
Multi-threaded Queries
Intra-Query Parallelism in LLVM

Multithreaded Queries
Intra-Query Parallelism in LLVM

Tianqi WuYang Liu Hao Li

Interpreted vs Compiled (LLVM)

Interpreted vs Compiled (LLVM)

Interpreted Compiled (LLVM)

source: Prashanth Menon

Interpreted vs Compiled (LLVM)

Interpreted
Compiled (LLVM)

source: Prashanth Menon

Peloton currently only uses a single
thread (worker) for each query.

Project: add support for intra-query
parallelism that can work with the new
LLVM execution engine to further improve
performance.

We wrote code in LLVM that generates IR code that
runs in a multi-threaded manner.

Goals

75%: Implement multi-threaded LLVM versions of Sequential Scan with Filters

100%: Implement multi-threaded LLVM versions of Hash-join and Aggregations

125%: Make them NUMA-aware to further improve performance

✔

✔

 !

⁉

Benchmark

Benchmark

• We didn’t use TPC-H because those queries contains aggregations that we
currently don’t support.

• Sequential Scan:
• synthetic table with 1M tuples
• predicates: a >= ? and b >= a

• Hash-join:
• synthetic left table with 250K tuples
• synthetic right table with 1M tuples
• predicates: left_table.col == right_table.col

• Machine:
• Dual Socket Intel Xeon E5-2620v3 @ 2.40GHz (6 cores / 12 threads)

 Sequential Scan: Execution Time

Single-threaded LLVM Multi-threaded LLVM (4 threads)

Single-threaded LLVM Multi-threaded LLVM (4 threads)

TI
m

es

0

1

2

3

4

Selectivity
0 0.25 0.5 0.75 1

2.37 2.5
2.88 2.98

2.72

Speedup

 Sequential Scan: Execution Time

Table Size: 1M tuples
Predicates: a >= ? and b >= a

Dual Socket Intel Xeon E5-2620v3 @ 2.40GHz (6 cores / 12 threads)

Ex
ec

ut
io

n
Ti

m
e

(m
s)

0

175

350

525

700

Ex
ec

ut
io

n
Ti

m
e

(m
s)

0

175

350

525

700

Number of Threads
1 2 4 6 8 10 12

 Sequential Scan: Execution Time

Table Size: 1M tuples
Predicates: a >= ? and b >= a

Dual Socket Intel Xeon E5-2620v3 @ 2.40GHz (6 cores / 12 threads)

C
om

pi
la

tio
n

Ti
m

e
(m

s)

0

3

6

9

12

Number of Threads
1 2 4 6 8 10 12

7.38
7.8 7.79 7.93

8.47 8.16 8.53

6.46 6.46 6.46 6.46 6.46 6.46 6.46

Single-thraeded LLVM
Multi-threaded LLVM

 Sequential Scan: Compilation Time

Design Decision: Code Generation

Single-threaded LLVM

core

ExecuteQ
uery(All)

Generate Code for Every Thread

core

ExecuteQ
uery(1/4)

core

ExecuteQ
uery(1/4)

core

ExecuteQ
uery(1/4)

core

ExecuteQ
uery(1/4)

Poor Scalability
Much Longer

Compilation Time

Shared Code Among Threads

core core core

ExecuteQ
uery()

core

Context0 Context1 Context2 Context3

Design Decision: Code Generation

Shared Code Among Threads

core core core

ExecuteQ
uery()

core

Context0 Context1 Context2 Context3
• The amount of code it generates is pretty

much the same as single-threaded version

• Threads are independent of each other and
thus can be easily bound to thread instance
in a thread pool

• C++ written context and its proxies can
make life easier. And the function calls
won’t affect performance if they are not on
the critical path.

Design Decision: Code Generation

Performance: Hash-Join
Table Size: 250K ⨝ 1M

Dual Socket Intel Xeon E5-2620v3 @ 2.40GHz (6 cores / 12 threads)

Ex
ec

ut
io

n
Ti

m
e

(m
s)

0

250

500

750

1000

Ex
ec

ut
io

n
Ti

m
e

(m
s)

0

250

500

750

1000

Number of Threads

1 2 4 6 8 10 12

Multi-threaded LLVM
Multi-threaded LLVM
Single-threaded LLVM

Design Decision: Global Hash Table Construction

One thread takes care of merging all local hash tables into a global one and notify all
other threads when finish.

• Threads would be aware of others, which could complicate the multi-threading model.

• Constructing local hash tables on their own stacks is more efficient, but stuff on stack
cannot be reached by other threads.

Every thread takes care of merging its own local hash table into the shared global
hash table (on heap)

• Threads can do the merging without being aware of other threads.

• The hash table in Peloton is written in LLVM. It can efficiently operate on raw data but it’s
hard (almost impossible) to make it concurrent. In our implementation, the merging is
blocking and will be served in a first-come-first-serve order.

 ❌

✔

Summary

Done: Implemented multi-threaded LLVM versions of Sequential Scan with Filters
and Hash-join, and the results are good.

Todo: keep working on Aggregations and refactoring before merging to the
master branch

Writing LLVM is non-trivial, and it’s even trickier to write LLVM to generate
multi-threaded code. Thank you for the help, Prashanth!!!!

Thank You!

