
Andy Pavlo // Carnegie Mellon University // Spring 2016

Lecture #16 – Database Compression

DATABASE
SYSTEMS

15-721

http://15721.courses.cs.cmu.edu/spring2016/

CMU 15-721 (Spring 2016)

TODAY ’S AGENDA

Background
Naïve Compression
OLAP Columnar Compression
OLTP Index Compression

2

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

OBSERVATION

I/O is the main bottleneck if the DBMS has to
fetch data from disk.

In-memory DBMSs are more complicated
→ Compressing the database reduces DRAM

requirements and processing.

Key trade-off is speed vs. compression ratio
→ In-memory DBMSs (always?) choose speed.

3

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

REAL-WORLD DATA CHARACTERISTICS

Data sets tend to have highly skewed
distributions for attribute values.
→ Example: Zipfian distribution of the Brown Corpus

Data sets tend to have high correlation
between attributes of the same tuple.
→ Example: Zip Code to City, Order Date to Ship Date

4

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
https://en.wikipedia.org/wiki/Brown_Corpus

CMU 15-721 (Spring 2016)

DATABASE COMPRESSION

Goal #1: Must produce fixed-length values.

Goal #2: Allow the DBMS to postpone
decompression as long as possible during
query execution.

5

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

LOSSLESS VS. LOSSY COMPRESSION

When a DBMS uses compression, it is always
lossless because people don’t like losing data.

Any kind of lossy compression is has to be
performed at the application level.

Some new DBMSs support approximate queries
→ Example: BlinkDB.

6

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://blinkdb.org/

CMU 15-721 (Spring 2016)

COMPRESSION GRANULARITY

Choice #1: Block-level
→ Compress a block of tuples for the same table.

Choice #2: Tuple-level
→ Compress the contents of the entire tuple.

Choice #3: Attribute-level
→ Compress a single attribute value within one tuple.
→ Can target multiple attributes for the same tuple.

Choice #4: Column-level
→ Compress multiple values for one or more attributes

stored for multiple tuples. Requires DSM.

7

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

NAÏVE COMPRESSION

Compress data using a general purpose
algorithm. Scope of compression is only based
on the data provided as input.
→ Examples: LZO (1996), LZ4 (2011), Snappy (2011).

Considerations
→ Computational overhead
→ Compress vs. decompress speed.

8

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Oberhumer
https://en.wikipedia.org/wiki/LZ4_(compression_algorithm)
https://en.wikipedia.org/wiki/Snappy_(software)

CMU 15-721 (Spring 2016)

NAÏVE COMPRESSION

Choice #1: Entropy Encoding
→ More common sequences use less bits to encode, less

common sequences use more bits to encode.

Choice #2: Dictionary Encoding
→ Build a data structure that maps data segments to an

identifier. Replace those segments in the original
data with a reference to the segments position in the
dictionary data structure.

9

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

MYSQL INNODB COMPRESSION

10

Source: MySQL 5.7 Documentation

Buffer Pool Disk Pages

Compressed page0
mod log

Compressed page1
mod log

Compressed page2
mod log

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
https://dev.mysql.com/doc/refman/5.7/en/innodb-compression-internals.html

CMU 15-721 (Spring 2016)

MYSQL INNODB COMPRESSION

10

[1,2,4,8]
KB

Source: MySQL 5.7 Documentation

Buffer Pool Disk Pages

Compressed page0
mod log

Compressed page1
mod log

Compressed page2
mod log

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
https://dev.mysql.com/doc/refman/5.7/en/innodb-compression-internals.html

CMU 15-721 (Spring 2016)

MYSQL INNODB COMPRESSION

10

[1,2,4,8]
KB

Source: MySQL 5.7 Documentation

Buffer Pool Disk Pages

Compressed page0
mod log

Compressed page0
mod log

Compressed page1
mod log

Compressed page2
mod log

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
https://dev.mysql.com/doc/refman/5.7/en/innodb-compression-internals.html

CMU 15-721 (Spring 2016)

MYSQL INNODB COMPRESSION

10

[1,2,4,8]
KB

Source: MySQL 5.7 Documentation

Buffer Pool Disk Pages

Compressed page0
mod log

Compressed page0
mod log

Compressed page1
mod log

Compressed page2
mod log

Updates

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
https://dev.mysql.com/doc/refman/5.7/en/innodb-compression-internals.html

CMU 15-721 (Spring 2016)

MYSQL INNODB COMPRESSION

10

[1,2,4,8]
KB

Source: MySQL 5.7 Documentation

Buffer Pool Disk Pages

Uncompressed
page0

Compressed page0
mod log

Compressed page0
mod log

Compressed page1
mod log

Compressed page2
mod log

Updates

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
https://dev.mysql.com/doc/refman/5.7/en/innodb-compression-internals.html

CMU 15-721 (Spring 2016)

MYSQL INNODB COMPRESSION

10

16 KB

[1,2,4,8]
KB

Source: MySQL 5.7 Documentation

Buffer Pool Disk Pages

Uncompressed
page0

Compressed page0
mod log

Compressed page0
mod log

Compressed page1
mod log

Compressed page2
mod log

Updates

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
https://dev.mysql.com/doc/refman/5.7/en/innodb-compression-internals.html

CMU 15-721 (Spring 2016)

NAÏVE COMPRESSION

The data has to be decompressed first before it
can be read and (potentially) modified.
→ This limits the “scope” of the compression scheme.

These schemes also do not consider the high-
level meaning or semantics of the data.

11

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

We can perform exact-match comparisons and
natural joins on compressed data if predicates
and data are compressed the same way.
→ Range predicates are more tricky…

OBSERVATION

12

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

We can perform exact-match comparisons and
natural joins on compressed data if predicates
and data are compressed the same way.
→ Range predicates are more tricky…

OBSERVATION

12

SELECT * FROM users
 WHERE name = ‘Trump’

NAME SALARY
Trump Huge
Joy Small

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

We can perform exact-match comparisons and
natural joins on compressed data if predicates
and data are compressed the same way.
→ Range predicates are more tricky…

OBSERVATION

12

SELECT * FROM users
 WHERE name = ‘Trump’

NAME SALARY
Trump Huge
Joy Small

NAME SALARY
XX AA
YY BB

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

We can perform exact-match comparisons and
natural joins on compressed data if predicates
and data are compressed the same way.
→ Range predicates are more tricky…

OBSERVATION

12

SELECT * FROM users
 WHERE name = ‘Trump’

SELECT * FROM users
 WHERE name = XX

NAME SALARY
Trump Huge
Joy Small

NAME SALARY
XX AA
YY BB

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

COLUMNAR COMPRESSION

Null Suppression
Run-length Encoding
Bitmap Encoding
Delta Encoding
Incremental Encoding
Mostly Encoding
Dictionary Encoding

13

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

COMPRESSION VS. MSSQL INDEXES

The MSSQL columnar indexes were a second
copy of the data (aka fractured mirrors).
→ The original data was still stored as in NSM format.

We are now talking about compressing the
primary copy of the data.
Many of the same techniques are applicable.

14

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

NULL SUPPRESSION

Consecutive zeros or blanks in the data are
replaced with a description of how many there
were and where they existed.
→ Example: Oracle’s Byte-Aligned Bitmap Codes (BBC)

Useful in wide tables with sparse data.

15

DATABASE COMPRESSION
SIGMOD RECORD 1993

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://dl.acm.org/citation.cfm?id=163096
http://dl.acm.org/citation.cfm?id=163096

CMU 15-721 (Spring 2016)

RUN-LENGTH ENCODING

Compress runs of the same value in a single
column into triplets:
→ The value of the attribute.
→ The start position in the column segment.
→ The # of elements in the run.

Requires the columns to be sorted intelligently
to maximize compression opportunities.

16

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

BITMAP ENCODING

Store a separate Bitmap for each unique value
for a particular attribute where an offset in the
vector corresponds to a tuple.
→ Can use the same compression schemes that we

talked about for Bitmap indexes.

Only practical if the value cardinality is low.

17

MODEL 204 ARCHITECTURE AND
PERFORMANCE
High Performance Transaction Systems 1987

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://dx.doi.org/10.1007/3-540-51085-0_42
http://dx.doi.org/10.1007/3-540-51085-0_42

CMU 15-721 (Spring 2016)

DELTA ENCODING

Recording the difference between values that
follow each other in the same column.
→ The base value can be stored in-line or in a separate

look-up table.
→ Can be combined with RLE to get even better

compression ratios.

18

Original Data
time

12:01
12:00

12:03
12:02

12:04

temp

99.4
99.5

99.6
99.5

99.4

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

DELTA ENCODING

Recording the difference between values that
follow each other in the same column.
→ The base value can be stored in-line or in a separate

look-up table.
→ Can be combined with RLE to get even better

compression ratios.

18

Original Data
time

12:01
12:00

12:03
12:02

12:04

temp

99.4
99.5

99.6
99.5

99.4

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

DELTA ENCODING

Recording the difference between values that
follow each other in the same column.
→ The base value can be stored in-line or in a separate

look-up table.
→ Can be combined with RLE to get even better

compression ratios.

18

Original Data
time

12:01
12:00

12:03
12:02

12:04

temp

99.4
99.5

99.6
99.5

99.4

Compressed Data
time

+1
12:00

+1
+1

+1

temp

-1
99.5

+1
+1

-2

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

DELTA ENCODING

Recording the difference between values that
follow each other in the same column.
→ The base value can be stored in-line or in a separate

look-up table.
→ Can be combined with RLE to get even better

compression ratios.

18

Original Data
time

12:01
12:00

12:03
12:02

12:04

temp

99.4
99.5

99.6
99.5

99.4

Compressed Data
time

+1
12:00

+1
+1

+1

temp

-1
99.5

+1
+1

-2

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

DELTA ENCODING

Recording the difference between values that
follow each other in the same column.
→ The base value can be stored in-line or in a separate

look-up table.
→ Can be combined with RLE to get even better

compression ratios.

18

Original Data
time

12:01
12:00

12:03
12:02

12:04

temp

99.4
99.5

99.6
99.5

99.4

Compressed Data
time

(+1,4)
12:00

temp

-1
99.5

+1
+1

-2

Compressed Data
time

+1
12:00

+1
+1

+1

temp

-1
99.5

+1
+1

-2

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

INCREMENTAL ENCODING

Type of delta encoding whereby common
prefixes or suffixes and their lengths are
recorded so that they need not be duplicated.
This works best with sorted data.

19

Original Data

nab
nabbed
nabbing
nabit

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

INCREMENTAL ENCODING

Type of delta encoding whereby common
prefixes or suffixes and their lengths are
recorded so that they need not be duplicated.
This works best with sorted data.

19

Original Data

nab
nabbed
nabbing
nabit

Common Prefix

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

INCREMENTAL ENCODING

Type of delta encoding whereby common
prefixes or suffixes and their lengths are
recorded so that they need not be duplicated.
This works best with sorted data.

19

Original Data

nab
nabbed
nabbing
nabit

Common Prefix

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

INCREMENTAL ENCODING

Type of delta encoding whereby common
prefixes or suffixes and their lengths are
recorded so that they need not be duplicated.
This works best with sorted data.

19

Original Data

nab
nabbed
nabbing
nabit

Common Prefix

-

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

INCREMENTAL ENCODING

Type of delta encoding whereby common
prefixes or suffixes and their lengths are
recorded so that they need not be duplicated.
This works best with sorted data.

19

Original Data

nab
nabbed
nabbing
nabit

Common Prefix

-

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

INCREMENTAL ENCODING

Type of delta encoding whereby common
prefixes or suffixes and their lengths are
recorded so that they need not be duplicated.
This works best with sorted data.

19

Original Data

nab
nabbed
nabbing
nabit

Common Prefix

-

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

INCREMENTAL ENCODING

Type of delta encoding whereby common
prefixes or suffixes and their lengths are
recorded so that they need not be duplicated.
This works best with sorted data.

19

Original Data

nab
nabbed
nabbing
nabit

Common Prefix

-
nab

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

INCREMENTAL ENCODING

Type of delta encoding whereby common
prefixes or suffixes and their lengths are
recorded so that they need not be duplicated.
This works best with sorted data.

19

Original Data

nab
nabbed
nabbing
nabit

Common Prefix

-
nab
nabb
nab

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

INCREMENTAL ENCODING

Type of delta encoding whereby common
prefixes or suffixes and their lengths are
recorded so that they need not be duplicated.
This works best with sorted data.

19

Original Data

nab
nabbed
nabbing
nabit

Common Prefix

-
nab
nabb
nab

Compressed Data

nab
bed
ing
it

0
3
4
3

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

INCREMENTAL ENCODING

Type of delta encoding whereby common
prefixes or suffixes and their lengths are
recorded so that they need not be duplicated.
This works best with sorted data.

19

Original Data

nab
nabbed
nabbing
nabit

Common Prefix

-
nab
nabb
nab

Compressed Data

nab
bed
ing
it

0
3
4
3

Prefix
Length Suffix

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

MOSTLY ENCODING

When the values for an attribute are “mostly”
less than the largest size, you can store them
as a smaller data type.
→ The remaining values that cannot be compressed are

stored in their raw form.

20

Source: Redshift Documentation

Original Data
int32

4
2

6
100000

8

Compressed Data
mostly8

4
2

6
-

8

offset
3

value
100000

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://docs.aws.amazon.com/redshift/latest/dg/c_MostlyN_encoding.html

CMU 15-721 (Spring 2016)

DICTIONARY COMPRESSION

Replace frequent patterns with smaller codes.
Most pervasive compression scheme in DBMSs.

Need to support fast encoding and decoding.
Need to also support range queries.

21

DICTIONARY-BASED ORDER-PRESERVING STRING
COMPRESSION FOR MAIN MEMORY COLUMN STORES
SIGMOD 2009

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://15721.courses.cs.cmu.edu/spring2016/papers/p283-binnig.pdf
http://15721.courses.cs.cmu.edu/spring2016/papers/p283-binnig.pdf

CMU 15-721 (Spring 2016)

DICTIONARY COMPRESSION

When to construct the dictionary?
What should the scope be of the dictionary?
How do we allow for range queries?
How do we enable fast encoding/decoding?

22

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

DICTIONARY CONSTRUCTION

Choice #1: All At Once
→ Compute the dictionary for all the tuples at a given

point of time.
→ New tuples must use a separate dictionary or the all

tuples must be recomputed.

Choice #2: Incremental
→ Merge new tuples in with an existing dictionary.
→ Likely requires re-encoding to existing tuples.

23

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

DICTIONARY SCOPE

Choice #1: Block-level
→ Only include a subset of tuples within a single table.
→ Potentially lower compression ratio, but can add new

tuples more easily.

Choice #2: Table-level
→ Construct a dictionary for the entire table.
→ Better compression ratio, but expensive to update.

Choice #3: Multi-Table
→ Can be either subset or entire tables.
→ Sometimes helps with joins and set operations.

24

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

MULTI -AT TRIBUTE ENCODING

Instead of storing a single value per dictionary
entry, store entries that span attributes.
→ Only works for a DSM database
→ I’m not sure any DBMS actually implements this.

25

Original Data Compressed Data
val2

101
202

101
202

101

val1

B
A

C
A

B

val1+val2

YY
XX

ZZ
XX

YY

val2

101
202

101

val1

B
A

C

code

YY
XX

ZZ

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

ENCODING / DECODING

A dictionary needs to support two operations:
→ Encode: For a given uncompressed value, convert it

into its compressed form.
→ Decode: For a given compressed value, convert it

back into its original form.

No magic hash function will do this for us.
We need two data structures to support
operations in both directions.

26

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

ORDER-PRESERVING COMPRESSION

The encoded values need to support sorting in
the same order as original values.

27

Original Data

name
Trump
Joy
Andy
Truman

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

ORDER-PRESERVING COMPRESSION

The encoded values need to support sorting in
the same order as original values.

27

Original Data

name
Trump
Joy
Andy
Truman

Compressed Data

code
10
20
30
40

value
Andy
Joy

Truman
Trump

name
40
20
10
30

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

ORDER-PRESERVING COMPRESSION

The encoded values need to support sorting in
the same order as original values.

27

SELECT * FROM users
 WHERE name LIKE ‘Tru%’

Original Data

name
Trump
Joy
Andy
Truman

Compressed Data

code
10
20
30
40

value
Andy
Joy

Truman
Trump

name
40
20
10
30

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

ORDER-PRESERVING COMPRESSION

The encoded values need to support sorting in
the same order as original values.

27

SELECT * FROM users
 WHERE name LIKE ‘Tru%’

Original Data

name
Trump
Joy
Andy
Truman

Compressed Data

code
10
20
30
40

value
Andy
Joy

Truman
Trump

name
40
20
10
30

SELECT * FROM users
 WHERE name BETWEEN 30 AND 40

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

ORDER-PRESERVING COMPRESSION

28

Original Data

name
Trump
Joy
Andy
Truman

Compressed Data

code
10
20
30
40

value
Andy
Joy

Truman
Trump

name
40
20
10
30

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

ORDER-PRESERVING COMPRESSION

28

SELECT name FROM users
 WHERE name LIKE ‘Tru%’

Original Data

name
Trump
Joy
Andy
Truman

Compressed Data

code
10
20
30
40

value
Andy
Joy

Truman
Trump

name
40
20
10
30

???

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

ORDER-PRESERVING COMPRESSION

28

SELECT name FROM users
 WHERE name LIKE ‘Tru%’

Original Data

name
Trump
Joy
Andy
Truman

Compressed Data

code
10
20
30
40

value
Andy
Joy

Truman
Trump

name
40
20
10
30

Still have to perform seq scan

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

ORDER-PRESERVING COMPRESSION

28

SELECT name FROM users
 WHERE name LIKE ‘Tru%’

Original Data

name
Trump
Joy
Andy
Truman

Compressed Data

code
10
20
30
40

value
Andy
Joy

Truman
Trump

name
40
20
10
30

SELECT DISTINCT name
 FROM users
 WHERE name LIKE ‘Tru%’

Still have to perform seq scan

???

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

ORDER-PRESERVING COMPRESSION

28

SELECT name FROM users
 WHERE name LIKE ‘Tru%’

Original Data

name
Trump
Joy
Andy
Truman

Compressed Data

code
10
20
30
40

value
Andy
Joy

Truman
Trump

name
40
20
10
30

SELECT DISTINCT name
 FROM users
 WHERE name LIKE ‘Tru%’

Still have to perform seq scan

Only need to access dictionary

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

DICTIONARY IMPLEMENTATIONS

Hash Table:
→ Fast and compact.
→ Unable to support range and prefix queries.

B+Tree:
→ Slower than a hash table and takes more memory.
→ Can support range and prefix queries.

29

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SHARED-LEAVES ENCODE/DECODE TREES

30

DICTIONARY-BASED ORDER-PRESERVING STRING
COMPRESSION FOR MAIN MEMORY COLUMN STORES
SIGMOD 2009

Decode Index

• • •

Encode Index

Decode Index

value
aab

code
10

aae 20
aaf 30
aaz 40

value
zzb

code
960

zzm 970
zzx 980
zzz 990

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://15721.courses.cs.cmu.edu/spring2016/papers/p283-binnig.pdf
http://15721.courses.cs.cmu.edu/spring2016/papers/p283-binnig.pdf

CMU 15-721 (Spring 2016)

SHARED-LEAVES ENCODE/DECODE TREES

30

DICTIONARY-BASED ORDER-PRESERVING STRING
COMPRESSION FOR MAIN MEMORY COLUMN STORES
SIGMOD 2009

Decode Index

• • •

Encode Index

Decode Index

value
aab

code
10

aae 20
aaf 30
aaz 40

value
zzb

code
960

zzm 970
zzx 980
zzz 990

Sorted
Shared Leaf

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://15721.courses.cs.cmu.edu/spring2016/papers/p283-binnig.pdf
http://15721.courses.cs.cmu.edu/spring2016/papers/p283-binnig.pdf

CMU 15-721 (Spring 2016)

SHARED-LEAVES ENCODE/DECODE TREES

30

DICTIONARY-BASED ORDER-PRESERVING STRING
COMPRESSION FOR MAIN MEMORY COLUMN STORES
SIGMOD 2009

Decode Index

• • •

Encode Index

Decode Index

value
aab

code
10

aae 20
aaf 30
aaz 40

value
zzb

code
960

zzm 970
zzx 980
zzz 990

Original
Value

Sorted
Shared Leaf

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://15721.courses.cs.cmu.edu/spring2016/papers/p283-binnig.pdf
http://15721.courses.cs.cmu.edu/spring2016/papers/p283-binnig.pdf

CMU 15-721 (Spring 2016)

SHARED-LEAVES ENCODE/DECODE TREES

30

DICTIONARY-BASED ORDER-PRESERVING STRING
COMPRESSION FOR MAIN MEMORY COLUMN STORES
SIGMOD 2009

Decode Index

• • •

Encode Index

Decode Index

value
aab

code
10

aae 20
aaf 30
aaz 40

value
zzb

code
960

zzm 970
zzx 980
zzz 990

Original
Value

Encoded
Value

Sorted
Shared Leaf

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://15721.courses.cs.cmu.edu/spring2016/papers/p283-binnig.pdf
http://15721.courses.cs.cmu.edu/spring2016/papers/p283-binnig.pdf

CMU 15-721 (Spring 2016)

SHARED-LEAVES ENCODE/DECODE TREES

30

DICTIONARY-BASED ORDER-PRESERVING STRING
COMPRESSION FOR MAIN MEMORY COLUMN STORES
SIGMOD 2009

Decode Index

• • •

Encode Index

Decode Index

value
aab

code
10

aae 20
aaf 30
aaz 40

value
zzb

code
960

zzm 970
zzx 980
zzz 990

Original
Value

Encoded
Value

Encoded
Value

Original
Value

Sorted
Shared Leaf

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://15721.courses.cs.cmu.edu/spring2016/papers/p283-binnig.pdf
http://15721.courses.cs.cmu.edu/spring2016/papers/p283-binnig.pdf

CMU 15-721 (Spring 2016)

OBSERVATION

An OLTP DBMS cannot use the OLAP
compression techniques because we need to
support fast random tuple access.
→ Compressing & decompressing “hot” tuples on-the-

fly would be too slow to do during a txn.

Indexes consume a large portion of the
memory for an OLTP database…

31

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

OLTP INDEX OVERHEAD

32

Tuples
Primary
Indexes

Secondary
Indexes

TPC-C 42.5% 33.5% 24.0%

Articles 64.8% 22.6% 12.6%

Voter 45.1% 54.9% 0%

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

OLTP INDEX OVERHEAD

32

Tuples
Primary
Indexes

Secondary
Indexes

TPC-C 42.5% 33.5% 24.0%

Articles 64.8% 22.6% 12.6%

Voter 45.1% 54.9% 0%

57.5%

54.9%

35.2%

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

HYBRID INDEXES

Split a single logical index into two physical
indexes. Data is migrated from one stage to the
next over time.
→ Dynamic Stage: New data, fast to update.
→ Static Stage: Old data, compressed + read-only.

All updates go to dynamic stage.
Reads may need to check both stages.

33

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

HYBRID INDEXES

34

Dynamic
Index

Static
Index

Bloom Filter

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

HYBRID INDEXES

34

Dynamic
Index

Static
Index

Insert
Update
Delete

Bloom Filter

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

HYBRID INDEXES

34

Dynamic
Index

Static
Index

Insert
Update
Delete

Bloom Filter

Merge

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

HYBRID INDEXES

34

Dynamic
Index

Static
Index

Insert
Update
Delete

Read

Bloom Filter

Merge

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

HYBRID INDEXES

34

Dynamic
Index

Static
Index

Insert
Update
Delete

Read

Bloom Filter

Merge

Read

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

HYBRID INDEXES

34

Dynamic
Index

Static
Index

Insert
Update
Delete

Read

Bloom Filter

Merge

Read Read

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

COMPACT B+TREE

35

20

10 35

6 12 23 38

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

COMPACT B+TREE

35

20

10 35

6 12 23 38

Empty Slots

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

COMPACT B+TREE

35

12

6 12 23 38

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

COMPACT B+TREE

35

12

6 12 23 38

Pointers

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

COMPACT B+TREE

35

12

6 12 23 38

Computed
Offset

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

HYBRID INDEXES

36

Source: Huanchen Zhang

50% Reads / 50% Writes
50 million Entries

5.1 5.0

1.7

6.2

12.6

2.0

0

4

8

12

16

Random
Int

Mono-Inc
Int

Email

Th
ro

ug
hp

ut
 (M

op
/s

ec
)

1.3
1.8

3.2

0.9 0.9

2.3

0

1

2

3

4

Random
Int

Mono-Inc
Int

Email
M

em
or

y
(G

B)

Original B+Tree Hybrid B+Tree

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://www.cs.cmu.edu/%7Ehuanche1/

CMU 15-721 (Spring 2016)

PARTING THOUGHTS

Dictionary encoding is probably the most
useful compression scheme because it does not
require pre-sorting.

The DBMS can combine different approaches
for even better compression.

It is important to wait as long as possible
during query execution to decompress data.

37

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

NEXT CLASS

Query Planning & Optimization
Working in a large code base

38

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

	DATABASE SYSTEMS
	TODAY’S AGENDA
	OBSERVATION
	REAL-WORLD DATA CHARACTERISTICS
	DATABASE COMPRESSION
	LOSSLESS VS. LOSSY COMPRESSION
	COMPRESSION GRANULARITY
	NAÏVE COMPRESSION
	NAÏVE COMPRESSION
	MYSQL INNODB COMPRESSION
	MYSQL INNODB COMPRESSION
	MYSQL INNODB COMPRESSION
	MYSQL INNODB COMPRESSION
	MYSQL INNODB COMPRESSION
	MYSQL INNODB COMPRESSION
	NAÏVE COMPRESSION
	OBSERVATION
	OBSERVATION
	OBSERVATION
	OBSERVATION
	COLUMNAR COMPRESSION
	COMPRESSION VS. MSSQL INDEXES
	NULL SUPPRESSION
	RUN-LENGTH ENCODING
	BITMAP ENCODING
	DELTA ENCODING
	DELTA ENCODING
	DELTA ENCODING
	DELTA ENCODING
	DELTA ENCODING
	INCREMENTAL ENCODING
	INCREMENTAL ENCODING
	INCREMENTAL ENCODING
	INCREMENTAL ENCODING
	INCREMENTAL ENCODING
	INCREMENTAL ENCODING
	INCREMENTAL ENCODING
	INCREMENTAL ENCODING
	INCREMENTAL ENCODING
	INCREMENTAL ENCODING
	MOSTLY ENCODING
	DICTIONARY COMPRESSION
	DICTIONARY COMPRESSION
	DICTIONARY CONSTRUCTION
	DICTIONARY SCOPE
	MULTI-ATTRIBUTE ENCODING
	ENCODING / DECODING
	ORDER-PRESERVING COMPRESSION
	ORDER-PRESERVING COMPRESSION
	ORDER-PRESERVING COMPRESSION
	ORDER-PRESERVING COMPRESSION
	ORDER-PRESERVING COMPRESSION
	ORDER-PRESERVING COMPRESSION
	ORDER-PRESERVING COMPRESSION
	ORDER-PRESERVING COMPRESSION
	ORDER-PRESERVING COMPRESSION
	DICTIONARY IMPLEMENTATIONS
	SHARED-LEAVES ENCODE/DECODE TREES
	SHARED-LEAVES ENCODE/DECODE TREES
	SHARED-LEAVES ENCODE/DECODE TREES
	SHARED-LEAVES ENCODE/DECODE TREES
	SHARED-LEAVES ENCODE/DECODE TREES
	OBSERVATION
	OLTP INDEX OVERHEAD
	OLTP INDEX OVERHEAD
	HYBRID INDEXES
	HYBRID INDEXES
	HYBRID INDEXES
	HYBRID INDEXES
	HYBRID INDEXES
	HYBRID INDEXES
	HYBRID INDEXES
	COMPACT B+TREE
	COMPACT B+TREE
	COMPACT B+TREE
	COMPACT B+TREE
	COMPACT B+TREE
	HYBRID INDEXES
	PARTING THOUGHTS
	NEXT CLASS

