
Column Imprints: A Secondary Index Structure

Lefteris Sidirourgos
CWI

Amsterdam, The Netherlands
lsidir@cwi.nl

Martin Kersten
CWI

Amsterdam, The Netherlands
mk@cwi.nl

ABSTRACT
Large scale data warehouses rely heavily on secondary indexes,
such as bitmaps and b-trees, to limit access to slow IO devices.
However, with the advent of large main memory systems, cache
conscious secondary indexes are needed to improve also the trans-
fer bandwidth between memory and cpu. In this paper, we intro-
duce column imprint, a simple but efficient cache conscious sec-
ondary index. A column imprint is a collection of many small bit
vectors, each indexing the data points of a single cacheline. An
imprint is used during query evaluation to limit data access and
thus minimize memory traffic. The compression for imprints is
cpu friendly and exploits the empirical observation that data often
exhibits local clustering or partial ordering as a side-effect of the
construction process. Most importantly, column imprint compres-
sion remains effective and robust even in the case of unclustered
data, while other state-of-the-art solutions fail. We conducted an
extensive experimental evaluation to assess the applicability and
the performance impact of the column imprints. The storage over-
head, when experimenting with real world datasets, is just a few
percent over the size of the columns being indexed. The evaluation
time for over 40000 range queries of varying selectivity revealed
the efficiency of the proposed index compared to zonemaps and
bitmaps with WAH compression.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Content Analysis and
Indexing
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Secondary Index; Columnar Databases;

1. INTRODUCTION
Indexes are a vital component of a database system. They allow

the system to efficiently locate and retrieve data that is relevant to
the users’ queries. Despite the large body of research literature,
just a few solutions have found their respective places in a database
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system [3, 10, 12, 19]. Nevertheless, the pursuit for more efficient
and succinct indexing structures remains.

Indexes are divided into primary and secondary according to
their ability to govern the placement of the data. Primary indexes
combine navigational structures with physical data clustering to
achieve fast access. The benefit is that relevant data is placed in
adjacent pages and thus significantly improving the evaluation of
range queries. However, each additional primary index on the same
relation calls for a complete copy of the data, rendering the storage
overhead prohibitive. Similarly, secondary indexes are auxiliary
structures that speed up search, but they do not change the order
of the data in the underlying physical storage. Secondary indexes
are typically much smaller than the referenced data and, therefore,
faster to access and query. However, retrieving the relevant data
from disk can be a costly operation since it may be scattered over
many pages. As long as the time to scan the secondary index
is significantly less than accessing the data, and the selectivity of
the query is high, secondary indexes can significantly improve the
query evaluation time.

Most structures designed for primary indexing, such as B-tree
and hash tables, can also be used for secondary indexing. How-
ever, they are not as lightweight as one would wish. Bitmaps,
or variations of bitmaps, are more often used for this task [21].
Bitmaps work by mapping individual values to an array of bits.
At query time, the bitmap is examined and whenever the bits that
correspond to the query’s predicates are set, the mapped data is re-
trieved for further processing. Bitmaps are traditionally used for at-
tributes with low cardinality [17], although bit-binning techniques
make them suitable for larger domains too [7, 20].

With the introduction of column stores and the shift of the mem-
ory bottleneck [15], the need for designing hardware-conscious
secondary indexes becomes more evident. In a main memory DBMS,
the problem of efficiently accessing disk blocks is replaced with
the problem of minimizing cache misses. In addition, algorithms
require a more careful implementation. There is much less design
space to hide an inefficient implementation behind the latency of
accessing a disk block.

A second paradigm shift concerns the volume and the nature of
the data. Most notable of them all are scientific database applica-
tions that stress the limits of modern designs by including hundreds
of attributes in a single relation. In addition, the value domains
are often of double precision, rather than the traditional categorical
ones encountered in business applications. Column stores are the
prime candidates for providing solutions for such demanding appli-
cations. On high-end servers, with large main memories, it is even
possible to keep many columns with billions of elements in mem-
ory over a long period of time. Nevertheless, fast access, supported
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by light-weight indexing structures, remains in demand to improve
the interactive scientific exploration process.

To address these challenges, we propose a simple but efficient
secondary indexing structure, called column imprints. A column
imprint is a cache conscious secondary indexing structure suitable
for both low and high cardinality columns. Given a column with
values from domain D, we derive a small sample to approximate
a histogram of a few (typically 64 or less) equal-height bins. The
entire column is then scanned, and for every cacheline of data, a
bit vector is created. The bits in each vector correspond to the bins
of the histogram. A bit is set if at least one value in the cache-
line falls into the corresponding bin. The resulting bit vector is
an imprint of the current cacheline that describes which buckets of
the approximated histogram the values of the cacheline fall into.
The collection of all the resulting bit vectors form a unique col-
umn imprint. Consequently, by examining an imprint of a column,
the execution engine can decide –in a cacheline granularity– which
parts of the column data are relevant to the query predicates, and
only then fetch them for further processing. A column imprint is
particularly suited for evaluating both range and point queries on
unsorted data. Contrary to existing work, a column imprint is a
non-dense bit indexing scheme, i.e., only one bit is set for all equal
values in a cacheline, instead of the traditional approach where each
data point is always mapped to a different bit.

To reduce the memory footprint of a column imprint, we intro-
duce a simple compression scheme based on a run-length encoding
of imprints. Consecutive and identical bit vectors are compressed
together and annotated with a counter. Paraphrasing, our compres-
sion schema can be characterized as row-wise, i.e., it compresses
bit vectors horizontally, contrary to the more common column-wise
approach that partitions a bitmap vertically and compress it per col-
umn [23]. The horizontal compression exploits our empirical ob-
servation that, in most data warehouses that we explored, data suit-
able for secondary indexing exhibits, in the cacheline level, some
degree of clustering or partial ordering. These desirable properties
stem either from the regular and canonical data insertion proce-
dure, or from the production of the data itself, or even indirectly
imposed by the other primary indexed attributes of the same re-
lation. Column imprints are designed such that any clustering or
partial ordering is naturally exploited without the need for extra
pasteurization. In other words, they are less susceptible to the or-
der in which individual values appear in a cacheline, while more
opportunities for compression are presented. In addition, because
of this immunity to value order within a cacheline, a column im-
print remains robust even in the case of highly unclustered data.
We experimentally demonstrate that imprints perform well and be-
have as intended even in the presence of skewed data, where other
state-of-the-art bitmap compression techniques, such as WAH [23],
are less effective.

The contributions of our work can be summarized as follows:

• We introduce column imprints, a light-weight secondary in-
dex structure for main memory database systems.

• We detail the algorithms and the implementation details for
constructing and compressing a column imprint.

• We present the algorithms to efficiently evaluate range queries
with the use of column imprints.

• We study the effect on imprints when updating the values of
a column.

• We quantify the amount of local clustering by introducing a
metric called column entropy.

• We conduct an extensive comparative experimental evalua-
tion of the imprint index structure using thousands of columns
taken from several real-world datasets.

The remainder of the paper is organized as follows. In Section 2
we detail the ideas and the algorithms for constructing a column
imprint. In Section 3 we present the algorithms for querying the
proposed index. Next, we study the different cases of updating
column imprints in Section 4. Section 5 presents the related work.
In Section 6 we present an extensive experimental evaluation for
column imprints. We conclude in Section 7.

2. SECONDARY INDEX WITH IMPRINTS
An imprint index is an efficient and concise secondary index

for range and point queries. It is designed for columnar databases
where multiple memory-resident or memory-mapped columns are
repeatedly scanned. Imprints provide a coarse-grain filtering over
the data, aimed at reducing expensive loading from memory to the
cpu cache. Deployment of column imprints is suited for those cases
where alternative properties do not hold. For example, if a column
is already sorted, the proper use of binary search algorithms largely
alleviates the overhead of accessing non-relevant memory pages.
If the data is appended out of order, or the order is disturbed by
updates, then column imprints can be considered as a fast access
method to locate relevant data. An efficient column imprint maxi-
mizes the filtering capabilities with minimal storage overhead.

Columnar databases decompose a relation into its attributes and
sequentially store the values of each column. This differs from the
traditional approach of row-stores that place complete tuples in ad-
jacent pages. To enable tuple reconstruction in a column store, an
ordered list of (id, value) pairs is maintained, where ids are unique
and increasing identifiers. Values from different columns, but with
the same id, belong to the same tuple. Typically, a column is imple-
mented by a single dense array, thus ids need not be materialized
since they can be easily derived from the position of the values in
the array.

Figure 1 shows a column with 15 integer values in the range of
1 to 8. The values are unsorted because the column corresponds
to one of the unordered attributes of a relation. In the absence of
any secondary index, a complete scan is needed to locate all values
that satisfy the predicates of a query. The result of such a scan is
the positions in the array of the qualifying values. It is preferred
to return the positions rather than the actual values because of the
late materialization strategies usually used in column stores [1].
However, instead of scanning the entire column, secondary indexes
can be used to avoid accessing data that is certain not to be part of
the query result.

2.1 State of the Art in Secondary Indexes
Zonemaps is a common choice for indexing secondary attributes.

A zonemap index notes the minimum and the maximum values
found across a predefined number of consecutive values, called the
zones. The zonemap index of Figure 1 partitions the column into 5
zones. In this example, each zone has the size of a cacheline that
fits exactly 3 values. The first zone contains the values 1, 8, and 4.
The minimum value is 1 and the maximum is 8. Similarly, for the
second zone the minimum value is 1 and maximum 6, and so on
for the remaining zones. To evaluate a query using zonemaps, the
minimum and maximum values of each zone are compared with
the predicates of the query. If the predicates’ ranges overlap with
the range of a zone, then the zone (i.e., the cacheline) is retrieved
and the exact positions of only the qualifying values are returned.
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Figure 1: A simple column and an example of zonemaps,
bitmaps, and imprints indexes.

Note that the ranges of the predicates and the zone may overlap but
not be strictly inclusive.

Bitmaps are another popular choice for secondary indexing. They
work by mapping the column domain to bit vectors. Each vector
has as many bits as the size of the column. For each value found in
a specific position of the column, the corresponding bit in the map-
ping bitvector is set. The mapping can be 1− 1 if the cardinality of
the column is low, or N − 1, with the help of binning strategies, if
the cardinality is high. A bitmap index uses significantly less stor-
age than the column, thus making it cheaper to scan. Deciding if
a value satisfies a query involves first checking the corresponding
bitmap, and returning only the position of the bits that are set. The
checking is done with bitwise operators, making the process faster
than the value comparison needed by zonemaps. Figure 1 details
a bitmap index with 15 bits per bit vector, where each bit corre-
sponds to one position of the column. There are 8 such bit vectors
(drawn vertically in the figure), where the first one maps value 1,
the second one value 2, and so on. Bits are set as follows: the 11th
position of the column contains the value 5, therefore, in the 5th bit
vector, the 11th bit is set. Similarly, the 3rd value of the column is
4, hence the 3rd bit of the 4th bitmap is set. In this example there is
a 1-1 mapping between the eight unique values of the column and
the eight vectors of the bitmap index.

2.2 Column Imprints
We propose column imprints as an alternative secondary index

that best combines the benefits of the aforementioned state-of-the-
art indexes. Column imprints map the values of a column to a
vector of bits. However, instead of allocating one such vector per
value, imprints allocate one vector per cacheline. We call the vec-
tors of a column imprints index imprint vectors to distinguish them
from the bitvectors of a bitmap index. An imprint vector does not
have only one bit set per position, but as many bits as are needed
to map all distinct values of a cacheline. To decide if a cacheline
contains values that satisfy the predicates of a query, first the im-
print vectors are checked. If at least one common bit between the

Column Imprints
Compression

imprint vectors

010010001101010
000000110000011
111100001110000
000111000000110
010000110000011
000111010101010
000000000000011

010000011100110
000001101100000
010000001000000

000111000000000

Cacheline Dictionary

7

3

13

counter repeat

0

1

0

Figure 2: Column imprint index with compression (23 cache-
lines).

bitvector that maps the query’s predicates and the imprint vector
is set, then the entire cacheline is fetched for further processing.
The imprint is checked with the bitwise operator AND thus making
the initial filtering very fast, while the number of imprint vectors
to be checked is significantly reduced because of having one per
cacheline instead of one per value. The rightmost index in Figure 1
depicts the imprint index of the example column. Each imprint
vector uses 8 bits per cacheline, while three bits are set. The parti-
tioning of the column is done per cacheline, same as the zones of
the zonemap index. The imprint vector corresponding to the first
cacheline has the 1st, 4th, and 8th bit set, since the first three values
of the column are 1, 8 and 4. For the second cacheline the 1st, 6th,
and 7th bits are set, and so on for the rest of the cachelines. There
are in total five imprint vectors to index the column of Figure 1.
The example is designed with the cardinality of the column to be
small enough to allow a 1-1 mapping between values and bits. In
the more common cases of large cardinality, imprints use approxi-
mated equi-width histograms to divide the domain into ranges and
map one bit per range. We detail this technique in the following
subsection along with all the construction algorithms for column
imprints.

Column imprints inherit many of the good properties of both
zonemaps and bitmaps, while avoiding their pitfalls. First, although
imprints are defined per cacheline, they are resilient to skewed data
distribution, where zonemaps typically fail. If each cacheline con-
tains both the minimum and the maximum value of the domain and
one random value in between, zonemaps are practically useless,
but imprints will have a different bit set for each of these random
values. In addition, checking imprints is faster than zonemaps be-
cause there is no value comparison. Compared to bitmaps, imprints
need less space since they are defined per cacheline and not per
value. Finally, as we will demonstrate, imprints compress signifi-
cantly better than state-of-the-art compression scheme for bitmaps.

2.3 Imprints Compression
We develop a compression scheme similar to a run-length en-

coding but for imprint vectors. The compression scheme com-
bined with bit-binning, makes column imprints an efficient solution
for indexing very large columns with high cardinality of any type,
such as doubles, floats, etc. The compression scheme benefits from
our empirical observation that local clustering is a common phe-
nomenon even for secondary attributes. In addition to that, the op-
portunities for compression also increase because of the non-dense
nature of column imprints. Most importantly, even for cases where
there is no clustering at all, column imprints remain space effective.
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The compression works by i) grouping together imprint vectors that
are identical and consecutive, and ii) implying the id of the values
with a concise numbering schema for the indexed cachelines. More
specifically, we keep track of which imprints map to which cache-
lines by defining a cacheline dictionary with two entries, a counter
and a repeat flag. By knowing the number of the cacheline we can
easily compute the id’s of the values of the specific cacheline, since
each cacheline contains a fixed number of values.

The cacheline dictionary contains two types of counter entries,
distinguished by the repeat flag. Assume that the counter has the
value x. If repeat is unset, then the next x cachelines have all dif-
ferent imprint vectors. If, however, repeat is set, then the next x
cachelines all have the same imprint vector, thus only one vector
needs to be stored. Figure 2 shows an example of the column im-
prints compression schema. Assume a column that can be parti-
tioned to 23 cachelines and that each imprint vector has 15 bits.
From the cacheline dictionary of Figure 2 we can deduce that the
first 7 cachelines all contain random values, thus each of them map
to a different imprint vector. Therefore, the first 7 imprint vectors
correspond to the first 7 cachelines. The next imprint vector, i.e.,
the 8th, corresponds to the next thirteen cachelines, which accord-
ing to the cacheline dictionary all have an identical imprint since
repeat is set. Finally, the last 3 cachelines are mapped by the last 3
imprints.

In the next subsection we demonstrate the technical details to
create a column imprint. We build our ideas on top of the Mon-
etDB architecture [16]. The choice of a specific columnar database
architecture allows us to better present the details of our imple-
mentation, however, imprints can also be implemented with minor
adjustments on other columnar architectures, such as C-Store [14]
and MonetDB/X100 [5]. The most important design decision is
how many values of a column an imprint vector covers. The de-
cision is based on the size of the block managed by the specific
database buffer pool. The access granularity of the underlying sys-
tem design determines the number of values that each vector of an
imprint covers. For example, if the execution model of the database
engine is based on vectorization, then the size of the data vectors is
used. In our scenario, where typically the database hot-set fits into
main memory, our goal is to optimize the cpu cache access. For that
reason, a column imprint consist of one vector per cacheline. The
size of the cacheline is determined by the underlying hardware. In
this work we assume the commonly used size of 64 bytes.

2.4 Imprints Construction Algorithm
The first step to create an imprint index for a column is to build

a non-materialized histogram by sampling the values of that col-
umn. Then the imprint vectors are created with as many bits as the
number of bins in the histogram, but never more than 64 bits. Each
imprint covers a cacheline of 64 bytes. For all values in a cache-
line, the bins of the histogram into which they fall is located, and
the corresponding bits are set. The process is repeated such that all
cachelines are mapped by imprints. If consecutive imprint vectors
are identical they are compressed to one and the counters of the
cacheline dictionary are updated.

The histogram serves as a way to divide the value domain D of
the column into equal ranges. For this, only the bounds of each
bin need to be stored in the imprint index structure. The histogram
is created by sampling a small number of values from the column,
not more than 2048 in our implementation. The first bin always
has values between −∞ (i.e., the minimum value of the domain
D), up until the smallest value found in the sample. Similarly, the
last bin contains all values greater than the largest sampled value
up to +∞. We expect that future inserts in the column will retain

Algorithm 1 Main function to create the column imprints index:
imprints()
Input: column col of size col_sz
Output: imprints index structure imp for column col

typedef struct cache_dict { typedef struct imp_idx {
uint cnt:24; cache_dict *cd;
uint repeat:1; ulong *imprints;
uint flags:7; coltype b[64];

} cache_dict; uchar bins;
} imp_idx;

struct imp_idx imp; /* initialize the column imprints index structure */
char vpc; /* constant values per cacheline */
ulong i_cnt = 0; /* imprints count */
ulong d_cnt = 0; /* dictionary count */
ulong imprint_v = 0; /* the imprint vector */
binning(imp); /* determine the histogram’s size and bin borders */
for i = 0 → col_sz − 1 do /* for all values in col */

bin = getbin(imp, col[i]); /* locate bin */
imprint_v = imprint_v | (1 � bin); /* set bit */
if (i mod vpc-1 ≡ 0) then /* end of cacheline reached */

if (imp.imprints[i_cnt] ≡ imprint_v ∧ /* same imprint */
imp.cd[d_cnt].cnt < max_cnt − 1) then /* cnt not full */

if (imp.cd[d_cnt].repeat ≡ 0) then
if (imp.cd[d_cnt].cnt �= 1) then

imp.cd[d_cnt].cnt − = 1; /* decrease count cnt */
d_cnt + = 1; /* increase dictionary count d_cnt */
imp.cd[d_cnt].cnt = 1; /* set count to 1 */

end if
imp.cd[d_cnt].repeat = 1; /* turn on flag repeat */

end if
imp.cd[d_cnt].cnt + = 1; /* increase cnt by 1 */

else /* different imprint than previous */
imp.imprints[i_cnt] = imprint_v;
i_cnt + = 1;
if (imp.cd[d_cnt].repeat ≡ 0 ∧

imp.cd[d_cnt].cnt < max_cnt − 1) then
imp.cd[d_cnt].cnt + = 1; /* increase cnt by 1 */

else
d_cnt + = 1; /* increase dictionary count d_cnt */
imp.cd[d_cnt].cnt = 1; /* set count to 1 */
imp.cd[d_cnt].repeat = 0; /* set flag repeat off */

end if
end if
imprint_v = 0; /* reset imprint for next cacheline */

end if
end for

the same distribution of the values, however, the left and right most
bins serve as overflow bins for outlier values. If the sampling re-
turns fewer than 62 unique values, then the imprint can be adjusted
to have as many bits as needed to map the columns with low car-
dinality. If the number of distinct sampled values is more than 62,
the domain is divided into 62 ranges, where each range contains the
same count of sampled values, including in the count the multiple
occurrences of the same value. Based on these ranges the borders
of the histogram are deduced. By counting also duplicate sampled
values, it allows us to roughly approximate an equal-height his-
togram, since repeated values are more likely to be sampled, cre-
ating smaller ranges for their respective bins. The ranges of each
bin are defined to be inclusive on the left, and exclusive on the
right. For example, if b[i] defines the border of the ith bin, then if
b[3] = 10 and b[4] = 13, all values that are equal or greater than
10 but less than 13 fall into the 4th bin with borders [10, 13), while
value 13 falls into the 5th bin.

For each imprint, an index number is needed to point to the cor-
responding cacheline. In practice, these pointers need not be mate-
rialized since the sequence of the imprint vectors indirectly provide
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the numbering of the cachelines. However, since identical imprints
tend to repeat multiple times, even if the data of the indexed column
is not clustered or sorted, there is a great opportunity for compress-
ing imprints together. With a 64-bit imprint vector one may encode
hundreds, and in many cases thousands, of sequential cachelines.
Therefore, the cacheline dictionary is needed to keep track of the
count of the cachelines and imprints. We define the two structures
to store and administer the column imprints index, namely imp_idx
and cache_dict (see Algorithm 1). Structure imp_idx holds all the
constructs needed to maintain the imprints index of one column. It
consists of a pointer to the array of the cacheline dictionary (i.e.,
cache_dict), a pointer to the array of the imprint vectors, an array
with 64 values that holds the bounds of the bins of the histogram,
and the actual number of bins of the histogram. Recall that it may
not be needed to have all 64 bins if the cardinality is small, e.g., an
8-bit imprint vector may be enough instead of a 64-bit vector. The
dictionary structure cache_dict is a 4-byte value, split as follows:
24 bits are reserved for the counter cnt, 1 bit is to mark if the next
imprint is repeated cnt times, or if the next cnt imprints correspond
to one cacheline each. Finally, 7 bits of the cacheline dictionary
structure are reserved for future use.

Algorithm 1 details the process of creating the column imprints
index. Function imprints() receives as input a column col and
its size col_sz. The function returns an imprints index structure
imp containing an array of imprints and the cacheline dictionary.
The algorithm works by first calling the binning() procedure,
which is described in detail later on in the text. The result of the
binning() procedure is the number of bins needed to partition
the values of the columns, and the ranges of the bins. Next, for each
value of the column, the get_bin() function is invoked in order
to determine the bin the current value falls into. The correspond-
ing bit in the imprint vector is then set. If the end of a cacheline
has been reached, the current imprint vector must be stored and a
new empty one must be created. However, in order to compress
consecutive imprints, the algorithm checks if the imprint vector is
equal to the previous one. If so, the count cnt field of the cacheline
dictionary and the repeat flag is updated as follows. If the repeat
of the previous entry in the cacheline dictionary is not set and the
count cnt is greater than 1, a new entry is created. If the repeat of
the previous entry is not set but the count cnt is 1, then the repeat
is set and the count cnt is incremented to 2. If the imprint vec-
tor of the current cacheline is not equal to the previous one, then a
slightly different procedure is followed to update the entries in the
cacheline dictionary. If the current entry does not have the repeat
flag set, then the counter cnt is simply increased. Otherwise, a new
entry is created with count cnt = 1 and the repeat unset. After this,
the cacheline dictionary is correctly updated and the imprint stored.
Finally, a new imprint vector is created with all the bits off, the next
value of the column is fetched, and the process is repeated.

2.5 Binning and Efficient Binary Search
Algorithm 2 describes the implementation of the binning()

procedure. Given a column col, a uniform sample of 2048 values
is created. Afterwards, the sample is sorted and all duplicates are
removed. At this point the size of the sample smp_sz might be
smaller than 2048. If smp_sz is less than 64, the cardinality of the
column can be approximated to be equal to the number of unique
values found in the sample. Therefore, each bin of the histogram
can contain exactly one value. Even if this approximation is not
precise, there is an extremely slim possibility to be much off. In
such a case, simply more than one value will fall into the same bin.
The next step of the algorithm is to fill the b array with the unique
values of the sample, and to set the number of the bins to the next

Algorithm 2 Define the number of bins and the ranges of the bins
of the histogram: binning()
Input: imprints index structure imp, column col
Output: number of bins imp.bins and the ranges imp.b

coltype *sample = uni_sample(col,2048); /* sample 2048 values */
sort(sample); /* sort the sample */
smp_sz = duplicate_elimination(sample); /* remove duplicates */
if (smp_sz < 64) then /* less than 64 unique values */

for i = 0 → smp_sz − 1 do
imp.b[i] = sample[i]; /* populate b with the unique values */

end for
if (i < 8) then imp.bins = 8; /* determine the number of bins */
else if (i < 16) then imp.bins = 16;
else if (i < 32) then imp.bins = 32;
else imp.bins = 64;
end if
for i = i → 63 do

imp.b[i] = coltype_MAX; /* default value */
end for

else /* more then 64 unique values */
double y = 0, ystep = smp_sz/62;
for i = 0 → 62 do

imp.b[i] = sample[(int)y]; /* set ranges for all bins */
y+ = ystep;

end for
imp.b[63] = coltype_MAX;

end if

larger power of 2. Moreover, the remaining empty bins are assigned
the maximum value of the domain. This is needed in order for the
get_bin() procedure to work properly. If the total number of
unique values of the sample is 64 or more, we need to divide the
bins into larger ranges. This is done by dividing the smp_sz by 62
and assigning the result of the division to ystep. Notice that ystep is
a double. This is necessary in order to guarantee an even spread of
the ranges of the bins. For example, if the result of the division is
1.2, then the 5th bin should contain the 6th value of the sample, but
if we kept the result as an integer, i.e., ystep = 1, the 5th value of
the sample would be assigned to the 5th bin. Each bin b is assigned
to be equal to the next ystep sampled value, until all bins are set.

In order to determine the bin a value falls into, get_bin() is
invoked. The approach taken is to perform a cache-conscious bi-
nary search over the 64 bins. For this, we use nested if-statements
instead of a for-loop. We noticed during our experimentation that
by explicitly unfolding the code for the binary search and by using
if-statements without any else-branching, the search can become
three times faster, or even more. This is because each if-statement
is independent allowing the cpu to execute the branches in paral-
lel. For this, three macros are defined. The macro middle(),
checks if a value falls inside a range, and two others, called left
and right, check if a value is smaller or larger than a range
boundary. The algorithm then is constructed by repeatedly divid-
ing the search space into half, and invoking the right, middle
and left macros, in that order. Since there are no else-statements,
many if-statement may evaluate to be true, but only the last assign-
ment of the return variable res will hold. For this reason the search
is performed by starting from the 63rd bin and decreasing.

The algorithms to construct the column imprint index are short
and optimized to be cpu friendly. The complexity of imprints()
function is linear to the size of the column. Assume that a col-
umn has n values, and each cacheline contains c values. The most
costly part is the call to the get_bin() function which performs
3 comparisons before dividing the search space in half, thus it needs
3 × log 64 = 18 comparisons for each value. Therefore, for cre-
ating the entire imprint index we need 18 × n comparisons. The
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call to binning() also involves one scan of the n values of the
column but the rest of the operations are independent of the input.
Finally, the update of the cacheline dictionary is only performed n

c
times, and the cost is negligible (5 comparisons in the worst case)
compared to get_bin(). During our experimentation we thor-
oughly studied the effects of different design and implementation
choices. Here, we presented the one that performed the best.

3. IMPRINTS QUERY EVALUATION
In this section we present the algorithms for evaluating range

queries over the column imprints index. Given a range query Q =
[low, high], all values v in column col that satisfy low ≤ v ≤ high
need to be located. Since our setting is a columnar database, it
suffices to return the id list of the qualifying values v.

Evaluating range queries over column imprints is a straightfor-
ward procedure. The first step is to create an empty bit-vector and
set the bits that correspond to the bins that are included in the range
of query Q. There might be more than one bits set, since the query
range can span multiple bins. The query bit-vector is then checked
against the imprint vectors, and if bitwise intersection indicates
common bits set for both the query and the imprint vector, the cor-
responding cacheline is accessed for further processing. However,
if all bits set correspond to bins that are fully included in the query
range [low, high] the cacheline need not be checked at all. Other-
wise, the algorithm examines all values in the cacheline to weed out
false positives. Finally, because of our compression schema, some
administrative overhead to keep the cachelines and the imprint vec-
tors aligned is needed.

Algorithm 3 presents the details for evaluating a range query us-
ing imprints. The constant vpc is set equal to the number of val-
ues that fit in a cacheline. This is needed to align ids with the
cachelines. In addition, counters i_cnt and cache_cnt are main-
tained to align imprints and cachelines, respectively. Next, two
bit-vectors are produced, namely mask and innermask. The mask
is a bit-vector that sets all bits that fall into the range [low, high].
The innermask is a bit-vector with only the bits that fall entirely
inside the query range set. More precisely, if a bin range contains
one of the borders of the query range, the corresponding bit is not
set. Therefore, if an imprint vector has only the bits from the inner-
mask set, then all values in the corresponding cacheline fall into the
query range and no further check for false-positives is needed. The
algorithm runs by iterating over all entries in the cacheline dictio-
nary. If the repeat flag is not set, then the next cnt imprint vectors
correspond to cnt distinct cachelines. For any of these imprints,
if there is at least one bit set in the same position as the ones in
the mask bit-vector, the cacheline contains values that satisfy the
query range. If in addition, there are no bits set different than the
bits of the innermask, then all the values of the cacheline satisfy
the query. In any other case, we need to check each value of the
cacheline individually. For all qualifying values, the corresponding
ids are materialized in the result array. If however the repeat flag
is set, then by checking only one imprint vector we can determine
if the next cnt cachelines contain values that fall into the range of
the query. As before, an extra check with the innermask bit-vector
may result in avoiding the check of each individual value for false-
positives.

Algorithm 3 returns a materialized list of the ids that satisfy the
range query. This list is then passed to the next operator of the
query evaluation engine. However, it might be the case that a user’s
query contains many predicates for more than one attribute of the
same relation. In this case, the query() procedure of Algorithm 3
is invoked multiple times, one for each attribute, with possible dif-
ferent [low, high] values. The most expensive part of Algorithm 3

Algorithm 3 Evaluate range queries over the column imprints in-
dex: query()
Input: imprints index structure imp, column col, query Q = [low, high]
Output: array res of ids

char vpc; /* constant values per cacheline */
ulong i_cnt = 0; /* imprints count */
ulong cache_cnt = 0; /* cacheline count */
ulong id = 0; /* ids counter */
ulong *res; /* large enough array to hold the result */
(mask, innermask) = make_masks(imp,[low,high]);
for i = 0 → d_cnt − 1 do /* iterate over the cacheline dictionary */

if (imp.cd[i].repeat ≡ 0) then /* if repeat is not set */
for j = i_cnt → i_cnt + imp.cd[i].cnt − 1 do

if (imp.imprints[j]&mask) then /* if imprint vector matches mask */
if ((imp.imprints[j]& ĩnnermask) ≡ 0) then

for id = cache_cnt × vpc → (cache_cnt × (vpc + 1)) − 1 do
res = res ← id; /* add id to the result set res */

end for
else /* need to check for false-positives */

for id = cache_cnt × vpc → (cache_cnt × (vpc + 1)) − 1 do
if (col[id] < high ∧ col[id] ≥ low) then

res = res ← id; /* add id to the result set res */
end if

end for
end if

end if
cache_cnt + = 1; /* increase cache count by 1*/

end for
i_cnt + = imp.cd[i].cnt; /* increase imprint count */

else /* repeat is set */
if (imp.imprints[i_cnt]&mask) then /* if imprint vector match mask */

if ((imp.imprints[f_count]& ĩnnermask) ≡ 0) then
for id = cache_cnt×vpc →

(cache_cnt × vpc) + vpc × imp.cd[i].cnt − 1 do
res = res ← id; /* add id to the result set res */

end for
else /* need to check for false-positives */

for id = cache_cnt×vpc →
(cache_cnt × vpc) + vpc × imp.cd[i].cnt − 1 do

if (col[id] < high ∧ col[id] ≥ low) then
res = res ← id; /* add id to the result set res */

end if
end for

endif
end if
i_cnt + = 1; /* increase imprints count by 1 */
cache_cnt + = imp.cd[i].cnt; /* increase cache count */

end if
end for

is the check for false-positives and the materialization of the ids.
But in the case of multiple range queries over many columns of the
same table, both of these expensive operations can be postponed.
This technique is known in the literature as late materialization. To
achieve this, instead of producing the materialized id lists, Algo-
rithm 3 has to return the list of the qualifying cachelines. After ev-
ery range query is evaluated over the respective columns, the lists of
cachelines are merge-joined, resulting in a smaller set of qualifying
ids. This is based on the general expectation that the combination
of many range queries will increase the selectivity of the final result
set. After the merge-join, the qualifying ids that were common to
all cachelines can be checked for false-positives. Note that the al-
ternative indexing schemes used in the evaluation of Section 6 have
been coded with the same rigidity.

4. UPDATING COLUMN IMPRINTS
Column imprints are designed to support read intensive database

applications. In such scenarios, updates are a relatively rare event,
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and when they occur, are performed in batches. The most common
type of updates is appending new rows of data to the end of a table.
Column imprints can easily cope with such updates. However, we
can not exclude from our study updates that change an arbitrary
value of a column, or insert/delete a row in the middle of a table.

4.1 Data Append
During data appends, any index that is based on bit vectors and

bit-binning techniques has to perform two operations. The first one
is to readjust, if necessary, the borders of the bins. Such a read-
justment should be avoided since it calls for a complete rebuild of
the index. For column imprints, this is very rare, since i) the first
and last bins are used for overflow values, and ii) the bins were de-
termined by sampling the active domain of the column. Any new
data appended, need to have dramatically different value distribu-
tion to render the initial binning inefficient. The second operation
is to update the bit vectors. For bitmap indexes this is a costly op-
eration, since all bit vectors have to be updated, even those that are
not mapping the new values [6]. For column imprints this is not
necessary. The imprint vectors are horizontally compressed, thus
data appends simply cause new imprint vectors to be appended to
the end of the existing ones, without the need of accessing any of
the previous imprint vectors.

4.2 Imprints and Delta Structures
In place updates are never performed in columnar databases be-

cause of the prohibitive cost they entail. Instead, a delta structure is
used that keeps track of the updates, and merges them at query time.
A delta structure can be as simple as two tables with insertions and
deletions that need to be union-ed and difference-ed, respectively,
with the base table, or it can be a more complex structure, such as
positional update trees [11].

Column imprints can cope with inter-column operations, such
as unions and differences, by first applying them to the cacheline
dictionaries, such that a candidate list of qualifying cachelines is
created for both operands. The details of inter-column operations
are out of the scope of this paper, and are left to be presented in
the future. Nevertheless, even without such a functionality, column
imprints can be used to access the base table to create a candidate
list of qualifying cachelines. The underlying delta structure may
then hold in addition the cacheline counter where an update has
been performed in order to merge to the final result.

Moreover, imprints can produce false positives, thus a deletion
can be ignored by the corresponding imprint vector. An insertion
however, will call for additional bits to be set to the imprint corre-
sponding to the affected cachelines. Such an approach will eventu-
ally saturate the imprint index. In these cases, it is not uncommon
to disregard the entire secondary index and rebuild it during the
next query scan. The overhead for rebuilding an imprint index dur-
ing a regular scan in minimal, such that it will go undetected by the
user.

5. RELATED WORK
Column imprints can be viewed as a new member of the big

family of bitmapped based indexes. Bitmapped indexes have be-
come the prime solution to deal with the dimensionality curse of
traditional index structures such as B-trees and R-trees. Their con-
tribution to speed up processing has been credited to Patrick O’Neil
through the work on the Model 204 Data Management System [17,
18]. Since then, database engines include bitmapped indexes for
both fast access over persistent data and as intermediate storage
scheme during query processing, e.g. Sybase IQ, Postgresql, IBM
DB2, Oracle. Besides traditional bitmaps, Bloom filters [4] have

Dataset Size �Col Value types Max rows
Routing 5.4G 4 int, long 240M
SDSS 6.2G 4008 real, double, long 47M
Cnet 12G 2991 int, char 1M
Airtraffic 29G 93 int, short, char, str 126M
TPC-H 100 168G 61 int, date, str 600M

Table 1: Dataset statistics.

been used to decide if a record can be found in a relation, and thus
postponing bringing the data into memory. However, Bloom filters
are not suited for range queries, the target of column imprints.

Bitmap indexing relies on three orthogonal techniques [25]: bin-
ning, encoding and compression. Binning concerns the decision
of how many bit vectors to define. For low cardinality domains, a
single bit vector for each distinct value is used. High cardinality
domains are dealt with each bit vector representing a set of values.
The common strategy is to use a data value histogram to derive a
number of equally sized bins. Although binning reduces the num-
ber of bit vectors to manage, it also requires a post analysis over the
underlying table to filter out false positives during query evaluation.
Column imprints use similar binning techniques.

Since each record turns on a single bit in one bit vector of the
index only, the bitmaps become amendable to compression. Varia-
tions of run-length encoded compression have been proposed. The
state-of-the art approach is the Word-Aligned Hybrid (WAH) [23,
26] storage scheme. WAH forms the heart of the open-source pack-
age FastBit1, which is a mature collection of independent tools and
a C++ library for indexing file repositories. Consequently, column
imprints use another variation of run-length encoded but for identi-
cal cacheline mappings instead of consecutive equal values.

Bitmap indexing has been used in large scientific database ap-
plications, such as high-energy physics, network traffic analysis,
lasers, and earth sciences. However, deployment of bitmap index-
ing over large-scale scientific databases is disputed. [20] claims
that based on information theoretic constructs, the length of a com-
pressed interval encoded bitmap it too large when high cardinal-
ity attributes are indexed. The storage size may become orders of
magnitude larger than the base data. Instead, a multi-level indexing
scheme is proposed to aid in the design of an optimal binning strat-
egy. They extend the work on bit binning [9, 24]. Alternatively, the
data distribution in combination with query workload can be used
to refine the binning strategy [13, 7].

With the advent of multi-core and gpu processors it becomes at-
tractive to exploit data parallel algorithms to speed up processing.
Bit vectors carry the nice property of being small enough to fit in
the limited gpu memory, while most bit operations nicely fall in
the SIMD algorithm space. Promising results have been reported
in [8]. Similar, re-engineering the algorithms to work well in a flash
storage architecture have shown significant improvements [22].

6. EXPERIMENTAL EVALUATION
We performed an extensive experimental study to gain insights

into the applicability of the imprints index, the storage overhead
and creation time, as well as the query performance. We compare
our index with two state-of-the-art commonly used secondary index
solutions, namely zonemaps and bit-binning with WAH encoding.
We also provide, for a baseline comparison, the time measurements
for sequential scan. In order to study the impacts of different value
types, different column sizes, and different value distributions, we

1http://crd-legacy.lbl.gov/˜kewu/fastbit/
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Figure 3: Prints of column imprint indexes (’x’ = bit set, ’.’ = bit unset) and the respective column entropy E .

used real world datasets gathered from various test cases. These
datasets are either publicly available or part of in-house projects.

Column imprints, zonemaps, and WAH are all implemented in C,
and the code is available for review upon request.The implementa-
tion of zonemaps and WAH follow the same coding style and rules
as imprints to ensure fairness of comparison. Each experimental
run is done by first copying a column into main memory, and then
creating the zonemap, imprints and WAH indexes. The timer is
always started during the snippets of code that implement each in-
dex, thus avoiding measuring administrative overhead, which may
not be common for all indexes. We report the wall-clock time as
returned by the timing facilities of the time.h library of C. All
code has been compiled with the clang compiler with optimization
level 3.

Zonemaps are implemented as two arrays containing the min and
max values of each zone. The size of the zones is chosen to be equal
to the size that each imprint vector covers, i.e., the size of the cache-
line. The min and max arrays are aligned with the zone numbering,
i.e., the first min and max values correspond to the minimum and
maximum values found in the first zone, and so on. For the bit-
binning approach of bitmaps, the bins used are identical to those
used for the imprints index, as described in the binning() pro-
cedure of Algorithm 2. Using this binning scheme, each value of
the column sets the appropriate bit on a vector large enough to hold
all records. To compress the resulting bit-vectors we apply WAH
compression with word size 32 bits, as described in [23].

All experiments were conducted on an IntelR CoreTM i7-2600
cpu @ 3.40GHz machine with 8 cores and 8192 KB cache size. The
available main memory was 16 GB, while the secondary storage
was provided by a SeagateR ConstellationTM SATA 1-TB hard drive
and capable of reading data with a rate of 140MB/sec.

Table 1 lists the name, the size in gigabytes, the total number
of columns, the column types, and the maximum number of rows
of the datasets used for our experimentation. The first dataset, de-
noted as Routing, is a collection of over 240 million geographical
records (i.e., longitude, latitude, trip-id, and timestamp) of “trips”
as logged by gps devices. The next dataset, SDSS, is a 6.2 GB
sample of the astronomy database SkyServer. This database con-
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Figure 4: Cumulative distribution of the columns’ entropy E .

tains scientific data, with many double precision and floating point
columns following a uniform distribution, thus stressing compres-
sion techniques to their limits. Cnet is a categorical dataset describ-
ing the properties of technological products. All data are stored on
a single but very wide table, where each column is very sparse,
thus presenting ample opportunities for compression. The dataset
was re-created based on the study of J.Beckham [2]. The Airtraf-
fic delay database represents an ever growing data warehouse with
statistics about flight delays, landing times, and other flight statis-
tics. The data are updated per month, leading to many time-ordered
clustered sequences. Lastly, we used the TPC-H benchmark dataset
with scale factor 100, in order to compare against a well recogniz-
able dataset.

6.1 Column Entropy
We wish to better study the properties of the columns that are

typically not ordered, part of very wide tables, and eligible for sec-
ondary indexing. Our initial motivation was based on the obser-
vation that “secondary data” exhibit some degree of clustering, ei-
ther inherited during the creation process of the data, or indirectly
imposed by the few columns that are ordered because of primary
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indexing. Column imprints are designed such that this clustering is
naturally exploited without the need of explicit configuration. This
is why imprints are built per block and compressed row-wise per
imprint vector, instead of vertically per bin. To better understand
and quantify the degree of clustering found in data, we define a
new metric, called column entropy. Column entropy measures how
close a column is to being ordered, or, in other words, the amount
of clustering found in a column when the values are partitioned into
bins. More formally, column entropy E is defined to be

E =

Pn
i=2 d(i, i − 1)

2 × Pn
i=1 b(i)

where d(i, i−1) is the edit distance between bit-vector i and i−1,
and b(i) is the number of bits that are set in bit-vector i. We define
the edit distance between two bit-vectors to be the number of bits
that need to be set and unset in the first bit-vector in order to become
the second. Column entropy E takes values between 0.0 and 1.0.
The higher the entropy E the more random the data is and the less
clustered it appears to be.

To give a more intuitive view of column entropy, we print a small
portion of the column imprint index of five columns, one from each
dataset, and list them in Figure 3, together with their respective en-
tropy value E . The prints in Figure 3 correspond to the actual im-
print indexes as constructed in our code for the experiments. If a bit
is set then an ‘x’ is printed, otherwise an ‘.’. The first column
imprint of Figure 3 corresponds to a column from the SkyServer
dataset. It is of type real and has a high entropy value of almost 0.8
which implies that each next imprint vector is significantly different
from the previous one. Such columns with high entropy, as demon-
strated in the next section, are harder to compress. The next im-
print is the latitude attribute of the Routing dataset. It exhibits nice
clustering properties, something to be expected since the dataset is
taken from real observations, and thus trips are continuous without
any jumps, unless the trip-id changes. The next two imprints are
taken from the Airtraffic and Cnet dataset. These are categorical
datasets, with low cardinality – hence the smaller bit-vectors – and
with low entropy value. The last imprint index is the retail_price
attribute of table part of TPC-H. This dataset is created to contain
a sequence of prices that are not ordered, but they are still the same

repeated permutation of an order. Such an organization of data re-
sembles closely an ordered column, and thus also has a low entropy
value.

Figure 4 depicts the cumulative distribution of the entropy E for
all columns of all datasets that we used in our experiments. We
exclude all columns that are less than 1 megabyte in size, since
they are of minimal interest and introduce outliers in our measure-
ments. More than 3000 columns have entropy smaller than 0.4,
thus supporting our claim that data often tend to exhibit good local
clustering and ordering properties. Nevertheless, there are almost a
thousand columns that have high entropy values, up to almost 1.0.
Those columns are not to be ignored since they sum up to over 20%
of the total data. A secondary index should be immune to such high
entropy, and still be able to take advantage of any opportunities for
compression. In the next section we study the storage overhead of
imprints and other state-of-the-art secondary indexes, while giving
emphasis to their behavior on columns with high entropy. We show
that imprints are robust against columns with high entropy, while
bitmaps with WAH fail to achieve a good compression rate.

6.2 Index Size and Creation Time
We analyze the storage overhead introduced by the column im-

prints index and compare it with that of zonemaps and WAH. The
upper row of the graphs in Figure 5 depict the sizes of the indexes
over all columns and all datasets. Each graph corresponds to a dif-
ferent value type. For presentation reasons, we divide the types
according to their size in bytes. For example, char is 1-byte, short
is 2-byte, int and date are 4-byte, and long and double 8-byte types.
The y-axis depicts the size of the indexes measured in megabytes,
starting from a few bytes for the smaller columns to almost one
gigabyte for the large ones. Notice that y-axis is log-scaled. The
x-axis orders the columns according to their size (in increasing or-
der). However, because many columns have exactly the same size,
since they originate from the same tables, we distinguish them by
placing them next to each other. As a result, the flat horizontal pat-
terns appearing in the graphs correspond to different columns of
the same size, while the “stepping” effect corresponds to the next
group of larger columns.

The red triangle points mark the size of the bit-binning index
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Figure 6: Index size overhead % over the size of the columns.

with WAH compression, the blue squares mark the size of zone-
maps, and the green circles mark the size of the column imprints
index. The general picture drawn for all types is that WAH index
entails the largest storage overhead, zonemaps come second, while
imprints have the least requirements of storage space. More specif-
ically, the general trend is that imprints are between one and two
orders of magnitude more space efficient than zonemaps and WAH.
However, there are exceptions to that rule, especially for WAH in-
dexing, which depicts the biggest fluctuation in storage needs. For
1-byte types, there are cases where WAH achieves better compres-
sion and reaches that of imprints. By examining the data closer
we noticed that this is true for columns that although they have
more than 126 million rows (taken from the Airtraffic dataset), they
only contain two distinct values, thus allowing both WAH and im-
prints to fully compress their bit-vectors. Another point of interest
is found in the case of 8-byte types, where WAH can become a bit
more space efficient than imprints. This is true for those columns
that contain primary keys (e.g., bigint identifiers) and in addition
are ordered. Although we are studying secondary indexes that typ-
ically apply to unordered columns, we did not exclude any ordered
columns from our experimental datasets for completeness.

Since it is impractical and hard to explicitly show the size of each
individual column, we compute the percentage of the size of the in-
dexes over the size of the column. Figure 6 shows such a graph.
In addition, instead of grouping on value type, we group columns
from the same datasets together, such that more insights about the
different applications, and hence different value distributions can
be gained. The categorical data Cnet which has columns with low
cardinality, as well as the nicely clustered routing dataset, achieve
the best compression for both imprints and WAH, thus requiring in
many cases less than 10% space overhead. However, the same can
not be said for broader value domains and uniform distributions.
Specifically, the scientific dataset of SkyServer, consisting of many
columns with real and double values, with high cardinality and no
apparent clustering, makes the WAH index very unstable and in-
duces high storage overhead. Imprints perform fairly stably and
much better than WAH, with space overhead closer to zonemaps.
The failure of WAH is expected due to the high randomness of the
values in SkyServer, which allows for very few compression op-
portunities. However, imprints do not suffer from the same prob-
lem. Since one imprint vector is constructed for each cacheline,
the space requirements are less than bitmaps, while the chance of
consecutive imprint vectors to be identical, and thus compressible,
is increased.

Figure 7 depicts the index size overhead of both imprints and
WAH as percentage of the size of the column, ordered over the
entropia E . Imprints achieve storage overhead less than 10% for
columns with low entropy, i.e., up to 0.4. The same observation
holds with few exceptions for WAH indexing. However, the pic-
ture changes for columns with entropy of 0.5 and higher. Imprints
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Figure 7: Index size overhead % over column entropy E .

exhibit a steady storage overhead that hardly exceeds 12%. WAH
indexing suffers more, with up to almost 100% of storage overhead
on the size of the column. Imprints on the one hand need at most
64 bits per cacheline unit, making them immune to high entropy,
while benefiting from low entropy. On the other hand, WAH can
potentially become very inefficient. If there are very few opportuni-
ties for compression, most 32-bit words will be aligned with 31-bit
literals, i.e., no big long sequences of same bits will be found in the
bit-vectors. In addition, since we use a 64 bit-binning approach,
there will potentially be 64 uncompressed bits per value. All in all,
WAH is more suitable for low entropy data, while imprints are more
stable and with better compression for the entire range of entropy
values, i.e., they work even if data are not locally clustered.

Another concern is the time spent to create each secondary index.
The bottom row of graphs in Figure 5 depicts the creation time for
WAH, zonemaps, and imprints. As expected the zonemaps are the
fastest to create. For each row only two comparisons have to be
made to determine the minimum and the maximum values for the
current zone. The slowest is the WAH index, since there is signif-
icantly more work to be done in order to compress the bit-vectors.
Imprints on the other hand, always perform between zonemaps and
WAH. The overall differences of the construction time between the
three indexes is steady and to be expected since each of them re-
quire a different amount of work per value. Most importantly, the
time for all indexes increases linearly to the size of the columns,
thus making them a cost-effective solution for secondary indexing.

6.3 Query Performance
Next, we turn our attention to the performance analysis of eval-

uating range queries. The execution scenario for this set of exper-
iments is as follows. For each column, ten different range queries
with varying selectivity are created. The selectivity starts from
less than 0.1 and increases each time by 0.1, until it surpasses
0.9. These 10 queries are then fired against the three indexes (i.e.,
zonemaps, WAH, and imprints) defined over the column, and also
evaluated with a complete scan over that column. The result set of
each query is a materialized ordered list of id’s. The ordering of
id’s is guaranteed by the sequential scan, the zonemap index, and
the imprints index. However, this is not true for WAH, since each
pass over the different bit-vectors will produce a new set of id’s
which needs to be merged. The merging is done by defining an-
other bit-vector aligned with the id’s. The bits that are set in this id
bit-vector correspond to the id’s that satisfy the range query. In this
way no final merge is needed, just the materialization of the id’s.
This implementation only adds a small, but necessary for fairness,
overhead to WAH compared to the other indexes.
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Figure 9: Cumulative distribution of query times.

Figure 8 plots the query times of over 40,000 queries evaluated
over each index. The queries are ordered on the x-axis according
to their selectivity. If the selectivity is 0.1, the query returns 10%
of the total values in the column, while 0.9 returns 90% of the to-
tal values. All three indexes and the sequential scan produce the
same graph patterns for query times. However, these patterns are
shifted along the y-axis. Imprints is the fastest index overall since
the points in the graph are shifted the most to the bottom. As ex-
pected, if the selectivity of the query is low and thus more data are
returned, the smaller the differences that are observed between in-
dexes. In fact, sequential scans then also become competitive. This
is due to the fact that the overhead of decompressing the data, and
materializing almost all of the id’s, surpasses the time needed to se-
quentially scan the entire column and check each value. In addition,
zonemaps exhibits query times similar to that of sequential scan for
low selectivity queries, since zonemaps require the least adminis-
tration overhead compared to imprints and bitmaps with WAH.

To better understand the behavior of zonemap, WAH, and im-
prints, for queries with high selectivity, and compare them with
sequential scans, we plot in Figure 9 the cumulative distribution of
the queries over time. More precisely, we count the queries that fin-
ish execution at each time frame, and cumulatively sum them up.
The steeper the graph in Figure 9 the more queries finish in a shorter
time, thus the more efficient the index is overall. Figure 9 shows
that almost 15, 000 queries need each of them less than 0.1 mil-
liseconds to be evaluated with imprints index. Zonemaps, which
is the second best, manage to evaluate just over 7,500 queries in
the same time frame. However, as the evaluation time increases the
time gap between the different approaches is reduced.

We are interested in the factor of improvement that is achieved
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Figure 10: Factor of improvement over scan and zonemap.

by the imprints index over the sequential scan baseline and the
competitive zonemap indexing. Figure 10 depicts the factor of im-
provement achieved for each query. A point above 1 is translated
as a factor of improvement over the baseline, while a point be-
low 1 shows how many times an approach is slower than the base-
line. The upper graph of Figure 10 shows with green circle points
the improvement of imprints over sequential scans, while the red
triangles, the corresponding improvement of bitmaps with WAH
over sequential scans. Both imprints and WAH, show a signifi-
cant improvement for queries with high selectivity, i.e., when less
than 20% of the tuples are returned. For imprints that improvement
is in some cases almost a 1000 times faster, and for WAH over 10.
However, for low selectivity queries, imprints become less compet-
itive, while WAH can become significantly slower than scans. This
observation is aligned with the strategy of most modern database
systems, where, if the cost model of the query optimizer detects
a low selectivity selection, a sequential scan is preferred over any
index probing. Moreover, WAH is punished in a main memory set-
ting. The processing overhead of the WAH compression outweighs
the throughput of data that is achieved from main memory to the
cpu cache. Therefore, WAH is more suitable for cases where data
do not reside in memory, but need to be fetched from disk. Simi-
larly, the bottom graph of Figure 10 depicts the same comparison,
but with zonemap indexing being the baseline, instead of sequen-
tial scans. The same trend can be seen here, although zonemaps
is more competitive and thus the improvement factor for imprints
is closer to 100 times. However, in a few cases of low selectivity
zonemaps can become faster than imprints due to less computation
needs.

Finally, we compare the number of index probes and data com-
parisons performed (originating from testing for false positives)
normalized over the number of records in a column. This experi-
ment reveals implementation-independent statistics for column im-
prints in comparison with zonemaps and WAH. The top graph of
Figure 11 shows the number of index probes, while the bottom the
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Figure 11: Number of index probes and value comparisons for
queries with selectivity between 0.4 and 0.5.

number of comparisons, for all queries with selectivity between 0.4
and 0.5. The number of index probes for WAH is the highest of all
indexes, almost always more than the number of total records. This
is true since for each record many bit vectors have to be probed.
However, WAH achieves the best filtering since the number of data
comparisons is usually very low. On the other hand, zonemaps have
a steady number of index probes, i.e., exactly the number of cache-
lines of the column. The number of comparisons for zonemaps
depends on the data skew and can vary. Column imprints achieve
a balance between index probes and data comparisons. Columns
with high entropy entail more index probes but less data compar-
isons. On the other hand, columns with low entropy will need less
index probes but more data comparisons.

In conclusion, for high selectivity queries column imprints index
can achieve a factor of 1000 improvement over sequential scans,
and a factor of 100 over zonemap. Further experimentation, re-
vealed that there is a correlation between the query evaluation time
and the sizes of the column, or the size of the index, which in turn
is correlated with the column entropy. We do not show these graphs
since they do not reveal any new insights into the performance of
imprints compared to zonemap or WAH index.

7. CONCLUSIONS AND FUTURE WORK
Column imprints is a light-weight secondary index with a small

memory footprint suited for a main-memory setting. It belongs to
the class of bitvector indexes, which has a proven track record of
improving access in large-scale data warehouses. Our extensive
experimental evaluation shows significant query evaluation speed-
up against pure scans and the established indexing approaches of
zonemaps and bitmaps with bit-binning and WAH compression.
The storage overhead of column imprints is just a few percent, with
a max of 12% over the base column.

Column imprints can be extended to exploit multi-core platforms
during the construction phase and during multi-attribute query pro-
cessing. Akin to prevailing techniques, such as [20, 22], judicious
choice of the binning scheme, and a multi-level imprints organi-
zation, may lead to further improvements in specific application
domains.
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