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1. Enable the collection of table statistics and cardinality estimation
2. Store stats in Catalog
3. Build cost model for optimizer to predict the optimal query plan



- 75%: Collect basic table statistics /
- 100%: Estimate cardinality and build cost model using statistics /

Handle a single table query

- 125%: Estimate join query cardinality

We’ve completed the 100% - 5%« GOAL !I!
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cardinality: hyperloglog

most common <values, frequency> : count-min sketch + topk (priority queue)
histogram bounds: “A Streaming Parallel Decision Tree Algorithm”

More stats: num_rows, frac_null



Testing

e 2 types of tests: correctness and performance

e F[ull coverage: comprehensive unit tests suite for each class
o 12 test files under optimizer folder

e Testing on TPC-H benchmark (1GB dataset)

o  extra work: fixed some TPC-H bugs in Peloton

e Customer Table: 24MB (150000 tuples)
e Part Table: 24MB (200000 tuples)
e Lineitem Table: 725MB (6001215 tuples)



Result: Gardinality Estimation
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Result: Most Erequent Value & Ereq

Most Common Value & Frequency (brand) Most Common Value & Frequency (nationkey)
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Frequency

Real Histogram Bounds vs Equal Height Histogram Approximation
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ANALYZE

e Two interfaces for collecting table stats
o AnalyzeStatsForTable, AnalzeStatsForAllTables

e Implement command ANALYZE to collect stats for a specific table
e Demo:

| ¥ ..fl.:rin;pnlatnn

#* psal

postgres=#







Cost Model (Single Table)

SELECT id, name, COUNT(project_.id)

FROM table

WHERE|class_id = 15721|JAND|year < 2017

GROUP BY id, name
sel (P1A P2) = sel(P1) * sel(P2)
LIMIT 10

sel (P1V P2) = sel(P1) + sel(P2) - sel (P1A P2)




Standalone Gost Galculator Lib

SeqScanCost
IndexScanCost
CombineConjunctionStats
SortGroupByCost
HashGroupByCost
AggregateCost
DistinctCost

ProjectCost

LimitCost

condition

input_stats

)

Cost Function

cost

>

Selectivity Lib

output_stats



Standalone Selectivity Lib
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Estimation Performance

SELECT * FROM part WHERE p partkey < 10000; P Actual # rows
- Actual: 9999 | Postgres: 9906 | Ours: 8080 I Postgres’ estimation
I Our estimation
SELECT * FROM part WHERE p size = 49;
- Actual: 3945 | Postgres: 4213 | Ours: 3695
SELECT * FROM part WHERE p partkey < 10000 AND p size = 49;
- Actual: 174 | Postgres: 209 | Ours: 149

SELECT * FROM part WHERE p partkey < 10000 OR p size = 49;

- Actual: 13770 | Postgres: 13911 | Ours: 11625



Parting Thoughts

Accurate cardinality estimation is
hard

Good base table statistics lead to
better estimation for complicated

predicates and joins
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ABSTRACT X"
Finding a good join order is crucial for query performance. In this cnr'dma!uy cost Nﬁ'" \T
paper, we introduce the Join Order Benchmark (JOB) and exper- SELECT ... estimation model d/
imentally revisit the main components in the classic query opti- FROM R,S,T | 5
mizer architecture using a complex, real-world data set and realistic WHERE ... plan space R
multi-join queries. We investigate the quality of industrial-strength _— t ——
cardinality estimators and find that all estimators routinely produce SImeAmon

large errors, We further show that while estimates are essential for
finding a good join order, query performance is unsatisfactory if
the query engine relies too heavily on these estimates, Using an-
other set of experiments that measure the impact of the cost model,
we find that it has much less infl on query per than
the cardinality estimates. Finally, we investigate plan enumera-
tion techniques comparing exhaustive dynamic programming with
heuristic algorithms and find that ext ive ion imp
performance despite the sub-optimal cardinality estimates.

1. INTRODUCTION

The problem of finding a good join order is one of the most stud-
ied problems in the database field. Figure 1 illustrates the classical,
cost-based approach, which dates back to System R [36]. To obtain
an efficient query plan, the query optimizer enumerates some subset
of the valid join orders, for example using dynamic programming.
Using cardinality estimates as its principal input, the cost model
then chooses the cheapest alternative from semantically equivalent
plan alternatives.

Theoretically, as long as the cardinality estimations and the cost
model are accurate, this architecture obtains the optimal query plan.
In reality, cardinality estimates are usually computed based on sim-
plifying assumptions like uniformity and independence. In real-

Figure 1: Traditional query optimizer architecture

& How important is an accurate cost model for the overall query
optimization process?

« How large does the enumerated plan space need to be?

To answer these questions, we use a novel methodology that allows
us to isolate the influence of the individual optimizer components
on query performance. Our experiments are conducted using a real-
world data set and 113 multi-join queries that provide a challeng-
ing, diverse, and realistic workload. Another novel aspect of this
paper is that it focuses on the i ing! i y
scenario, where all data fits into RAM.
The main contributions of this paper are listed in the following:

* We design a challenging workload named Join Order Bench-
mark (JOB), which is based on the IMDB data set. The
benchmark is publicly available to facilitate further research.

e To the best of our knowledge, this paper presents the first
end-to-end study of the join ordering problem using a real-



1. Integrate cost model into optimizer cost and stats calculator
2. Support string equality and cardinality using ARRAY type

3. Support LIKE operator selectivity using sampling

4. Cost model for join operators

5. EXPLAIN + new optimizer to fully test cost model performance



Code Quality and Stats

8000+ new lines of code

43 new files (excluding third-party)

Group internal PR and code review: 36 PRs
Well tested

Highly modularized



Q: What makes you feel heartbroken?

A: make clean




