
Andy Pavlo // Carnegie Mellon University // Spring 2016

Lecture #23 – Non-Volatile Memory

DATABASE
SYSTEMS

15-721

http://15721.courses.cs.cmu.edu/spring2016/

CMU 15-721 (Spring 2016)

TODAY ’S AGENDA

Background
Storage & Recovery Methods for NVM
Project #3 Code Review Guidelines

2

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

NON-VOLATILE MEMORY

Emerging storage technology that provide low
latency read/writes like DRAM, but with
persistent writes and large capacities like SSDs.
→ AKA Storage-class Memory, Persistent Memory

First devices will be block-addressable (NVMe)
Later devices will be byte-addressable.

3

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
https://en.wikipedia.org/wiki/NVM_Express

CMU 15-721 (Spring 2016)

FUNDAMENTAL ELEMENTS OF CIRCUITS

4

Capacitor
(ca. 1745)

Resistor
(ca. 1827)

Inductor
(ca. 1831)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

FUNDAMENTAL ELEMENTS OF CIRCUITS

In 1971, Leon Chua at Berkeley predicted the
existence of a fourth fundamental element.

A two-terminal device whose resistance
depends on the voltage applied to it, but when
that voltage is turned off it permanently
remembers its last resistive state.

5

TWO CENTURIES OF MEMRISTORS
Nature Materials 2012

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
https://www.eecs.berkeley.edu/Faculty/Homepages/chua.html
http://www.nature.com/nmat/journal/v11/n6/full/nmat3338.html
http://www.nature.com/nmat/journal/v11/n6/full/nmat3338.html

CMU 15-721 (Spring 2016)

FUNDAMENTAL ELEMENTS OF CIRCUITS

6

Capacitor
(ca. 1745)

Resistor
(ca. 1827)

Inductor
(ca. 1831)

Memristor
(ca. 1971)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

MERISTORS

A team at HP Labs led by Stanley Williams
stumbled upon a nano-device that had weird
properties that they could not understand.

It wasn’t until they found Chua’s 1971 paper
that they realized what they had invented.

7

HOW WE FOUND THE MISSING MEMRISTOR
IEEE Spectrum 2008

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
https://en.wikipedia.org/wiki/R._Stanley_Williams
http://spectrum.ieee.org/semiconductors/processors/how-we-found-the-missing-memristor
http://spectrum.ieee.org/semiconductors/processors/how-we-found-the-missing-memristor

CMU 15-721 (Spring 2016)

MERISTORS

A team at HP Labs led by Stanley Williams
stumbled upon a nano-device that had weird
properties that they could not understand.

It wasn’t until they found Chua’s 1971 paper
that they realized what they had invented.

7

HOW WE FOUND THE MISSING MEMRISTOR
IEEE Spectrum 2008

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
https://en.wikipedia.org/wiki/R._Stanley_Williams
http://spectrum.ieee.org/semiconductors/processors/how-we-found-the-missing-memristor
http://spectrum.ieee.org/semiconductors/processors/how-we-found-the-missing-memristor

CMU 15-721 (Spring 2016)

MERISTORS

A team at HP Labs led by Stanley Williams
stumbled upon a nano-device that had weird
properties that they could not understand.

It wasn’t until they found Chua’s 1971 paper
that they realized what they had invented.

7

HOW WE FOUND THE MISSING MEMRISTOR
IEEE Spectrum 2008

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
https://en.wikipedia.org/wiki/R._Stanley_Williams
http://spectrum.ieee.org/semiconductors/processors/how-we-found-the-missing-memristor
http://spectrum.ieee.org/semiconductors/processors/how-we-found-the-missing-memristor

CMU 15-721 (Spring 2016)

MEMRISTOR – HYSTERESIS LOOP

8

TWO CENTURIES OF MEMRISTORS
Nature Materials 2012

Vacuum Circuits
(ca. 1948)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://www.nature.com/nmat/journal/v11/n6/full/nmat3338.html
http://www.nature.com/nmat/journal/v11/n6/full/nmat3338.html
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4796751

CMU 15-721 (Spring 2016)

TECHNOLOGIES

Phase-Change Memory (PRAM)
Resistive RAM (ReRAM)
Magnetoresistive RAM (MRAM)

9

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

PHASE-CHANGE MEMORY

Storage cell is comprised of two metal
electrodes separated by a resistive heater and
the phase change material (chalcogenide).

The value of the cell is changed based on
how the material is heated.
→ A short pulse changes the cell to a ‘0’.
→ A long, gradual pulse changes the cell to a ‘1’.

10

PHASE CHANGE MEMORY ARCHITECTURE AND
THE QUEST FOR SCALABILITY
Communications of the ACM 2010

Heater

Bitline

Access

chalcogenide

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://cacm.acm.org/magazines/2010/7/95046-phase-change-memory-architecture-and-the-quest-for-scalability/fulltext
http://cacm.acm.org/magazines/2010/7/95046-phase-change-memory-architecture-and-the-quest-for-scalability/fulltext

CMU 15-721 (Spring 2016)

RESISTIVE RAM

Two metal layers with two TiO2 layers in
between. Running a current one direction
moves electrons from the top TiO2 layer to the
bottom, thereby changing the resistance.

May be programmable storage fabric…
→ Bertrand Russell’s Material Implication Logic

11

HOW WE FOUND THE MISSING MEMRISTOR
IEEE Spectrum 2008

Platinum

Platinum

TiO2 Layer

TiO2-x Layer

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://spectrum.ieee.org/semiconductors/processors/how-we-found-the-missing-memristor
http://spectrum.ieee.org/semiconductors/processors/how-we-found-the-missing-memristor

CMU 15-721 (Spring 2016)

MAGNETORESISTIVE RAM

Stores data using magnetic storage elements
instead of electric charge or current flows.

Spin-Transfer Torque (STT-MRAM) is the
leading technology for this type of NVM.
→ Supposedly able to scale to very small

sizes (10nm) and have SRAM latencies.

12

Fixed FM Layer→
Oxide Layer

Free FM Layer ↔

SPIN MEMORY SHOWS ITS MIGHT
IEEE Spectrum 2014

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://spectrum.ieee.org/semiconductors/memory/spin-memory-shows-its-might
http://spectrum.ieee.org/semiconductors/memory/spin-memory-shows-its-might

CMU 15-721 (Spring 2016)

TIMELINE

Intel announced that their 3D XPoint drives
will be available in 2016.
→ Rumors are that the 2017 Xeon ISA will include

instructions for NVM DIMMs.

Samsung has recently partnered to develop
their NVDIMM-P storage.

HP’s ReRam is always two years away…

13

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
https://en.wikipedia.org/wiki/3D_XPoint
http://www.tomsitpro.com/articles/samsung-netlist-3d-xpoint-nvdimm,1-3048.html

CMU 15-721 (Spring 2016)

14

Source: Luke Kilpatrick

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
https://www.flickr.com/photos/17638385@N05/4728649107/in/album-72157624344076304/

CMU 15-721 (Spring 2016)

NVM FOR DATABASE SYSTEMS

Block-addressable NVM is not that interesting.

Byte-addressable NVM will be a game changer
but will require some work to use correctly.
→ In-memory DBMSs will be better positioned to use

byte-addressable NVM.
→ Disk-oriented DBMSs will initially treat NVM as just a

faster SSD.

More significant for OLTP workloads.

15

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

STORAGE & RECOVERY METHODS

Understand how a DBMS will behave on a
system that only has byte-addressable NVM.

Develop NVM-optimized implementations of
standard DBMS architectures.

Based on the N-Store prototype DBMS.

16

LET'S TALK ABOUT STORAGE & RECOVERY METHODS
FOR NON-VOLATILE MEMORY DATABASE SYSTEMS
SIGMOD 2015

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
https://github.com/jarulraj/storage
https://github.com/jarulraj/storage
https://github.com/jarulraj/storage
http://15721.courses.cs.cmu.edu/spring2016/papers/p707-arulraj.pdf
http://15721.courses.cs.cmu.edu/spring2016/papers/p707-arulraj.pdf

CMU 15-721 (Spring 2016)

SYNCHRONIZATION

Existing programming models assume that any
write to memory is non-volatile.
→ CPU decides when to move data from caches to DRAM.

The DBMS needs a way to ensure that data is
flushed from caches to NVM.

17

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SYNCHRONIZATION

Existing programming models assume that any
write to memory is non-volatile.
→ CPU decides when to move data from caches to DRAM.

The DBMS needs a way to ensure that data is
flushed from caches to NVM.

17

STORE STORE

L1 Cache

L2 Cache

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

NAMING

If the DBMS process restarts, we need to make
sure that all of the pointers for in-memory data
point to the same data.

18

Table Heap

Tuple #00

Tuple #02

Tuple #01

Index

Tuple #00 (v2)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

NAMING

If the DBMS process restarts, we need to make
sure that all of the pointers for in-memory data
point to the same data.

18

Table Heap

Tuple #00

Tuple #02

Tuple #01

Index

Tuple #00 (v2) X X

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

NAMING

If the DBMS process restarts, we need to make
sure that all of the pointers for in-memory data
point to the same data.

18

Table Heap

Tuple #00

Tuple #02

Tuple #01

Index

Tuple #00 (v2)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

NVM-AWARE MEMORY ALLOCATOR

Feature #1: Synchronization
→ The allocator writes back CPU cache lines to NVM

using the CLFLUSH instruction.
→ It then issues a SFENCE instruction to wait for the

data to become durable on NVM.

Feature #2: Naming
→ The allocator ensures that virtual memory addresses

assigned to a memory-mapped region never change
even after the OS or DBMS restarts.

19

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

DBMS ENGINE ARCHITECTURES

Choice #1: In-place Updates
→ Table heap with a write-ahead log + snapshots.
→ Example: VoltDB

Choice #2: Copy-on-Write
→ Create a shadow copy of the table when updated.
→ No write-ahead log.
→ Example: LMDB

Choice #3: Log-structured
→ All writes are appended to log. No table heap.
→ Example: RocksDB

20

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

IN-PLACE UPDATES ENGINE

21

In-Memory
Table Heap

Tuple #00

Tuple #02

Durable
Storage

Write-Ahead Log

In-Memory
Index

Tuple #01

Snapshots

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

IN-PLACE UPDATES ENGINE

21

In-Memory
Table Heap

Tuple #00

Tuple #02

Durable
Storage

Write-Ahead Log

In-Memory
Index

Tuple #01

Snapshots

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

IN-PLACE UPDATES ENGINE

21

In-Memory
Table Heap

Tuple #00

Tuple #02

Durable
Storage

Write-Ahead Log

Tuple Delta

In-Memory
Index

Tuple #01

Snapshots

1

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

IN-PLACE UPDATES ENGINE

21

In-Memory
Table Heap

Tuple #00

Tuple #02

Durable
Storage

Write-Ahead Log

Tuple Delta

In-Memory
Index

Tuple #01

Snapshots

Tuple #01 (!) 1 2

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

IN-PLACE UPDATES ENGINE

21

In-Memory
Table Heap

Tuple #00

Tuple #02

Durable
Storage

Write-Ahead Log

Tuple Delta

In-Memory
Index

Tuple #01

Snapshots

Tuple #01 (!)

Tuple #01 (!) 1 2

3

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

IN-PLACE UPDATES ENGINE

21

In-Memory
Table Heap

Tuple #00

Tuple #02

Durable
Storage

Write-Ahead Log

Tuple Delta

In-Memory
Index

Tuple #01

Snapshots

Tuple #01 (!)

Tuple #01 (!) 1 2

3

Duplicate Data

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

IN-PLACE UPDATES ENGINE

21

In-Memory
Table Heap

Tuple #00

Tuple #02

Durable
Storage

Write-Ahead Log

Tuple Delta

In-Memory
Index

Tuple #01

Snapshots

Tuple #01 (!)

Tuple #01 (!) 1 2

3

Duplicate Data

Recovery Latency

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

NVM-OPTIMIZED ARCHITECTURES

Leverage the allocator’s non-volatile pointers
to only record what changed rather than how
it changed.

The DBMS only has to maintain a transient
UNDO log for a txn until it commits.
→ Dirty cache lines from an uncommitted txn can be

flushed by hardware to the memory controller.
→ No REDO log because we flush all the changes to NVM

at the time of commit.

22

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

NVM IN-PLACE UPDATES ENGINE

23

NVM
Table Heap

Tuple #00

Tuple #02

NVM
Storage

Write-Ahead Log

NVM
Index

Tuple #01

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

NVM IN-PLACE UPDATES ENGINE

23

NVM
Table Heap

Tuple #00

Tuple #02

NVM
Storage

Write-Ahead Log

NVM
Index

Tuple #01

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

NVM IN-PLACE UPDATES ENGINE

23

NVM
Table Heap

Tuple #00

Tuple #02

NVM
Storage

Write-Ahead Log

Tuple Pointers

NVM
Index

Tuple #01 1

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

NVM IN-PLACE UPDATES ENGINE

23

NVM
Table Heap

Tuple #00

Tuple #02

NVM
Storage

Write-Ahead Log

Tuple Pointers

NVM
Index

Tuple #01 Tuple #01 (!) 1 2

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

COPY-ON-WRITE ENGINE

24

Current Directory

Master Record

Leaf 1 Leaf 2

Slotted Page #00 Slotted Page #01

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

COPY-ON-WRITE ENGINE

24

Current Directory

Master Record

Leaf 1 Leaf 2

Slotted Page #00 Slotted Page #01

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

COPY-ON-WRITE ENGINE

24

Current Directory

Master Record

Leaf 1 Leaf 2 1

Slotted Page #00 Slotted Page #01

Updated Leaf 1

Slotted Page #00

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

COPY-ON-WRITE ENGINE

24

Current Directory Dirty Directory

Master Record

Leaf 1 Leaf 2 1

2

Slotted Page #00 Slotted Page #01

Updated Leaf 1

Slotted Page #00

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

COPY-ON-WRITE ENGINE

24

Current Directory Dirty Directory

Master Record

Leaf 1 Leaf 2 1

2

3

Slotted Page #00 Slotted Page #01

Updated Leaf 1

Slotted Page #00

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

COPY-ON-WRITE ENGINE

24

Current Directory Dirty Directory

Master Record

Leaf 1 Leaf 2 1

2

3 Expensive Copies

Slotted Page #00 Slotted Page #01

Updated Leaf 1

Slotted Page #00

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

NVM COPY-ON-WRITE ENGINE

25

Current Directory

Tuple #00

Master Record

Leaf 1 Leaf 2

Tuple #01

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

NVM COPY-ON-WRITE ENGINE

25

Current Directory

Tuple #00

Master Record

Leaf 1 Leaf 2 Updated Leaf 1

Tuple #00 (!)

1

Tuple #01

Only Copy
Pointers

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

NVM COPY-ON-WRITE ENGINE

25

Current Directory Dirty Directory

Tuple #00

Master Record

Leaf 1 Leaf 2 Updated Leaf 1

Tuple #00 (!)

1

2

3

Tuple #01

Only Copy
Pointers

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

LOG-STRUCTURED ENGINE

26

SSTable MemTable

Write-Ahead Log

Bloom Filter

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

LOG-STRUCTURED ENGINE

26

SSTable MemTable

Write-Ahead Log

Tuple Delta

Bloom Filter

1

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

LOG-STRUCTURED ENGINE

26

SSTable MemTable

Write-Ahead Log

Tuple Delta

Bloom Filter

Tuple Delta

Tuple Data

1
2
3

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

LOG-STRUCTURED ENGINE

26

SSTable MemTable

Write-Ahead Log

Tuple Delta

Bloom Filter

Tuple Delta

Tuple Data

1
2
3

Duplicate Data

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

LOG-STRUCTURED ENGINE

26

SSTable MemTable

Write-Ahead Log

Tuple Delta

Bloom Filter

Tuple Delta

Tuple Data

1
2
3

Duplicate Data

Compactions

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

NVM LOG-STRUCTURED ENGINE

27

SSTable MemTable

Write-Ahead Log

Tuple Delta

Bloom Filter

Tuple Delta

Tuple Data

1
2
3

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

NVM LOG-STRUCTURED ENGINE

27

SSTable MemTable

Write-Ahead Log

Tuple Delta

Bloom Filter

Tuple Delta

Tuple Data

1
2
3

X

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

NVM LOG-STRUCTURED ENGINE

27

MemTable

Write-Ahead Log

Tuple Delta 1

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

SUMMARY

Storage Optimizations
→ Leverage byte-addressability to avoid unnecessary

data duplication.

Recovery Optimizations
→ NVM-optimized recovery protocols avoid the

overhead of processing a log.
→ Non-volatile data structures ensure consistency.

28

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

EVALUATION

N-Store DBMS testbed with pluggable storage
manager architecture.
→ H-Store-style concurrency control

Intel Labs NVM Hardware Emulator
→ NVM latency = 2x DRAM latency

Yahoo! Cloud Serving Benchmark
→ 2 million records + 1 million transactions
→ 10% Reads / 90% Writes
→ High-skew setting

29

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

RUNTIME PERFORMANCE

30

0

400000

800000

1200000

In-Place Copy-on-Write Log-Structured

Th
ro

ug
hp

ut
 (t

xn
/s

ec
)

Traditional NVM-Optimized

YCSB Workload – 10% Reads / 90% Writes
NVRAM – 2x DRAM Latency

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WRITE ENDURANCE

31

0

100

200

300

In-Place Copy-on-Write Log-Structured

N
V

M
 S

to
re

s
(M

)

Traditional NVM-Optimized

YCSB Workload – 10% Reads / 90% Writes
NVRAM – 2x DRAM Latency

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

WRITE ENDURANCE

31

0

100

200

300

In-Place Copy-on-Write Log-Structured

N
V

M
 S

to
re

s
(M

)

Traditional NVM-Optimized

YCSB Workload – 10% Reads / 90% Writes
NVRAM – 2x DRAM Latency

↓25%

↓40%

↓20%

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

RECOVERY LATENCY

32

0.01

0.1

1

10

100

1000

10^3 10^4 10^5 10^3 10^4 10^5 10^3 10^4 10^5

In-Place Copy-on-Write Log-Structured

R
ec

ov
er

y
Ti

m
e

(m
s)

Traditional NVM-Optimized

Elapsed time to replay log on recovery
NVRAM – 2x DRAM Latency

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

RECOVERY LATENCY

32

0.01

0.1

1

10

100

1000

10^3 10^4 10^5 10^3 10^4 10^5 10^3 10^4 10^5

In-Place Copy-on-Write Log-Structured

R
ec

ov
er

y
Ti

m
e

(m
s)

Traditional NVM-Optimized

No Recovery
Needed

Elapsed time to replay log on recovery
NVRAM – 2x DRAM Latency

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

PARTING THOUGHTS

Designing for NVM is important
→ Non-volatile data structures provide higher

throughput and faster recovery

Byte-addressable NVM is going to be a game
changer when it comes out.

33

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

CODE REVIEWS

Every group will perform a code review of
another group.
→ Dev group will send a pull request on Github.
→ Review group will write comments on that request.
→ You will need to send me your pull request URL

We will provide a write-up later this week.
Due Date: May 8th @ 11:59pm

Please be helpful and courteous.

34

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

GENERAL T IPS

The dev team should provide you with a
summary of what files/functions the reviewing
team should look at.

Review fewer than 400 lines of code at a time
and only for at most 60 minutes.

Use a checklist to outline what kind of
problems you are looking for.

35

Source: SmartBear

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
https://smartbear.com/learn/code-review/best-practices-for-peer-code-review/

CMU 15-721 (Spring 2016)

CHECKLIST – GENERAL

Does the code work?
Is all the code easily understood?

Is there any redundant or duplicate code?

Is the code as modular as possible?

Can any global variables be replaced?

Is there any commented out code?

Is it using proper debug log functions?

36

Source: Gareth Wilson

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://blog.fogcreek.com/increase-defect-detection-with-our-code-review-checklist-example/

CMU 15-721 (Spring 2016)

CHECKLIST – DOCUMENTATION

Do comments describe the intent of the code?
Are all functions commented?

Is any unusual behavior described?

Is the use of 3rd-party libraries documented?

Is there any incomplete code?

37

Source: Gareth Wilson

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://blog.fogcreek.com/increase-defect-detection-with-our-code-review-checklist-example/

CMU 15-721 (Spring 2016)

CHECKLIST – TESTING

Do tests exist and are they comprehensive?
Are the tests actually testing the feature?

Are they relying on hardcoded answers?

What is the code coverage?

38

Source: Gareth Wilson

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://blog.fogcreek.com/increase-defect-detection-with-our-code-review-checklist-example/

CMU 15-721 (Spring 2016)

39

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

GROUP ASSIGNMENTS

40

Logging Multi-Threaded Queries

Constraints Garbage Collection

UDFs Memcache

Query Planning Concurrency Control

Statistics Query Compilation

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2016)

NEXT CLASS

Final Exam Review
Ankur Goyal (CMU’15 / MemSQL)

41

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

	DATABASE SYSTEMS
	TODAY’S AGENDA
	NON-VOLATILE MEMORY
	FUNDAMENTAL ELEMENTS OF CIRCUITS
	FUNDAMENTAL ELEMENTS OF CIRCUITS
	FUNDAMENTAL ELEMENTS OF CIRCUITS
	MERISTORS
	MERISTORS
	MERISTORS
	MEMRISTOR – HYSTERESIS LOOP
	TECHNOLOGIES
	PHASE-CHANGE MEMORY
	RESISTIVE RAM
	MAGNETORESISTIVE RAM
	TIMELINE
	Slide Number 16
	NVM FOR DATABASE SYSTEMS
	STORAGE & RECOVERY METHODS
	SYNCHRONIZATION
	SYNCHRONIZATION
	NAMING
	NAMING
	NAMING
	NVM-AWARE MEMORY ALLOCATOR
	DBMS ENGINE ARCHITECTURES
	IN-PLACE UPDATES ENGINE
	IN-PLACE UPDATES ENGINE
	IN-PLACE UPDATES ENGINE
	IN-PLACE UPDATES ENGINE
	IN-PLACE UPDATES ENGINE
	IN-PLACE UPDATES ENGINE
	IN-PLACE UPDATES ENGINE
	NVM-OPTIMIZED ARCHITECTURES
	NVM IN-PLACE UPDATES ENGINE
	NVM IN-PLACE UPDATES ENGINE
	NVM IN-PLACE UPDATES ENGINE
	NVM IN-PLACE UPDATES ENGINE
	COPY-ON-WRITE ENGINE
	COPY-ON-WRITE ENGINE
	COPY-ON-WRITE ENGINE
	COPY-ON-WRITE ENGINE
	COPY-ON-WRITE ENGINE
	COPY-ON-WRITE ENGINE
	NVM COPY-ON-WRITE ENGINE
	NVM COPY-ON-WRITE ENGINE
	NVM COPY-ON-WRITE ENGINE
	LOG-STRUCTURED ENGINE
	LOG-STRUCTURED ENGINE
	LOG-STRUCTURED ENGINE
	LOG-STRUCTURED ENGINE
	LOG-STRUCTURED ENGINE
	NVM LOG-STRUCTURED ENGINE
	NVM LOG-STRUCTURED ENGINE
	NVM LOG-STRUCTURED ENGINE
	SUMMARY
	EVALUATION
	RUNTIME PERFORMANCE
	WRITE ENDURANCE
	WRITE ENDURANCE
	RECOVERY LATENCY
	RECOVERY LATENCY
	PARTING THOUGHTS
	CODE REVIEWS
	GENERAL TIPS
	CHECKLIST – GENERAL
	CHECKLIST – DOCUMENTATION
	CHECKLIST – TESTING
	Slide Number 68
	GROUP ASSIGNMENTS
	NEXT CLASS

