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NON-VOLATILE  MEMORY 

Emerging storage technology that provide low 
latency read/writes like DRAM, but with 
persistent writes and large capacities like SSDs. 
→ AKA Storage-class Memory, Persistent Memory 
 

First devices will be block-addressable (NVMe) 
Later devices will be byte-addressable. 
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FUNDAMENTAL ELEMENTS OF CIRCUITS 
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FUNDAMENTAL ELEMENTS OF CIRCUITS 

In 1971, Leon Chua at Berkeley predicted the 
existence of a fourth fundamental element. 
 

A two-terminal device whose resistance 
depends on the voltage applied to it, but when 
that voltage is turned off it permanently 
remembers its last resistive state. 
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FUNDAMENTAL ELEMENTS OF CIRCUITS 
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MERISTORS 

A team at HP Labs led by Stanley Williams 
stumbled upon a nano-device that had weird 
properties that they could not understand. 
 

It wasn’t until they found Chua’s 1971 paper 
that they realized what they had invented. 
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MEMRISTOR –  HYSTERESIS  LOOP 
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TWO CENTURIES OF MEMRISTORS 
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TECHNOLOGIES 

Phase-Change Memory (PRAM) 
Resistive RAM (ReRAM) 
Magnetoresistive RAM (MRAM) 

9 

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016


CMU 15-721 (Spring 2016) 

PHASE-CHANGE MEMORY 

Storage cell is comprised of two metal 
electrodes separated by a resistive heater and 
the phase change material (chalcogenide). 
 

The value of the cell is changed based on 
how the material is heated. 
→ A short pulse changes the cell to a ‘0’. 
→ A long, gradual pulse changes the cell to a ‘1’. 
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PHASE CHANGE MEMORY ARCHITECTURE AND 
THE QUEST FOR SCALABILITY 
Communications of the ACM 2010 
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RESISTIVE RAM 

Two metal layers with two TiO2 layers in 
between. Running a current one direction 
moves electrons from the top TiO2 layer to the 
bottom, thereby changing the resistance. 
 

May be programmable storage fabric… 
→ Bertrand Russell’s Material Implication Logic 
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HOW WE FOUND THE MISSING MEMRISTOR 
IEEE Spectrum 2008 
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MAGNETORESISTIVE RAM 

Stores data using magnetic storage elements 
instead of electric charge or current flows. 
 

Spin-Transfer Torque (STT-MRAM) is the 
leading technology for this type of NVM. 
→ Supposedly able to scale to very small 

sizes (10nm) and have SRAM latencies. 
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TIMELINE 

Intel announced that their 3D XPoint drives 
will be available in 2016. 
→ Rumors are that the 2017 Xeon ISA will include 

instructions for NVM DIMMs. 
 

Samsung has recently partnered to develop 
their NVDIMM-P storage. 
 

HP’s ReRam is always two years away… 
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NVM FOR DATABASE SYSTEMS 

Block-addressable NVM is not that interesting. 
 

Byte-addressable NVM will be a game changer 
but will require some work to use correctly. 
→ In-memory DBMSs will be better positioned to use 

byte-addressable NVM. 
→ Disk-oriented DBMSs will initially treat NVM as just a 

faster SSD. 
 

More significant for OLTP workloads. 

15 

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016


CMU 15-721 (Spring 2016) 

STORAGE & RECOVERY METHODS 

Understand how a DBMS will behave on a 
system that only has byte-addressable NVM. 
 

Develop NVM-optimized implementations of 
standard DBMS architectures. 
 

Based on the N-Store prototype DBMS. 
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LET'S TALK ABOUT STORAGE & RECOVERY METHODS 
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SYNCHRONIZATION 

Existing programming models assume that any 
write to memory is non-volatile. 
→ CPU decides when to move data from caches to DRAM. 
 

The DBMS needs a way to ensure that data is 
flushed from caches to NVM. 
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NAMING 

If the DBMS process restarts, we need to make 
sure that all of the pointers for in-memory data 
point to the same data. 
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NVM-AWARE MEMORY ALLOCATOR 

Feature #1: Synchronization 
→ The allocator writes back CPU cache lines to NVM 

using the CLFLUSH instruction. 
→ It then issues a SFENCE instruction to wait for the 

data to become durable on NVM. 
 

Feature #2: Naming 
→ The allocator ensures that virtual memory addresses 

assigned to a memory-mapped region never change 
even after the OS or DBMS restarts. 
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DBMS ENGINE ARCHITECTURES 

Choice #1: In-place Updates 
→ Table heap with a write-ahead log + snapshots. 
→ Example: VoltDB 
 

Choice #2: Copy-on-Write 
→ Create a shadow copy of the table when updated. 
→ No write-ahead log. 
→ Example: LMDB 
 

Choice #3: Log-structured 
→ All writes are appended to log. No table heap. 
→ Example: RocksDB 
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IN-PLACE UPDATES ENGINE 
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IN-PLACE UPDATES ENGINE 
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NVM-OPTIMIZED ARCHITECTURES 

Leverage the allocator’s non-volatile pointers 
to only record what changed rather than how 
it changed. 
 

The DBMS only has to maintain a transient 
UNDO log for a txn until it commits. 
→ Dirty cache lines from an uncommitted txn can be 

flushed by hardware to the memory controller. 
→ No REDO log because we flush all the changes to NVM 

at the time of commit.  
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NVM IN-PLACE UPDATES ENGINE 
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COPY-ON-WRITE ENGINE 
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COPY-ON-WRITE ENGINE 
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COPY-ON-WRITE ENGINE 
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NVM COPY-ON-WRITE ENGINE 
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NVM COPY-ON-WRITE ENGINE 
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LOG-STRUCTURED ENGINE 
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LOG-STRUCTURED ENGINE 
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NVM LOG-STRUCTURED ENGINE 
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NVM LOG-STRUCTURED ENGINE 

27 

MemTable 

Write-Ahead Log 

Tuple Delta 1 

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016


CMU 15-721 (Spring 2016) 

SUMMARY 

Storage Optimizations 
→ Leverage byte-addressability to avoid unnecessary 

data duplication. 
 

Recovery Optimizations 
→ NVM-optimized recovery protocols avoid the 

overhead of processing a log. 
→ Non-volatile data structures ensure consistency. 
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EVALUATION 

N-Store DBMS testbed with pluggable storage 
manager architecture. 
→ H-Store-style concurrency control 
 

Intel Labs NVM Hardware Emulator 
→ NVM latency = 2x DRAM latency 
 

Yahoo! Cloud Serving Benchmark 
→ 2 million records + 1 million transactions 
→ 10% Reads / 90% Writes 
→ High-skew setting 
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RUNTIME PERFORMANCE 
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RECOVERY LATENCY 
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RECOVERY LATENCY 
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PARTING THOUGHTS 

Designing for NVM is important 
→ Non-volatile data structures provide higher 

throughput and faster recovery 
 

Byte-addressable NVM is going to be a game 
changer when it comes out. 
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CODE REVIEWS 

Every group will perform a code review of 
another group. 
→ Dev group will send a pull request on Github. 
→ Review group will write comments on that request. 
→ You will need to send me your pull request URL 

We will provide a write-up later this week. 
Due Date: May 8th @ 11:59pm 
 

Please be helpful and courteous. 
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GENERAL T IPS 

The dev team should provide you with a 
summary of what files/functions the reviewing 
team should look at. 
 

Review fewer than 400 lines of code at a time 
and only for at most 60 minutes. 
 

Use a checklist to outline what kind of 
problems you are looking for. 
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CHECKLIST –  GENERAL 

Does the code work? 
Is all the code easily understood? 

Is there any redundant or duplicate code? 

Is the code as modular as possible? 

Can any global variables be replaced? 

Is there any commented out code? 

Is it using proper debug log functions? 
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CHECKLIST –  DOCUMENTATION 

Do comments describe the intent of the code? 
Are all functions commented? 

Is any unusual behavior described? 

Is the use of 3rd-party libraries documented? 

Is there any incomplete code? 
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CHECKLIST –  TESTING 

Do tests exist and are they comprehensive? 
Are the tests actually testing the feature? 

Are they relying on hardcoded answers? 

What is the code coverage? 
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GROUP ASSIGNMENTS 
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Logging Multi-Threaded Queries 

Constraints Garbage Collection 

UDFs Memcache 

Query Planning Concurrency Control 

Statistics Query Compilation 
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NEXT CLASS 

Final Exam Review 
Ankur Goyal (CMU’15 / MemSQL) 
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