copy on Shutdown 
→ All data is allocated in local memory during normal 

operations. 
→ On shutdown, copy data from heap to SM. 

32 
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SCUBA –  FAST RESTARTS 

When the admin initiates restart command, 
the leaf node halts ingesting updates. 
 

DBMS starts copying data from heap memory 
to shared memory. 
→ Delete blocks in heap once they are in SM. 
 

Once snapshot finishes, the DBMS restarts. 
→ On start up, check to see whether the there is a valid 

database in SM to copy into its heap. 
→ Otherwise, the DBMS restarts from disk. 
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PARTING THOUGHTS 

Logical logging is faster at runtime but difficult 
to implement recovery. 
 

I think that copy-on-update checkpoints are 
the way to go especially if you are using MVCC 
 

Shared memory does have some use after all… 
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SEMESTER PROGRESS 

35 

Concurrency Control 
Storage Models 
Indexes 
Scheduling & Execution 
Join Algorithms 
Logging & Recovery 

Compression 
Query Optimization 
Vectorization 
Scan Sharing 
JIT Compilation 
Mat. Views 
NVM / HTM 
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NEXT CLASS 

Project #3 Topics 
Extra Credit 
 
Project #2 is now due March 9th @ 11:59pm 
Project #3 proposals are still due March 14th  
No Mandatory Reading for March 2nd  
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