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TODAY ’S  AGENDA 

Background 
Naïve Compression 
OLAP Columnar Compression 
OLTP Index Compression 
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OBSERVATION 

I/O is the main bottleneck if the DBMS has to 
fetch data from disk. 
 

In-memory DBMSs are more complicated 
→ Compressing the database reduces DRAM 

requirements and processing. 
 

Key trade-off is speed vs. compression ratio 
→ In-memory DBMSs (always?) choose speed. 
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REAL-WORLD DATA CHARACTERISTICS 

Data sets tend to have highly skewed 
distributions for attribute values. 
→ Example: Zipfian distribution of the Brown Corpus 
 

Data sets tend to have high correlation 
between attributes of the same tuple. 
→ Example: Zip Code to City, Order Date to Ship Date 
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DATABASE COMPRESSION 

Goal #1: Must produce fixed-length values. 
 

Goal #2: Allow the DBMS to postpone 
decompression as long as possible during 
query execution. 
 
 

5 

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016


CMU 15-721 (Spring 2016) 

LOSSLESS VS.  LOSSY COMPRESSION 

When a DBMS uses compression, it is always 
lossless because people don’t like losing data. 
 

Any kind of lossy compression is has to be 
performed at the application level. 
 

Some new DBMSs support approximate queries 
→ Example: BlinkDB. 
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COMPRESSION GRANULARITY 

Choice #1: Block-level 
→ Compress a block of tuples for the same table. 

Choice #2: Tuple-level  
→ Compress the contents of the entire tuple. 

Choice #3: Attribute-level 
→ Compress a single attribute value within one tuple. 
→ Can target multiple attributes for the same tuple. 

Choice #4: Column-level 
→ Compress multiple values for one or more attributes 

stored for multiple tuples. Requires DSM. 
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NAÏVE COMPRESSION 

Compress data using a general purpose 
algorithm. Scope of compression is only based 
on the data provided as input. 
→ Examples: LZO (1996), LZ4 (2011), Snappy (2011). 
 

Considerations 
→ Computational overhead 
→ Compress vs. decompress speed. 
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NAÏVE COMPRESSION 

Choice #1: Entropy Encoding 
→ More common sequences use less bits to encode, less 

common sequences use more bits to encode. 
 

Choice #2: Dictionary Encoding 
→ Build a data structure that maps data segments to an 

identifier. Replace those segments in the original 
data with a reference to the segments position in the 
dictionary data structure. 
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MYSQL INNODB COMPRESSION 
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MYSQL INNODB COMPRESSION 
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MYSQL INNODB COMPRESSION 
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MYSQL INNODB COMPRESSION 
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NAÏVE COMPRESSION 

The data has to be decompressed first before it 
can be read and (potentially) modified. 
→ This limits the “scope” of the compression scheme. 
 

These schemes also do not consider the high-
level meaning or semantics of the data. 
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We can perform exact-match comparisons and 
natural joins on compressed data if predicates 
and data are compressed the same way. 
→ Range predicates are more tricky… 

OBSERVATION 
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We can perform exact-match comparisons and 
natural joins on compressed data if predicates 
and data are compressed the same way. 
→ Range predicates are more tricky… 

OBSERVATION 
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SELECT * FROM users 
 WHERE name = ‘Trump’ 

NAME SALARY 
Trump Huge 
Joy Small 
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We can perform exact-match comparisons and 
natural joins on compressed data if predicates 
and data are compressed the same way. 
→ Range predicates are more tricky… 

OBSERVATION 

12 

SELECT * FROM users 
 WHERE name = ‘Trump’ 

NAME SALARY 
Trump Huge 
Joy Small 

NAME SALARY 
XX AA 
YY BB 
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We can perform exact-match comparisons and 
natural joins on compressed data if predicates 
and data are compressed the same way. 
→ Range predicates are more tricky… 

OBSERVATION 

12 

SELECT * FROM users 
 WHERE name = ‘Trump’ 

SELECT * FROM users 
 WHERE name = XX 

NAME SALARY 
Trump Huge 
Joy Small 

NAME SALARY 
XX AA 
YY BB 
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COLUMNAR COMPRESSION 

Null Suppression 
Run-length Encoding 
Bitmap Encoding 
Delta Encoding 
Incremental Encoding 
Mostly Encoding 
Dictionary Encoding 
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COMPRESSION VS.  MSSQL INDEXES 

The MSSQL columnar indexes were a second 
copy of the data (aka fractured mirrors). 
→ The original data was still stored as in NSM format. 

 
We are now talking about compressing the 
primary copy of the data. 
Many of the same techniques are applicable. 

14 

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016


CMU 15-721 (Spring 2016) 

NULL SUPPRESSION 

Consecutive zeros or blanks in the data are 
replaced with a description of how many there 
were and where they existed. 
→ Example: Oracle’s Byte-Aligned Bitmap Codes (BBC) 
 

Useful in wide tables with sparse data. 
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RUN-LENGTH ENCODING 

Compress runs of the same value in a single 
column into triplets: 
→ The value of the attribute. 
→ The start position in the column segment. 
→ The # of elements in the run. 
 

Requires the columns to be sorted intelligently 
to maximize compression opportunities. 
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BITMAP ENCODING 

Store a separate Bitmap for each unique value 
for a particular attribute where an offset in the 
vector corresponds to a tuple. 
→ Can use the same compression schemes that we 

talked about for Bitmap indexes. 
 

Only practical if the value cardinality is low. 
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DELTA ENCODING 

Recording the difference between values that 
follow each other in the same column. 
→ The base value can be stored in-line or in a separate 

look-up table.  
→ Can be combined with RLE to get even better 

compression ratios. 
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DELTA ENCODING 

Recording the difference between values that 
follow each other in the same column. 
→ The base value can be stored in-line or in a separate 

look-up table.  
→ Can be combined with RLE to get even better 

compression ratios. 
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time 
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DELTA ENCODING 

Recording the difference between values that 
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DELTA ENCODING 

Recording the difference between values that 
follow each other in the same column. 
→ The base value can be stored in-line or in a separate 

look-up table.  
→ Can be combined with RLE to get even better 

compression ratios. 
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Original Data 
time 

12:01 
12:00 

12:03 
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temp 

99.4 
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99.5 
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Compressed Data 
time 

(+1,4) 
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time 
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INCREMENTAL ENCODING 

Type of delta encoding whereby common 
prefixes or suffixes and their lengths are 
recorded so that they need not be duplicated. 
This works best with sorted data. 

19 

Original Data 
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nabbed 
nabbing 
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INCREMENTAL ENCODING 

Type of delta encoding whereby common 
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recorded so that they need not be duplicated. 
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INCREMENTAL ENCODING 

Type of delta encoding whereby common 
prefixes or suffixes and their lengths are 
recorded so that they need not be duplicated. 
This works best with sorted data. 
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INCREMENTAL ENCODING 
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INCREMENTAL ENCODING 
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INCREMENTAL ENCODING 
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INCREMENTAL ENCODING 

Type of delta encoding whereby common 
prefixes or suffixes and their lengths are 
recorded so that they need not be duplicated. 
This works best with sorted data. 
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INCREMENTAL ENCODING 

Type of delta encoding whereby common 
prefixes or suffixes and their lengths are 
recorded so that they need not be duplicated. 
This works best with sorted data. 
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INCREMENTAL ENCODING 

Type of delta encoding whereby common 
prefixes or suffixes and their lengths are 
recorded so that they need not be duplicated. 
This works best with sorted data. 
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MOSTLY ENCODING 

When the values for an attribute are “mostly” 
less than the largest size, you can store them 
as a smaller data type. 
→ The remaining values that cannot be compressed are 

stored in their raw form. 
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Source: Redshift Documentation 

Original Data 
int32 

4 
2 

6 
100000 

8 

Compressed Data 
mostly8 
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100000 

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://docs.aws.amazon.com/redshift/latest/dg/c_MostlyN_encoding.html


CMU 15-721 (Spring 2016) 

DICTIONARY COMPRESSION 

Replace frequent patterns with smaller codes. 
Most pervasive compression scheme in DBMSs. 
 
Need to support fast encoding and decoding. 
Need to also support range queries. 
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DICTIONARY COMPRESSION 

When to construct the dictionary? 
What should the scope be of the dictionary? 
How do we allow for range queries? 
How do we enable fast encoding/decoding? 
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DICTIONARY CONSTRUCTION 

Choice #1: All At Once 
→ Compute the dictionary for all the tuples at a given 

point of time. 
→ New tuples must use a separate dictionary or the all 

tuples must be recomputed. 
 

Choice #2: Incremental 
→ Merge new tuples in with an existing dictionary. 
→ Likely requires re-encoding to existing tuples. 
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DICTIONARY SCOPE 

Choice #1: Block-level 
→ Only include a subset of tuples within a single table. 
→ Potentially lower compression ratio, but can add new 

tuples more easily. 
 

Choice #2: Table-level 
→ Construct a dictionary for the entire table. 
→ Better compression ratio, but expensive to update. 
 

Choice #3: Multi-Table 
→ Can be either subset or entire tables. 
→ Sometimes helps with joins and set operations. 
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MULTI -AT TRIBUTE ENCODING 

Instead of storing a single value per dictionary 
entry, store entries that span attributes. 
→ Only works for a DSM database 
→ I’m not sure any DBMS actually implements this. 
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Original Data Compressed Data 
val2 

101 
202 

101 
202 

101 

val1 

B 
A 

C 
A 

B 

val1+val2 

YY 
XX 

ZZ 
XX 

YY 

val2 
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202 
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val1 

B 
A 

C 

code 

YY 
XX 

ZZ 
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ENCODING /  DECODING 

A dictionary needs to support two operations: 
→ Encode: For a given uncompressed value, convert it 

into its compressed form. 
→ Decode: For a given compressed value, convert it 

back into its original form. 
 

No magic hash function will do this for us. 
We need two data structures to support 
operations in both directions. 
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ORDER-PRESERVING COMPRESSION 

The encoded values need to support sorting in 
the same order as original values. 

27 

Original Data 

name 
Trump 
Joy 
Andy 
Truman 
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ORDER-PRESERVING COMPRESSION 

The encoded values need to support sorting in 
the same order as original values. 

27 

Original Data 

name 
Trump 
Joy 
Andy 
Truman 

Compressed Data 

code 
10 
20 
30 
40 

value 
Andy 
Joy 

Truman 
Trump 

name 
40 
20 
10 
30 
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ORDER-PRESERVING COMPRESSION 

The encoded values need to support sorting in 
the same order as original values. 
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SELECT * FROM users 
 WHERE name LIKE ‘Tru%’ 

Original Data 

name 
Trump 
Joy 
Andy 
Truman 

Compressed Data 

code 
10 
20 
30 
40 

value 
Andy 
Joy 

Truman 
Trump 

name 
40 
20 
10 
30 

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016


CMU 15-721 (Spring 2016) 

ORDER-PRESERVING COMPRESSION 

The encoded values need to support sorting in 
the same order as original values. 

27 

SELECT * FROM users 
 WHERE name LIKE ‘Tru%’ 

Original Data 

name 
Trump 
Joy 
Andy 
Truman 

Compressed Data 

code 
10 
20 
30 
40 

value 
Andy 
Joy 

Truman 
Trump 

name 
40 
20 
10 
30 

SELECT * FROM users 
 WHERE name BETWEEN 30 AND 40 
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ORDER-PRESERVING COMPRESSION 

28 

Original Data 

name 
Trump 
Joy 
Andy 
Truman 

Compressed Data 

code 
10 
20 
30 
40 

value 
Andy 
Joy 

Truman 
Trump 

name 
40 
20 
10 
30 
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ORDER-PRESERVING COMPRESSION 

28 

SELECT name FROM users 
 WHERE name LIKE ‘Tru%’ 

Original Data 

name 
Trump 
Joy 
Andy 
Truman 

Compressed Data 

code 
10 
20 
30 
40 

value 
Andy 
Joy 

Truman 
Trump 

name 
40 
20 
10 
30 

??? 
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ORDER-PRESERVING COMPRESSION 

28 

SELECT name FROM users 
 WHERE name LIKE ‘Tru%’ 

Original Data 

name 
Trump 
Joy 
Andy 
Truman 

Compressed Data 

code 
10 
20 
30 
40 

value 
Andy 
Joy 

Truman 
Trump 

name 
40 
20 
10 
30 

Still have to perform seq scan 
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ORDER-PRESERVING COMPRESSION 

28 

SELECT name FROM users 
 WHERE name LIKE ‘Tru%’ 

Original Data 

name 
Trump 
Joy 
Andy 
Truman 

Compressed Data 

code 
10 
20 
30 
40 

value 
Andy 
Joy 

Truman 
Trump 

name 
40 
20 
10 
30 

SELECT DISTINCT name 
  FROM users 
 WHERE name LIKE ‘Tru%’ 

Still have to perform seq scan 

??? 
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ORDER-PRESERVING COMPRESSION 

28 

SELECT name FROM users 
 WHERE name LIKE ‘Tru%’ 

Original Data 

name 
Trump 
Joy 
Andy 
Truman 

Compressed Data 

code 
10 
20 
30 
40 

value 
Andy 
Joy 

Truman 
Trump 

name 
40 
20 
10 
30 

SELECT DISTINCT name 
  FROM users 
 WHERE name LIKE ‘Tru%’ 

Still have to perform seq scan 

Only need to access dictionary 
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DICTIONARY IMPLEMENTATIONS 

Hash Table: 
→ Fast and compact. 
→ Unable to support range and prefix queries. 

 

B+Tree: 
→ Slower than a hash table and takes more memory. 
→ Can support range and prefix queries. 
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SHARED-LEAVES ENCODE/DECODE TREES 

30 

DICTIONARY-BASED ORDER-PRESERVING STRING 
COMPRESSION FOR MAIN MEMORY COLUMN STORES 
SIGMOD 2009 

Decode Index 

•  •  •  

Encode Index 

Decode Index 

value 
aab 

code 
10 

aae 20 
aaf 30 
aaz 40 

value 
zzb 

code 
960 

zzm 970 
zzx 980 
zzz 990 
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SHARED-LEAVES ENCODE/DECODE TREES 

30 

DICTIONARY-BASED ORDER-PRESERVING STRING 
COMPRESSION FOR MAIN MEMORY COLUMN STORES 
SIGMOD 2009 

Decode Index 

•  •  •  

Encode Index 

Decode Index 

value 
aab 

code 
10 

aae 20 
aaf 30 
aaz 40 

value 
zzb 

code 
960 

zzm 970 
zzx 980 
zzz 990 

Sorted 
Shared Leaf 
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SHARED-LEAVES ENCODE/DECODE TREES 
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DICTIONARY-BASED ORDER-PRESERVING STRING 
COMPRESSION FOR MAIN MEMORY COLUMN STORES 
SIGMOD 2009 

Decode Index 

•  •  •  

Encode Index 

Decode Index 

value 
aab 

code 
10 

aae 20 
aaf 30 
aaz 40 

value 
zzb 

code 
960 

zzm 970 
zzx 980 
zzz 990 

Original 
Value 

Sorted 
Shared Leaf 
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SHARED-LEAVES ENCODE/DECODE TREES 
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DICTIONARY-BASED ORDER-PRESERVING STRING 
COMPRESSION FOR MAIN MEMORY COLUMN STORES 
SIGMOD 2009 

Decode Index 

•  •  •  

Encode Index 

Decode Index 

value 
aab 

code 
10 

aae 20 
aaf 30 
aaz 40 

value 
zzb 

code 
960 

zzm 970 
zzx 980 
zzz 990 

Original 
Value 

Encoded 
Value 

Sorted 
Shared Leaf 
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SHARED-LEAVES ENCODE/DECODE TREES 
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DICTIONARY-BASED ORDER-PRESERVING STRING 
COMPRESSION FOR MAIN MEMORY COLUMN STORES 
SIGMOD 2009 

Decode Index 

•  •  •  

Encode Index 

Decode Index 

value 
aab 

code 
10 

aae 20 
aaf 30 
aaz 40 

value 
zzb 

code 
960 

zzm 970 
zzx 980 
zzz 990 

Original 
Value 

Encoded 
Value 

Encoded 
Value 

Original 
Value 

Sorted 
Shared Leaf 
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OBSERVATION 

An OLTP DBMS cannot use the OLAP 
compression techniques because we need to 
support fast random tuple access. 
→ Compressing & decompressing “hot” tuples on-the-

fly would be too slow to do during a txn. 
 

Indexes consume a large portion of the 
memory for an OLTP database… 

31 
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OLTP INDEX OVERHEAD 

32 

Tuples 
Primary 
Indexes 

Secondary 
Indexes 

TPC-C 42.5% 33.5% 24.0% 

Articles 64.8% 22.6% 12.6% 

Voter 45.1% 54.9% 0% 
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OLTP INDEX OVERHEAD 

32 

Tuples 
Primary 
Indexes 

Secondary 
Indexes 

TPC-C 42.5% 33.5% 24.0% 

Articles 64.8% 22.6% 12.6% 

Voter 45.1% 54.9% 0% 

57.5% 

54.9% 

35.2% 
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HYBRID INDEXES 

Split a single logical index into two physical 
indexes. Data is migrated from one stage to the 
next over time. 
→ Dynamic Stage: New data, fast to update. 
→ Static Stage: Old data, compressed + read-only. 

 
All updates go to dynamic stage. 
Reads may need to check both stages. 

33 

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016


CMU 15-721 (Spring 2016) 

HYBRID INDEXES 

34 

Dynamic 
Index 

Static 
Index 

Bloom Filter 
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HYBRID INDEXES 

34 

Dynamic 
Index 

Static 
Index 

Insert 
Update 
Delete 

Bloom Filter 
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HYBRID INDEXES 

34 

Dynamic 
Index 

Static 
Index 

Insert 
Update 
Delete 

Bloom Filter 

Merge 
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HYBRID INDEXES 

34 

Dynamic 
Index 

Static 
Index 

Insert 
Update 
Delete 

Read 

Bloom Filter 

Merge 
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HYBRID INDEXES 

34 

Dynamic 
Index 

Static 
Index 

Insert 
Update 
Delete 

Read 

Bloom Filter 

Merge 

Read 
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HYBRID INDEXES 

34 

Dynamic 
Index 

Static 
Index 

Insert 
Update 
Delete 

Read 

Bloom Filter 

Merge 

Read Read 
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COMPACT B+TREE 

35 

20 

10 35 

6 12 23 38 
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COMPACT B+TREE 

35 

20 

10 35 

6 12 23 38 

Empty Slots 
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COMPACT B+TREE 

35 

12 

6 12 23 38 
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COMPACT B+TREE 

35 

12 

6 12 23 38 

Pointers 
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COMPACT B+TREE 

35 

12 

6 12 23 38 

Computed 
Offset 
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HYBRID INDEXES 

36 

Source: Huanchen Zhang 

50% Reads / 50% Writes 
50 million Entries 
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Original B+Tree Hybrid B+Tree 

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://www.cs.cmu.edu/%7Ehuanche1/


CMU 15-721 (Spring 2016) 

PARTING THOUGHTS 

Dictionary encoding is probably the most 
useful compression scheme because it does not 
require pre-sorting. 
 

The DBMS can combine different approaches 
for even better compression. 
 

It is important to wait as long as possible 
during query execution to decompress data. 
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NEXT CLASS 

Query Planning & Optimization 
Working in a large code base 

38 
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