
How to Wring a Table Dry: Entropy Compression of Relations and
Querying of Compressed Relations

Vijayshankar Raman Garret Swart
IBM Almaden Research Center, San Jose, CA 95120

ABSTRACT

We present a method to compress relations close to their entropy
while still allowing efficient queries. Column values are
encoded into variable length codes to exploit skew in their
frequencies. The codes in each tuple are concatenated and the
resulting tuplecodes are sorted and delta-coded to exploit the
lack of ordering in a relation. Correlation is exploited either by
co-coding correlated columns, or by using a sort order that
leverages the correlation. We prove that this method leads to
near-optimal compression (within 4.3 bits/tuple of entropy), and
in practice, we obtain up to a 40 fold compression ratio on
vertical partitions tuned for TPC-H queries.
 We also describe initial investigations into efficient querying
over compressed data. We present a novel Huffman coding
scheme, called segregated coding, that allows range and equality
predicates on compressed data, without accessing the full
dictionary. We also exploit the delta coding to speed up scans,
by reusing computations performed on nearly identical records.
Initial results from a prototype suggest that with these
optimizations, we can efficiently scan, tokenize and apply
predicates on compressed relations.

1. INTRODUCTION
Data movement is a major bottleneck in data processing. In a
database management system (DBMS), data is generally
moved from a disk, though an I/O network, and into a main
memory buffer pool. After that it must be transferred up
through two or three levels of processor caches until finally it is
loaded into processor registers. Even taking advantage of multi-
task parallelism, hardware threading, and fast memory
protocols, processors are often stalled waiting for data: the
price of a computer system is often determined by the quality
of its I/O and memory system, not the speed of its processors.
Parallel and distributed DBMSs are even more likely to have
processors that stall waiting for data from another node. Many
DBMS “utility” operations such as replication/backup, ETL
(extract-transform and load), and internal and external sorting
are also limited by the cost of data movement1.

DBMSs have traditionally used compression to alleviate
this data movement bottleneck. For example, in IBM’s DB2
DBMS, an administrator can mark a table as compressed, in
which case individual records are compressed using a
dictionary scheme [1]. While this approach reduces I/Os, the
data still needs to be decompressed, typically a page or record
at a time, before it can be queried. This decompression

increases CPU cost, especially for large compression
dictionaries that don’t fit in cache1. Worse, since querying is
done on uncompressed data, the in-memory query execution is
not sped up at all. Furthermore, as we see later, a vanilla gzip
or dictionary coder give suboptimal compression – we can do
much better by exploiting semantics of relations.

Another popular way to compress data is a method that can
be termed domain coding [6, 8]. In this approach values from a
domain are coded into a tighter representation, and queries run
directly against the coded representation. For example, values
in a CHAR(20) column that takes on only 5 distinct values can
be coded with 3 bits. Often such coding is combined with a
layout where all values from a column are stored together [5, 6,
11, 12]. Operations like scan, select, project, etc. then become
array operations that can be done with bit vectors.

Although it is very useful, domain coding alone is
insufficient, because it poorly exploits three sources of
redundancy in a relation:
� Skew: Real-world data sets tend to have highly skewed value

distributions. Domain coding assigns fixed length (often
byte aligned) codes to allow fast array access. But it is
inefficient in space utilization because it codes infrequent
values in the same number of bits as frequent values.

� Correlation: Correlation between columns within the same
row is common. Consider an order ship date and an order
receipt date; taken separately, both dates may have the same
value distribution and may code to the same number of bits.
However, the receipt date is most likely to be within a one
week period of ship date. So, for a given ship date, the
probability distribution of receipt date is highly skewed, and
the receipt date can be coded in fewer bits.

� Lack of Tuple Order: Relations are multi-sets of tuples, not
sequences of tuples. A physical representation of a relation
is free to choose its own order – or no order at all. We shall
see that this representation flexibility can be used for
additional, often substantial compression.

Column and Row Coding
This paper presents a new compression method based on a mix
of column and tuple coding.

Our method has three components: We encode column
values with Huffman codes [16] in order to exploit the skew in
the value frequencies – this results in variable length field
codes. We then concatenate the field codes within each tuple to
form tuplecodes and sort and then delta code these tuplecodes,
taking advantage of the lack of order within a relation. We
exploit correlation between columns within a tuple by using

1 For typical distributions, radix sort runs in linear time and thus

in-memory sort is dominated by the time to move data between
memory and cache (e.g., see Jim Gray’s commentary on the
2005 Datamation benchmark [17]). External sorting is of course
almost entirely movement-bound.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish, to
post on servers or to redistribute to lists, requires a fee and/or special
permission from the publisher, ACM.
VLDB ‘06, September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09

858

either value concatenation and co-coding, or careful column
ordering within the tuplecode. We also allow domain-specific
transformations to be applied to the column before the Huffman
coding, e.g. text compression for strings.

We define a notion of entropy for relations, and prove that
our method is near-optimal under this notion, in that it
asymptotically compresses a relation to within 4.3 bits/tuple of
its entropy.

We have prototyped this method in a system called csvzip
for compression and querying of relational data. We report on
experiments with csvzip over data sets from TPC-H, TPC-E
and SAP/R3. We obtain compression factors from 7 to 40,
substantially better than what is obtained with gzip or with
domain coding, and also much better than what others have
reported earlier. When we don’t use co-coding, the level of
compression obtained is sensitive to the position of correlated
columns within the tuplecode. We discuss some heuristics for
choosing this order, though this needs further study.

Efficient Operations over Compressed Data
In addition to compression, we also investigate scans and joins
over compressed data. We currently do not support incremental
updates to compressed tables.

Operating on the compressed data reduces our
decompression cost; we only need to decode fields that need to
be returned to the user or are used in aggregations. It also
reduces our memory throughput and capacity requirements.
The latter allows for larger effective buffer sizes, greatly
increasing the speed of external data operations like sort.

Querying compressed data involves parsing the encoded bit
stream into records and fields, evaluating predicates on the
encoded fields, and computing joins and aggregations. Prior
researchers have suggested order-preserving codes [2,15,18]
that allow range queries on encoded fields. However this
method does not extend efficiently to variable length codes.
Just tokenizing a record into fields, if done naively, involves
navigating through several Huffman dictionaries. Huffman
dictionaries can be large and may not fit in the L2 cache,
making the basic operation of scanning a tuple and applying
selection or projection operations expensive. We introduce two
optimizations to speed up querying:
� Segregated Coding: Our first optimization is a novel scheme

for assigning codes to prefix trees. Unlike a true order
preserving code, we preserve order only within codes of the
same length. This allows us to evaluate many common
predicates directly on the coded data, and also to find the
length of each codeword without accessing the Huffman
dictionary, thereby reducing the memory working set of
tokenization and predicate evaluation.

� Short Circuited Evaluation: Our delta coding scheme sorts
the tuplecodes, and represents each tuplecode by its delta
from the previous tuplecode. A side-effect of this process is
to cluster tuples with identical prefixes together, which
means identical values for columns that are early in the
concatenation order. This allows us to avoid decoding,
selecting and projecting columns that are unchanged from
the previous tuple.

Before diving into details of our method, we recap some
information theory basics and discuss some related work.

1.1 Background and Related Work

1.1.1 Information Theory
The theoretical foundation for much of data compression is
information theory [3]. In the simplest model, it studies the
compression of sequences emitted by 0th-order information
sources – ones that generate values i.i.d (independent and
identically distributed) from a probability distribution D.
Shannon’s celebrated source coding theorem [3] says that one
cannot code a sequence of values in less than H(D) bits per
value on average, where H(D) = ΣicD pi lg (1/pi) is the entropy
of the distribution D with probabilities pi.

Several well studied codes like the Huffman and Shannon-
Fano codes achieve 1 + H(D) bits/tuple asymptotically, using a
dictionary that maps values in D to codewords. A value with
occurrence probability pi is coded in roughly lg (1/pi) bits, so
that more frequent values are coded in fewer bits.

Most coding schemes are prefix codes – codes where no
codeword is a prefix of another codeword. A prefix code
dictionary is often implemented as a prefix tree where each
edge is labelled 0 or 1 and each leaf maps to a codeword (the
string of labels on its path from the root). By walking the tree
one can tokenize a string of codewords without using delimiters
– every time we hit a leaf we output a codeword and jump back
to the root.

The primary distinction between relations and the sources
considered in information theory is the lack of order: relations
are multi-sets, and not sequences. Secondarily, we want the
compressed relation to be directly queryable, whereas it is more
common in the information theory literature for the sequence to
be decompressed and then pipelined to the application.

1.1.2 Related work on database compression
DBMSs have long used compression to help alleviate their data
movement problems. The literature has proceeded along two
strands: field wise compression, and row wise compression.
Field Wise Compression: Graefe and Shapiro [20] were
among the first to propose field-wise compression, because
only fields in the projection list need to be decoded. They also
observed that operations like join that involve only equality
comparisons can be done without decoding. Goldstein and
Ramakrishnan [8] propose to store a separate reference for the
values in each page, resulting in smaller codes. Many column-
wise storage schemes (e.g., [5,6,12]) also compress values
within a column. Some researchers have investigated order-
preserving codes in order to allow predicate evaluation on
compressed data [2,15,18]. [2] study order preserving
compression of multi-column keys. An important practical
issue is that field compression can make fixed-length fields into
variable-length ones. Parsing and tokenizing variable length
fields increases the CPU cost of query processing, and field
delimiters, if used, undo some of the compression. So almost
all of these systems use fixed length codes, mostly byte-
aligned. This approximation can lead to substantial loss of
compression as we argue in Section 2.1.1. Moreover, it is not
clear how to exploit correlation with a column store.
Row Wise Compression: Commercial DBMS
implementations have mostly followed the row or page level
compression approach where data is read from disk,

859

decompressed, and then queried. IBM DB2 [1] and IMS[10]
use a non-adaptive dictionary scheme, with a dictionary
mapping frequent symbols and phrases to short code words.
Some experiments on DB2 [1] indicate a factor of 2
compression. Oracle uses a dictionary of frequently used
symbols to do page-level compression and report a factor of 2
to 4 compression [21]. The main advantage of row or page
compression is that it is simpler to implement in an existing
DBMS, because the code changes are contained within the
page access layer. But it has a huge disadvantage in that, while
it reduces I/O, the memory and cache behaviour is worsened
due to decompression costs. Some studies suggest that the CPU
cost of decompression is also quite high [8].
Delta Coding: C-Store [6] is a recent system that does column-
wise storage and compression. One of its techniques is to delta
code the sort column of each table. This allows some
exploitation of the relation’s lack-of-order. [6] does not state
how the deltas are encoded, so it is hard to gauge the extent to
which this is exploited. In a different context, inverted lists in
search engines are often compressed by computing deltas
among the URLs, and using heuristics to assign short codes to
common deltas (e.g, [19]). We are not aware of any rigorous
work showing that delta coding can compress relations close to
their entropy.
Lossy Compression: There is a vast literature on lossy
compression for images, audio, etc, and some methods for
relational data, e.g., see Spartan [7]. These methods are
complementary to our work – any domain-specific compression
scheme can be plugged in as we show in Section 2.1.4. We
believe lossy compression can be useful for measure attributes
that are used only for aggregation.

2. COMPRESSION METHOD
Three factors lead to redundancy in relation storage formats:
skew, tuple ordering, and correlation. In Section 2.1 we discuss
each of these in turn, before presenting a composite
compression algorithm that exploits all three factors to achieve
near-optimal compression.

Such extreme compression is ideal for pure data movement
tasks like backup or replication. But it is at odds with efficient
querying. Section 2.2 describes some relaxations that sacrifice
some compression efficiency in return for simplified querying.

This then leads into a discussion of methods to query
compressed relations, in Section 3.

2.1 Squeezing redundancy out of a relation
2.1.1 Exploiting Skew by Entropy Coding
Many domains have highly skewed data distributions. One
form of skew is not inherent in the data itself but is part of the
representation – a schema may model values from a domain
with a data type that is much larger. E.g., in TPC-H, the
C_MKTSEGMENT column has only 5 distinct values but is
modelled as CHAR(10) – out of 25610 distinct 10-byte strings,
only 5 have non-zero probability of occurring! Likewise, post
Y2K, a date is often stored as eight 4-bit digits (mmddyyyy),
but the vast majority of the 168 possible values map to illegal
dates.

Prior work (e.g, [6, 12]) exploits this using a technique
we’ll call domain coding: legal values from a large domain are
mapped to values from a more densely packed domain – e.g.,
C_MKTSEGMENT can be coded as a 3 bit number. To permit
array based access to columns, each column is coded to a fixed
number of bits.

While useful, this method does not address skew within the
value distribution. Many domains have long-tailed frequency
distributions where the number of possible values is much more
than the number of likely values. Table 1 lists a few such
domains. E.g., 90% of male first names fall within 1219 values,
but to catch all corner cases we would need to code it as a
CHAR(20), using 160 bits, when the entropy is only 22.98
bits. We can exploit such skew fully through entropy coding.

Probabilistic Model of a Relation: Consider a relation R with
column domains COL1, … COLk. For purposes of compression,
we view the values in COLi as being generated by an i.i.d.
(independent and identically distributed) information source
over a probability distribution Di. Tuples of R are viewed as
being generated by an i.i.d information source with joint
probability distribution: D = (D1, D2, … Dk).

2 We can estimate

2 By modeling the tuple sources as i.i.d., we lose the ability to

exploit inter-tuple correlations. To our knowledge, no one has
studied such correlations in databases – all the work on
correlations has been among fields within a tuple. If inter-tuple
correlations are significant, the information theory literature on
compression of non zero-order sources might be applicable.

Domain Num. possible
values

Num. Likely vals
(in top 90 percentile)

Entropy
(bits/value)

Comments

Ship Date 3650000 1547.5 9.92
We assume that the db must support all dates till 10000 A.D., but 99%
of dates will be in 1995-2005, 99% of those are weekdays, 40% of
those are in the 10 days each before New Year and Mother’s day.

Last
Names

2160 (char (20)) j80000 26.81

Male first
names

2160 (char (20)) 1219 22.98

We use exact frequencies for all U.S. names ranking in the top 90
percentile (from census.gov), and extrapolate, assuming that all ∫2160
names below 10th percentile are equally likely. This over-estimates
entropy.

Customer
Nation

215 ∫ 27.75 2 1.82
We use country distribution from import statistics for Canada (from
www.wto.org) – the entropy is lesser if we factor in poor countries,
which trade much less and mainly with their immediate neighbours.

Table 1: Skew and Entropy in some common domains

860

each Di from the actual value distribution in COLi, optionally
extended with some domain knowledge. For example, if COLi
has {Apple, Apple, Banana, Mango, Mango, Mango}, then Di
is the distribution {pApple = 0.333, pBanana = 0.167, pMango =0.5}.

Schemes like Huffman and Shannon-Fano code such a
sequence of i.i.d values by assigning shorter codes to frequent
values [3]. On average, they can code each value in COLi with
at most 1 + H(Di) bits, where H(X) is the entropy of distribution
X – hence these codes are also called “entropy codes.” Using an
entropy coding scheme, we can code the relation R
with ∑ ≤≤ ++ki ii COLDR1)DictSize()H(1(bits, where

DictSize(COLi) is the size of the dictionary mapping code
words to values of COLi.

If a relation were a sequence of tuples, assuming that the
domains Di are independent (we relax this in 2.1.3), this coding
is optimal, by Shannon’s source coding theorem [3]. But
relations are not sequences, they are multi-sets of tuples, and
permit further compression.

2.1.2 Order: Delta Coding Multi-Sets
Consider a relation R with just one column, COL1, containing
m numbers chosen uniformly and i.i.d from the integers in
[1,m]. Traditional databases would store R in a way that
encodes both the content of R and some incidental ordering of
its tuples. Denote this order-significant view of the relation as
R (we use bold font to indicate a sequence).

The number of possible instances of R is mm, each of which
has equal likelihood, so H(R) is m lg m. But R needs much less
space because we don’t care about the ordering. Each distinct
instance of R corresponds to a distinct outcome of throwing of
m balls into m equal probability bins. So, by standard

combinatorial arguments (see [14], [4]), there are 






 −
m

m 12 ∫

mm π44 different choices for R, which is much less than

mm. A simple way to encode R is as a coded delta sequence:
1) Sort the entries of R, forming sequence v = v1, …, vm
2) Form a sequence delta(R) = v1, v2–v1, v3–v2, …, vm–vm-1
3) Entropy code the differences in delta to form a new

sequence code(R) = v1, code(v2–v1), ... , code(vm – vm–1)

Space savings by delta coding
Intuitively, sorting and delta coding compresses R because the
distribution of deltas is tighter than that of the original integers
– small deltas are much more likely than large ones. Formally:
Lemma 1: If R is a multi-set of m values picked uniformly with
repetition from [1,m], and m > 100, then each delta in delta(R)
has entropy < 2.67 bits.
Proof Sketch: See Appendix 7. ±±±±
Corollary 1.1: code(R) occupies < 2.67 m bits on average.

This bound is far from tight. Table 2 shows results from a
Monte-Carlo simulation where we pick m numbers i.i.d from
[1,m], calculate the distribution of deltas, and estimate their
entropy. Notice that the entropy is always less than 2 bits.
Thus, Delta coding compresses R from m lg m bits to lg m +
2(m–1) bits, saving (m–1)(lg m – 2) bits. For large databases, lg
m can be about 30 (e.g., 100GB at 100B/tuple). As experiments
in Section 4.1 show, when a relation has only a few columns,
such delta coding alone can give up to a 10 fold compression.

This analysis applies to a relation with one column, chosen
uniformly from [1, m]. We generalize this to a method that
works on arbitrary relations in Section 2.1.4.

Optimality of Delta Coding
Such delta coding is also very close to optimal – the following
lemma shows we cannot reduce the size of a sequence by more
than lg m! just by viewing it as a multi-set.

Lemma 2: Given a vector R of m tuples chosen i.i.d. from a
distribution D and the multi-set R of values in R, (R and R are
both random variables), H(R) >= m H(D) – lg m!
Proof Sketch: Since the elements R are chosen i.i.d., H(R) = m
H(D). Now, augment the tuples t1, t2, …, tm of R with a “serial-
number” column SNO, where ti.SNO = i. Ignoring the ordering
of tuples in this augmented vector, we get a set, call it R1.
Clearly there is a bijection from R1 to R, so H(R1) = m H(D).
But R is just a projection of R1, on all columns except SNO. For
each relation R, there are at most m! relations R1 whose
projection is R. So H(R1) <= H(R) + lg m! ±

So, with delta coding we are off by at most lg m! – m(lg m
– 2) j m (lg m – lg e) – m (lg m – 2) = m (2 – lg e) j 0.6
bits/tuple from the best possible compression. This loss occurs
because the deltas are in fact mildly correlated (e.g., sum of
deltas = m), but we do not exploit this correlation – we code
each delta separately to allow pipelined decoding.

2.1.3 Correlation
Consider a pair of columns (partKey, price), where each
partKey largely has a unique price. Storing both partKey and
price separately is wasteful; once the partKey is known, the
range of possible values for price is limited. Such inter-field
correlation is quite common and is a valuable opportunity for
relation compression.

In Section 2.1.1, we coded each tuple in Σj H(Dj) bits. This
is optimal only if the column domains are independent, that is,
if the tuples are generated with an independent joint
distribution (D1, D2, … Dk). For any joint distribution, H(D1,
…, Dk) ≤ Σj H(Dj), with equality if and only if the Dj’s are
independent [3]. Thus any correlation strictly reduces the
entropy of relations over this set of domains.

We have three methods to exploit correlation: co-coding,
dependent coding and column ordering.

Co-coding concatenates correlated columns, and encodes
them using a single dictionary. If there is correlation, this
combined code is more compact than the sum of the individual
field codes.

A variant approach we call dependent coding builds a
Markov model of the column probability distributions, and uses
it to assign Huffman codes. E.g, consider columns partKey,

m est. H(delta(R)) in bits
10000 1.897577 m
100,000 1.897808 m
1,000,000 1.897952 m
10,000,000 1.89801 m
40,000,000 1.898038 m
Table 2: Entropy of delta(R) for a multi-set R of m
values picked uniformly, i.i.d. from [1,m] (100 trials)

861

price, and brand, where (partKey,price) and (partKey,brand)
are pair wise correlated, but price and brand are independent
given the partKey. Instead of co-coding all three columns, we
can assign a Huffman code to partKey and then choose the
Huffman dictionary for coding price and brand based on the
code for partKey. Both co-coding and dependent coding will
code this relation to the same number of bits but when the
correlation is only pair wise, dependent coding results in
smaller Huffman dictionaries, which can mean faster decoding.

Both co-coding and dependent coding exploit correlation
maximally, but cause problems when we want to run range
queries on the dependent column. In Section 2.2.2, we present a
different technique that keeps correlated columns separate (to
allow fast queries), and instead exploits correlation by tuning
the column ordering within a tuple.

Currently, csvzip implements co-coding and column
ordering. The column pairs to be co-coded and the column
order are specified manually as arguments to csvzip. An
important future challenge is to automate this process.

2.1.4 Composite Compression Algorithm
Having seen the basic kinds of compression possible, we now
proceed to design a composite compression algorithm that
exploits all three forms of redundancy and allows users to plug
in custom compressors for idiosyncratic data types (images,
text, dates, etc). Algorithm 3 describes this in pseudo-code and

gives an example of how the data is transformed. Figure 4
shows a process flow chart. The algorithm has two main pieces:
Column Coding: For each tuple, we first perform any type
specific transforms (supplied by the user) on columns that need
special handling (1a). For example, we can apply a text
compressor on a long VARCHAR column, or split a date into
week of year and day of week (to more easily capture skew
towards weekdays). Next we co-code correlated columns (1b),
and then replace each column value with a Huffman code (1c).
We use Huffman codes as a default because they are
asymptotically optimal, and we have developed a method to
efficiently run selections and projections on concatenated
Huffman codes (Section 3). We currently compute the codes
using a statically built dictionary rather than a Ziv-Lempel style
adaptive dictionary because the data is typically compressed
once and queried many times, so the work done to develop a
better dictionary pays off.
Tuple Coding: We then concatenate all the field codes to form
a bit-vector for each tuple, pad them on the right to a given
length and sort the bit-vectors lexicographically. We call these
bit vectors tuplecodes because each represents a tuple. After
sorting, adjacent tuplecodes are subtracted to obtain a vector of
deltas and each delta is further Huffman coded. By Lemma 2,
we cannot save more than lg|R| bits/tuple by delta-coding, so
our algorithm needs to pad tuples only to lg |R| bits (in Section
2.2.2 we describe a variation that pads tuples to more than lg
|R| bits; this is needed when we don’t co-code correlated
columns).

The expensive step in this compression process is the sort.
But it need not be perfect, as any imperfections only reduce the
quality of compression. E.g., if the data is too large for an in-
memory sort, we can create memory-sized sorted runs and not
do a final merge; by an analysis similar to Theorem 3, we lose
about lg x bits/tuple, if we have x similar sized runs.

Analysis of compression efficiency
Lemma 2 gives a lower bound on the compressibility of a
general relation: H(R) ≥ m H(D) – lg m!, where m = |R|, and
tuples of R are chosen i.i.d from a joint distribution D. The
Huffman coding of the column values reduces the relation size
to m H(D) asymptotically. Lemma 1 shows that, for a multi-set
of m numbers chosen uniformly from [1, m], delta coding saves
almost lg m! bits. But the analysis of Algorithm 3 is
complicated because (a) our relation R is not such a multi-set,
and (b) because of the padding we have to do in Step (1e). Still,
we can show that we are within 4.3 bits/tuple of optimal
compression:
Theorem 3: Our algorithm compresses a relation R of tuples
chosen i.i.d from a distribution D to an expected bit size of no
more than H(R) + 4.3|R| bits, if |R |> 100.
Proof: See Appendix 8.

2.2 Relaxing Compression for Query Speed
csvzip implements the composite compression algorithm of
Section 2.1.4 in order to maximally compress its input
relations. But it also performs two relaxations that sacrifice
some compression in return for faster querying.

1. for each tuple (t.c1, t.c2, … t.ck) of |R| do
1a. for each col ci that needs type specific transform, do:
 t.ci � type_specific_transform (t.ci)
1b. concatenate correlated columns together
1c. for each col i = 1 to k do:
 t.ci � Huffman_Code(t.ci)
1d. tupleCode � concat(t.c1, t.c2, … t.ck)
1e. If size(tupleCode) < ≈lg(|R|)∆ bits
 pad it with random bits to make it ≈lg(|R|)∆ bits long.
2. sort the coded tuples lexicographically.
3. for each pair of adjacent tuples p, q in sorted order do:
3a. let p = p1p2, q = q1q2,
 where p1,q1 are ≈lg(|R|)∆-bit prefixes of p,q
3b. deltaCode � Huffman_Code(q1-p1).
3c replace p with deltaCode.p2

Algorithm 3: Pseudo-Code for compressing a relation

862

Key

Input tuple

Column 1 Column 2 Column k

Co-code
transform

Type specific
transform

Transform
Column 1

Transform
Column 2

Field
Code

TupleCode

Field
Code

—

Sorted
Tuplecodes1

Previous
Tuplecode

Delta

Column 3

Transform
Column 3

Type specific
transform

Transform
Column j

Field
Code

Filed
Code

Huffman
Encode

Dict

…

…

Huffman
Encode

DictHuffman
Encode

Dict Huffman
Encode

Dict

Huffman
Encode

Delta Code

Append

Dict

Compression
Block

First b bits Any additional bits

Figure 4: The Compression Process

Data Item

Process

Delay

2.2.1 Huffman coding vs. Domain coding
As we have discussed, Huffman coding can be substantially
more space efficient than domain coding for skewed domains.
But it does create variable length codes, which are harder to
tokenize (Section 3). For some numerical domains, domain
coding also allows for efficient decoding (see below). So
domain coding is useful in cases where it does not lose much in
space efficiency.

Consider a domain like “supplierKey integer” in a table
with a few hundred suppliers. Using a 4 byte integer is
obviously over-kill. But if the distribution of suppliers is
roughly uniform, a 10-bit domain code may compress the
column close to its entropy. Another example is “salary
integer”. If salary ranges from 1000 to 500000, storing it as a
22 bit integer may be fine. The fixed length makes tokenization
easy. Moreover, decoding is just a bit-shift (to go from 20 bits
to a uint32). Decoding speed is crucial for aggregation
columns. We use domain coding as default for key columns
(like supplierKey) as well as for numerical columns on which
the workload performs aggregations (salary, price, …).

2.2.2 Tuning the sort order to obviate co-coding
In Section 2.1.3, we co-coded correlated columns to achieve
greater compression. But co-coding can make querying harder.

Consider the example (partKey, price) again. We can evaluate a
predicate partKey=? AND price=? on the co-coded
values if the co-coding scheme preserves the ordering on
(partKey, price). We can also evaluate standalone predicates on
partKey. But we cannot evaluate a predicate on price without
decoding. Co-coding also increases the dictionary sizes which
can slow down decompression if the dictionaries no longer fit
in cache.

We avoid co-coding such column pairs by tuning the order
of the columns in the tuplecode. Notice that in Step 1d of
Algorithm 3, there is no particular order in which the fields of
the tuple t should be concatenated – we can choose any
concatenation order, as long as we follow the same for all the
tuples. Say we code partKey and price separately, but place
partKey followed by price early in the concatenation order in
Step 1d. After sorting, identical values of partKey will mostly
appear together. Since partKey largely determines price,
identical values of price will also appear close together. So the
contribution of price to the delta (Step 3b) is a string of 0s most
of the time. This 0-string compresses very well during the
Huffman coding of the tuplecode deltas. We present
experiments in Section 4 that quantify this trade-off.

3. QUERYING COMPRESSED DATA
We now turn our focus from compressing relations to running
queries on the compressed relation. Our goals are to:
� Design query operators that work on compressed data,
� Determine as soon as possible that the selection criteria is

not met, avoiding additional work for a tuple,
� Evaluate the operators using small working memory, by

minimizing access to the full Huffman dictionaries.

3.1 Scan with Selection and Projection
Scans are the most basic operation over compressed relations,
and the hardest to implement efficiently. In a regular DBMS,
scan is a simple operator: it reads data pages, parses them into
tuples and fields, and sends parsed tuples to other operators in
the plan. Projections are usually done implicitly as part of
parsing. Selections are applied just after parsing, to filter tuples
early. But parsing a compressed table is more compute
intensive because all tuples are concatenated together into a
single bit stream. Tokenizing this stream involves: (a) undoing
the delta coding to extract tuplecodes, and (b) identifying field
boundaries within each tuplecode. We also want to apply
predicates during the parsing itself.

Undoing the delta coding. The first tuplecode in the stream is
always stored as-is. So we extract it directly, determining its
end by knowing its schema and navigating the Huffman tree for
each of its columns in order, as we read bits off the input
stream. Subsequent tuples are delta-coded on their prefix bits
(Algorithm 3). For each of these tuples, we first extract its
delta-code by navigating the Huffman tree for the delta-codes.
We then add the decoded delta to the running tuple prefix of
the previous tuplecode to obtain the prefix of the current
tuplecode. We then push this prefix back into the input stream,
so that the head of the input bit stream contains the full
tuplecode for the current tuple. We repeat this process till the
stream is exhausted.

863

We make one optimization to speed decompression. Rather
than coding each delta by a Huffman code based on its
frequency, we Huffman code only the number of leading 0s in
the delta, followed by the rest of the delta in plain-text. This
“number-of-leading-0s” dictionary is often much smaller (and
hence faster to lookup) than the full delta dictionary, while
enabling almost the same compression, as we see
experimentally (Section 4.1). Moreover, the addition of the
decoded delta is faster when we code the number of leading 0s,
because it can be done with a bit-shift and a 64-bit addition
most of the time avoiding the use of multi-precision arithmetic.

A second optimization we are investigating is to compute
deltas on the full tuplecode itself. Experimentally we have
observed that this avoids the expensive push back of the
decoded prefix, but it does increase the entropy (and thus
Huffman code length) of the deltas, by about 1bit/tuple.

Identifying field boundaries. Once delta coding has been
undone and we have reconstructed the tuplecode, we need to
parse the tuplecode into field codes. This is challenging
because there are no explicit delimiters between the field codes.
The standard approach mentioned in Section 1.1 (walking the
Huffman tree and exploiting the prefix code property) is too
expensive because the Huffman trees are typically too large to
fit in cache (number of leaf entries = number of distinct values
in the column). Instead we use a new segregrated coding
scheme (Section 3.1.1).

Selecting without decompressing. We next want to evaluate
selection predicates on the field codes without decoding.
Equality predicates are easily applied, because the coding
function is 1-to-1. But range predicates need order-preserving
codes: e.g., to apply a predicate c1 ≤ c2, we want: code(c1) ≤
code(c2) iff c1 ≤ c2. However, it is well known [13] that prefix
codes cannot be order-preserving without sacrificing
compression efficiency. The Hu-Tucker scheme [15] is known
to be the optimal order-preserving code, but even it loses about
1 bit (vs optimal) for each compressed value. Segregated
coding solves this problem as well.

3.1.1 Segregated coding
For fast tokenization with order-preservation, we propose a
new scheme for assigning code words in a Huffman tree (our
scheme applies more generally, to any prefix code).
The standard method for constructing Huffman codes takes a
list of values and their frequencies, and produces a binary tree
[16]. Each value corresponds to a leaf, and codewords are
assigned by labelling edges 0 or 1.
The compression efficiency is determined by the depth of each
value – any tree that places values at the same depths has the
same compression efficiency. Segregated coding exploits this

as follows. We first rearrange the tree so that leaves at smaller
depth are to the left of leaves at greater depth. We then permute
the values at each depth so that leaves at each depth are in
increasing order of value, when viewed from left to right.
Finally, we label each node’s left-edge as 0 and right-edge as 1.
Figure 5 shows an example. It is easy to see that a segregated
coding has two properties:
• within values of a given depth, greater values have greater
codewords (e.g., encode(‘tue’) < encode (‘thu’), in Figure 5)
• Longer codewords are numerically greater than shorter
codewords (e.g., encode(‘sat’) < encode (‘mon’), in Figure 5)

A Micro-Dictionary to tokenize Codewords
Using property 2), we can find the length of a codeword in time
proportional to the log of the code length. We don’t need the
full dictionary; we just search the value ranges used for each
code length. We can represent this efficiently by storing the
smallest codeword at each length in an array we’ll call
mincode. Given a bit-vector b, the length of the only codeword
that is contained in a prefix of b is given by max{len :
mincode[len] ≤ b}, which can be evaluated efficiently using a
binary or linear search, depending on the length of the array.

This array mincode is very small. Even if there are 15
distinct code lengths and a code can be up to 32 bits long, the
mincode array consumes only 60 bytes, and easily fits in the L1
cache. We call it the micro-dictionary. We can tokenize and
extract the field code using mincode alone.

Evaluating Range Queries using Literal Frontiers
Property 1) is weaker than full order-preservation, e.g.,
encode(wed) < encode(mon) in Figure 5. So, to evaluate �<
col on a literal �, we cannot simply compare encode(�) with
the field code. Instead we pre-compute for each literal a list of
codewords, one at each length:
φ(λ) [d] = max {c a code word of length d| decode(c) ≤ λ}

To evaluate a predicate λ < col, we first find the length l of
the current field code using mincode. Then we check if φ(λ)[l]
< field code. We call φ(λ) the frontier of λ. φ(λ) is calculated
by binary search for encode(λ) within the leaves at each depth
of the Huffman tree. Although this is expensive, it is done only
once per query. Notice that this only works for range predicates
involving literals. Other predicates, such as col1 < col2 can
only be evaluated on decoded values, but are less common.

3.1.2 Short circuited evaluation
Adjacent tuples processed in sorted order are very likely to
have the same values for many of the initial columns. We take
advantage of this during the scan by keeping track of the
current value of sub-expressions used in the computations to
evaluate selections, projections, and aggregations.

When processing a new tuple, we first analyze its delta
code to determine the largest prefix of columns that is identical
to the previous tuple. This is easy to do with our optimization
of Huffman coding not the actual delta but the number of
leading 0s in the delta. We do need to verify if carry-bits from
the rest of the delta will propagate into the leading 0s, during
the addition of the delta with the previous tuplecode. This
verification is just a right-shift followed by a compare with the
previous tuplecode. The shift does become expensive for large Figure 5: Segregated Huffman Coding Example

864

tuplecodes; we are investigating an alternative XOR-based
delta coding that doesn’t generate any carries.

3.2 Layering other Query Plan operators
The previous section described how we can scan compressed
tuples from a compressed table, while pushing down selections
and projections. To integrate this scan into a query plan, we
expose it using the typical iterator API, with one difference:
getNext() returns not a tuple of values but a tuplecode – i.e., a
tuple of coded column values. Most other operators, except
aggregations, can be changed to operate directly on these
tuplecodes. We discuss four such operators next: index-scan,
hash join, sort-merge join, and group-by with aggregation.

3.2.1 Index Scan: Access Row by RID
Index scans take a bounding predicate, search through an index
structure for matching row ids (RIDs), load the corresponding
data pages, and extract matching records. The process of
mapping predicates to RIDs occurs as usual. But extracting the
matching records is trickier because it involves random access
within the table. Since we delta-code tuples, the natural way to
tokenize a table into tuples is to scan them sequentially, as in
Section 3.1.

Our solution is to punctuate a compressed table with
periodic non-delta-coded tuples (the fields in these tuples are
still Huffman coded). This divides the table into separately
decodable pieces, called compression blocks (cblocks). We
make each rid be a pair of cblock-id and index within cblock,
so that index-based access involves sequential scan within the
cblock only. Thus, short cblocks mean fast index access.
However, since the first tuple is not delta-coded, short cblocks
also mean less compression. In practice this is not a problem: A
Huffman-coded tuple takes only 10-20 bytes for typical
schemas (Section 4.1), so even with a cblock size of 1KB, the
loss in compression is only about 1%. 1KB fits in L1-cache on
many processors, so sequential scan in a cblock is fine.

3.2.2 Hash Join & Group By with Aggregation
Huffman coding assigns a distinct field code to each value. So
we can compute hash values on the field codes themselves
without decoding. If two tuples have matching join column
values, they must hash to the same bucket. Within the hash
bucket, the equi-join predicate can also be evaluated directly on
the field codes.

One important optimization is to delta-code the input tuples

as they are entered into the hash buckets (a sort is not needed
here because the input stream is sorted). The advantage is that
hash buckets are now compressed more tightly so even larger
relations can be joined using in-memory hash tables (the effect
of delta coding will be reduced because of the smaller number
of rows in each bucket).

Grouping tuples by a column value can be done directly
using the code words, because checking whether a tuple falls
into a group is simply an equality comparison. However
aggregations are harder.

COUNT, COUNT DISTINCT, can be computed directly on
code words: to check for distinctness of values we check
distinctness of the corresponding codewords. MAX and MIN
computation involves comparison between code words. Since
our coding scheme preserves order only within code words of
the same length, we need to maintain the current maximum or
minimum separately on code words of each length. After
scanning through the entire input, we evaluate the overall max
or min by decoding the current code words of each codeword
length and computing the maximum of those values.

SUM, AVG, STDEV, cannot be computed on the code
words directly; we need to decode first. Decoding domain-
coded integer columns is just a bit-shift. Decoding Huffman
codes from small domains or ones with large skew is also
cheap, because the Huffman tree is shallow. We also place
columns that need to be decoded early in the column ordering,
to improve the chance that the scanner will see runs of identical
codes, and benefit from short circuited evaluation.

3.2.3 Sort Merge Join
The principal comparisons operations that a sort merge join
performs on its inputs are < and =. Superficially, it would
appear that we cannot do sort merge join without decoding the
join column, because we do not preserve order across code
words of different lengths. But in fact, sort merge join does not
need to compare tuples on the traditional ‘<’ operator – any
total ordering will do. In particular, the ordering we have
chosen for codewords – ordered by codeword length first and
then within each length by the natural ordering of the values is
a total order. So we can do sort merge join directly on the
coded join columns, without decoding them first.

4. EXPERIMENTAL STUDY
We have implemented our compression method in a prototype
system called csvzip. csvzip currently supports the compression

0

5

10

15

20

25

30

35

40

P1 P2 P3 P4 P5 P6

Domain Coding csvzip gzip csvzip+cocode

y

Figure 7: Comparing the compression ratios of four compression methods on 6 datasets

865

of relations loaded from comma separated value (csv) files, and
table scan with selection, projection, and aggregation. Updates
and joins are not implemented at this time. We do not currently
have a SQL parser – we execute queries by writing C programs
that compose select, project, and aggregate primitives.

We have used this prototype to perform an experimental
study of both compression efficiency and scan efficiency. Our
goal is to quantify the following:
1) How much can we compress, as compared to row coding or

domain coding? What is the relative payoff of skew, order-
freeness, and correlation (Section 4.1)?

2) How efficiently can we run scan queries directly on these
compressed tables (Section 4.2)?

We use three datasets in our experiments:
TPC-H views: We choose a variety of projections of Lineitem
x Orders x Part x Customer, that are appropriate for answering
TPC-H queries (Table 6). Our physical design philosophy, like
C-Store, is to have a number of highly compressed materialized
views appropriate for the query workload.
TPC-E Customer: We tested using 648,721 records of
randomly generated data produced per the TPC-E specification.
This file contains many skewed data columns but little
correlation other than gender being predicted by first name.
SAP/R3 SEOCOMPODF: We tested using projections of a
table from SAP having 50 columns and 236,213 rows. There is
a lot of correlation between the columns, causing the delta code
savings to be much larger than usual.

One drawback with TPC-H is that uses uniform,
independent value distributions, which is utterly unrealistic
(and prevents us from showing off our segregated Huffman
Coding ☺). So we altered the data generator to generate two
skewed columns and 2 kinds of correlation:
� Dates: We chose 99% of dates to be in 1995-2005, with 99%

of that on weekdays, 40% of that on two weeks each before
New Year & Mothers’ Day (20 days / yr).

� c_nationkey, s_nationkey: We chose nation distributions
from WTO statistics on international trade
(www.wto.org/english/res_e/statis_e/wt_overview_e.htm).

� Soft Functional Dependency: We made l_extendedprice be
functionally dependent on l_partkey

� Arithmetic Correlation: We made l_receiptdate and
l_shipdate be uniformly distributed in the 7 days after the
corresponding o_orderdate.

There are two other correlations inherent in the schema:
� For a given l_partkey, l_suppkey is restricted to be one of 4

possible values.
� De-Normalization: Dataset P6 in Table 6 is on lineitem x

order x customer x nation, and contains a non-key
dependency o_custkey � c_nationkey

We use a 1 TB scale TPC-H dataset (j6B rows in each of our
datasets). To make our experiments manageable, we did not
actually generate, sort, and delta-code this full dataset – rather
we tuned the data generator to only generate 1M row slices of
it, and compressed these. For example, P2 of Table 6 is delta-
coded by sorting on <l_orderkey,l_qty>. We generate 1M row
slices of P2 by modifying the generator to filter rows where
l_orderkey is not in the desired 1M row range.

4.1 Extent of Compression
Table 6 lists the detailed compression results on each dataset.
Figure 7 plots the overall compression ratio obtained by csvzip
(with and without co-coding) vs that obtained by:
� a plain gzip (representing the ideal performance of row and

page level coders),
� a fixed length domain coder aligned at bit boundaries

(representing the performance of column coders). Table 6
also lists the numbers for domain coding at byte boundaries;
it is significantly worse.

Note that all ratios are with respect to the size of the vertical
partition, not size of the original tables – any savings obtained
by not storing unused columns is orthogonal to compression.

Even without co-coding, csvzip consistently gets 10x or
more compression, in contrast to 2-3x obtained by gzip and
domain coding. On some datasets such as LPK LPR LSK
LQTY, our compression ratio without co-coding is as high as
192/7.17j27; with co-coding it is 192/4.74j41. From Table 6,
notice that the absolute per tuple sizes after compression are
typically 10-20bits.

We next analyze from where our substantial gains arise.

Exploitation of Skew: The first source of compression is
skew. Observe the bars labelled Huffman and Domain Coding

DATASET SCHEMA Original
size

DC-1 DC-8 Huffman
(1)

csvzip
(2)

Delta code
savings
(1)-(2)

Huffman +
Cocode

(3)

Correlation
saving
(1)-(3)

csvzip+
cocode

(5)

Loss by not
Cocoding

(2)-(5)

Gzip

P1. LPK LPR LSK LQTY 192 76 88 76 7.17 68.83 36 40 4.74 2.43 73.56
P2. LOK LQTY 96 37 40 37 5.64 31.36 37 0 5.64 0 33.92
P3. LOK LQTY LODATE 160 62 80 48.97 17.60 31.37 48.65 0.32 17.60 0 58.24
P4. LPK SNAT LODATE CNAT 160 65 80 49.54 17.77 31.77 49.15 0.39 17.77 0 65.53
P5. LODATE LSDATE
LRDATE LQTY LOK 288 86 112 72.97 24.67 48.3 54.65 18.32 23.60 1.07 70.50

P6. OCK CNAT LODATE 128 59 72 44.69 8.13 36.56 39.65 5.04 7.76 0.37 49.66
P7. SAP SEOCOMPODF 548 165 392 79 47 32 58 21 33 14 52
P8. TPC-E CUSTOMER 198 54 96 47 30 17 44 3 23 7 69

Table 6: Overall compression results on various datasets (all sizes are in # bits/tuple). DC-1 and DC-8 are bit and byte aligned domain
coding. Csvzip is Huffman followed by delta coding; csvzip+cocode is cocode followed by Huffman and then delta-coding.
Underscore indicates skew and italics denotes correlation. Column abbreviations are: LPK: partkey, LPR: extendedprice, LSK
suppkey, LQTY: quantity, LOK: orderkey, LODATE: orderdate, SNAT: suppNation, CNAT: custNation, LSDATE: shipDate,
LRDATE: receiptDate. TPC-E schema is tier, country_1, country_2, country_3, area_1, first name, gender, middle initial, last name.

866

in the chart below. They show the compression ratio achieved
just by Huffman coding column values, in contrast to the
savings obtained by domain coding. All columns except
nationkeys and dates are uniform, so Huffman and domain
coding are identical for P1 and P2. But for the skewed domains
the savings is significant (e.g., 44.7 bits vs. 59 bits for P6).
Table 6 lists the full results, including compression results on
SAP and TPC-E datasets. These have significant skew (several
char columns with few distinct values), so Huffman coding
does very well. On SAP, Huffman coding compresses to 79
bits/tuple vs. 165 bits/tuple for domain coding.

0

1

2

3

4

5

6

P1 P2 P3 P4 P5 P6

Huffman
Domain Coding
Huffman+CoCode

Correlation: The best way to exploit correlation is by co-
coding. Table 6 lists the extra benefit obtained by correlation,
over that obtained by just Huffman coding individual columns.
This is also illustrated in the bar labelled “Huffman+CoCode”
in the above plot. For example, we go down from 72.97
bits/tuple to 54.65 bits per tuple for P5. In terms of
compression ratios, as a function of the original table size, we
compress 2.6x to 5.3x by exploiting correlation and skew.

Delta-Coding: The last source of redundancy is from lack-of-
ordering. In Table 6, column(3) – column (5) gives the savings
from delta coding when we co-code. Observe that it is almost
always about 30 bits/tuple for all the TPC-H datasets. This
observation is consistent with Theorem 3 and Lemma 2; lg m =
lg (6.5B) j 32.5, and we save a little fewer bits per tuple by
delta-coding.

Again in Table 6, column (1) – column (2) gives the
savings from delta coding when we don’t co-code correlated

columns. Notice that the savings is now higher – the delta
coding is able to exploit correlations also, as we discussed in
Section 2.2.2.

The plot on the opposite column illustrates the compression
ratios obtained with the two forms of delta coding. The ratio is
as high as 10 times for small schemas like P1. The highest
overall compression ratios result when the length of a tuplecode
and bits per tuple saved by delta coding are similar.

Exploiting Correlation via co-coding vs. delta-coding:
The extent to which it can exploit correlations is indicated

by the column labelled (2)-(5) in Table 6 – notice that we are
often close to the co-coding performance.

This strategy is powerful, because by not co-coding range
queries on the dependent become much easier as we discussed
in Section 2.2.2. But a drawback is that the correlated columns
have to be placed early in the sort order – for example,
LODATE, LRDATE, LSDATE in dataset P5. We have
experimented with a pathological sort order – where the
correlated columns are placed at the end. When we sort P5 by
(LOK, LQTY, LODATE, …), the average compressed tuple
size increases by 16.9 bits. The total savings from correlation is
only 18.32 bits, so we lose most of it. This suggests that we
need to do further investigation on efficient range queries over
co-coded or dependent coded columns.

4.2 Querying Compressed Relations
We now investigate efficient querying of compressed relations.
We focus on scans, with selection, projections, and
aggregations. Our queries test three aspects of operating over
compressed data:
1. How efficiently can we undo the delta-coding to retrieve

tuplecodes?
2. How efficiently can we tokenize tuples that contain

Huffman-coded columns?
3. How well can we apply equality and range predicates on

Huffman coded and domain coded columns?
The first is the basic penalty for dealing with compressed data,
that every query has to pay. The second measures the
effectiveness of our segregated coding. The third measures the
ability to apply range predicates using literal frontiers.

We run scans against 3 TPC-H schemas: (S1: LPR LPK
LSK LQTY) has only domain coded columns, (S2: LPR LPK
LSK LQTY OSTATUS OCLK) has 1 Huffman coded column
(OSTATUS), and (S3: LPR LPK LSK LQTY OSTATUS
OPRIO OCLK) has 2 Huffman coded columns
(OSTATUS,OPRIO). OSTATUS has a Huffman dictionary
with 2 distinct codeword lengths, and OPRIO has a dictionary
with 3 distinct codeword lengths. The table below plots the
scan bandwidth (in nanoseconds/tuple) for various kinds of
scans against these schemas. All experiments were run on a
1.2GHz Power 4, on data that fit entirely in memory.

Q1 is a straightforward scan plus aggregation on a domain
coded column. On S1, which has no Huffman columns, Q1 just
tests the speed of undoing the delta code – we get 8.4ns/tuple.

On S2 and S3, it tests the ability to tokenize Huffman
coded columns using the micro-dictionary (in order to skip over
them). Tokenizing the first Huffman coded column is relatively

 S1 S2 S3

Q1: select sum(lpr) from S1/2/3 8.4 10.1 15.4

Q2: Q1 where lsk>? 8.1-10.2 8.7-11.5 17.7-19.6
Q3: Q1 where oprio>? 10.2-18.3 17.8-20.2

Q4: Q1 where oprio=? 11.7-15.6 20.6-22.7

0

2

4

6

8

10

12

P1 P2 P3 P4 P5 P6

DELTA
Delta w cocode

867

cheap because its offset is fixed; subsequent ones incur an
overhead of about 5ns/tuple to navigate the micro-dictionary. If
a tuple has several Huffman coded columns, this suggests that
it will pay to encode the tuple length in front.

Q2, Q3, and Q4 are queries with predicates plus
aggregation. A range of numbers is reported for each schema
because the run time depends on the predicate selectivity, due
to short-circuiting. For small selectivities, the predicate adds at
most a couple of ns/tuple beyond the time to tokenize. This is
in line with our expectation, because once tokenized, the range
predicate is evaluated directly on the codeword.

These numbers indicate we can process 50-100M tuples/s
using a single processor (equivalent to 1-2GB/s), and are quite
promising. Obviously, a full query processor needs much more
than scan. Nevertheless, as we discussed in Section 3.2, hash
joins and merge joins can be done on the compressed tuples
using these basic equality and range predicate operations.

5. CONCLUSIONS AND FUTURE WORK
Compression is a promising approach to deal with the data
movement bottleneck. We have developed a notion of entropy
for relations and described a method to compress relations to
within 4.3 bits/tuple of the entropy. This results in up to a
compression factor of up to 40 on TPC-H data, much better
than reported in prior literature. We have also developed
techniques for efficient scans with selection and projection over
relations compressed with this method.

Much work remains to exploit the promise of this idea.
Although we have shown the basic feasibility, we need to
further investigate the engineering issues involved in doing
query operators both as a part of a commercial DBMS and as a
utility, and figuring out how to utilize the 128 bit registers and
hardware threading available on modern processors. A second
direction is lossy compression, which we believe is vital for
efficient aggregates over compressed data. Finally, we need to
support incremental updates. We believe that many of the
standard warehousing ideas like keeping change logs and
periodic merging will work here as well.

6. REFERENCES
[1] Bala Iyer,, David Wilhite. Data Compression Support in Data

Bases. In VLDB 1994.
[2] G. Antoshenkov, D. Lomet, J. Murray. Order Preserving

String Compression. In ICDE 1996.
[3] T. Cover, J. Thomas. Elements of Information Theory. John

Wiley. 1991
[4] Eric W. Weisstein et al. "Catalan Number." In MathWorld.

http://mathworld.wolfram.com/CatalanNumber.html.
[5] A. Ailamaki, D.J. DeWitt, M. D. Hill, M. Skounakis Weaving

relations for cache performance. In VLDB 2001.
[6] M. Stonebraker et al. C-Store: A Column Oriented DBMS. In

VLDB 2005.
[7] S. Babu et al. SPARTAN: A model-based semantic

compression system for massive tables. SIGMOD 2001.
[8] J. Goldstein, R. Ramakrishnan, U. Shaft. Compressing

Relations and Indexes. In ICDE 1998.
[9] G.V. Cormack and R.N. Horspool. Data Compression using

Dynamic Markov Modelling, Computer Journal 1987.
[10] G. V. Cormack, Data Compression In a Database System,

Comm. of the ACM 28(12), 1985

[11] G. Copeland and S. Khoshafian. A decomposition storage
model. In SIGMOD 1985.

[12] Sybase IQ. www.sybase.com/products/informationmanagement
[13] D. Knuth. The Art of Computer Programming. Addison

Wesley, 1998.
[14] S. Barnard and J. M. Child. Higher Algebra, Macmillan India

Ltd., 1994.
[15] T. C. Hu, A. C. Tucker, Optimal computer search trees and

variable-length alphabetic cods, SIAM J. Appl. Math, 1971.
[16] Huffman, D. A method for the construction of minimum

redundancy codes. Proc. I.R.E. 40. 9. 1952
[17] Jim Gray. Commentary on 2005 Datamation benchmark.

http://research.microsoft.com/barc/SortBenchmark
[18] A. Zandi et al. Sort Order Preserving Data Compresion for

Extended Alphabets. Data Compression Conference 1993.
[19] K. Bharat et al. The Connectivity server: Fast access to

Linkage information on the web. In WWW 1998.
[20] G. Graefe and L. Shapiro. Data Compression and Database

Performance. In Symp on Applied Computing, 1991.
[21] M. Poess et al. Data compression in Oracle. In VLDB 2003.

7. ENTROPY OF MULTI-SET DELTAS
Lemma 1: For a multi-set R of m values picked uniformly and i.i.d
from [1..m], for m >100, the value distribution of code(R) has
entropy ≤ 2.67 m bits.
Proof: Recall the pseudo-code for computing the coded delta:
1) Sort the entries of R, forming sequence v = v1, …, vm
2) Form a delta sequence v2 − v1, v3 − v2, … , vm − vm-1.
3) Entropy code the values in delta to form a new sequence

code(R) = code(v2 − v1), ... , code(vm − vm-1)
Now consider this situation: we have thrown m balls numbered 1..m
uniformly and i.i.d onto m numbered bins arranged in a circle. Define
a random variable Dj for ball j that landed in bin i
 Dj h 0 if j is not the highest numbered ball in bin i
 h k if j is the highest numbered ball bin i and
and k is the clockwise distance from bin i to the next occupied bin. In
effect, Dj is the random variable for the bin gap between adjacent
balls. The distribution of each code in code(R) is that of Dj. By
symmetry, this distribution is independent of j, so we shall call it
D. Our goal is to compute H(D).
Now, let pd h Pr (D = d), 0 ≤ d < m and define

λd h Pr (D = d | D g 0), 1 ≤ d < m
So, pd = (1 − p0) λd, and
H(D)= Σ0≤d<m pd lg(1/pd) = −p0 lg p0 −Σ1≤d≤m–1 (1−p0)λdlg(1−p0)λd.
Since Σ0≤d<m pd = 1 = p0 + Σ1≤d<m (1−p0)λd, we have,
H(D) = −p0 lg p0 − (1−p0)lg(1−p0) + (1−p0)Σ1≤d<m λd lg(1/λd) (1)
Consider αd h Pr(D > d | Dg0), 1 ≤ d < m. This is the probability
that, given that a ball is the highest numbered ball in a bin (D g 0),
that there is a clockwise gap greater than d to the next occupied
bin, i.e., that all m – 1 other balls fall into the other m – d bins. So,
αd = (1 – d / m)m−1, for 1 ≤ d < m,
λd = Pr (D = d | Dg0) = αd−1 − αd,
αd = (1 – d/m)m−1 = [m/(m − d)][(1 − d / m)m] < [m/(m − d)] e−d,
by standard exponential inequalities [14], and
λd = αd−1 – αd < αd−1

 < [m/(m – d + 1)] e1− d (2)
But, λd = αd−1 – αd = (1 − (d − 1)/m)m−1 − (1−d/m)m−1
λd (m/(m−d))m−1 = [(m − d + 1)/(m − d)]m−1 − 1 > 1 for d ≥ 1
So 1/λd

 < [m/(m − d)]m−1 (3)
Now, each occurrence of a zero delta corresponds to an empty bin,
so expected number of empty bins is mp0. But empty bins form a
binomial distribution with probability (1−1/m)m. So p0 = (1−1/m)m

868

< 1/e. Now, by simple calculus, −x lg x has its maximum value
when x=1/e, and substituting into equation (1) we have
−p0lg p0 − (1−p0)lg(1−p0) < (lg e)/e + (1−1/e) lg(1/(1−1/e)) (4)
Combining (1), (2), (3), (4) we get,
H(D) < (lg e)/e + (1−1/e) lg(e/(e−1)) + (1−p0) λ1 lg 1/λ1 +

(1−p0)Σ2≤d≤m–1[m/(m−d+1)] e1−d (m−1)lg(1+d/(m−d))
As ln(1+x) < x, lg(1+x) = ln(1+x) / ln 2 < x / ln 2 we have
H(D) < (lg e)/e + (1−1/e) lg(e/(e−1)) + (1−p0)λ1 lg 1/λ1 +
 ((1−p0)/ln 2) Σ2≤d≤m–1 [dm(m−1)/((m−d)(m−d +1))] e1 − d (5)

11
2

11
21

2 1

12
2

Let [(1) ()(1)]
[2 (1) ()(+1)(+2)]

 (1) / 2
 [2 (1) ()(1)(2)]

dm
dm

dm
dm m

m

dm
d

Y dm m m d m d e
Y Y dm d m d m d m d e

m m e
dm d m d m d m d e

m

−−
=

−−
=+

− +

−−
=

≡ − − − +∑
− = − − − −∑

− +
= − − − + − +∑
+ 1 2

m m+1

100 m

1

[(/3 0.5) (0.5) 2 /3]
 > 0 for m>7 (the last quadratic is >0 for m>7)
Hence Y >Y for 7.
But < 1.57, by calculation. So, for m>100, Y 1.57. (6)
Also, 1 (1

me m e m e e

m
Y

λ

− − + + +

>
<

= − − 1

1 1

0 0

1/) is increasing in m. Since lg(1/)
is maximum at 1/e, lg(1/) 0.63lg0.63 0.42 for m>100. (7)
Plugging (6), (7) into (5) and doing some algebra,

() lg (1 1/) lg(1) 0.42(1) 1.57(1) / ln

mm x x

H D e e e p p

λ λ
−

< <

< − − − + − + −
100

0

2.
By calculus, (1-1/) > 0.99 >0.36 for m>100.
Substituting, we get H(D) < 2.67 bits.

mp m=

8. OPTIMALITY OF ALGORITHM 3
Lemma 3: Let X be a random variable over a distribution D, and
let code(X) be a random variable representing the codeword for X,
according to some compression scheme. Let codeα(X) be the
random variable for the α-bit prefix of code(X). Then, if the
compression scheme is optimal and given that code(X) has ≥ α
bits, codeα(X) is uniformly distributed over all bit-vectors of length
α.
Proof: If the distribution of bits were not uniform, we could further
compress each α-bit prefix, contradicting the assumption that the
compression scheme is optimal. ±±±±

We now show the algorithm of Section 2.1.4 is near optimal.

Lemma 4: If tuples of R are generated i.i.d. over a distribution D,
the algorithm of Figure 3 encodes R in at most

(1 ()) (1)(lg 2.67) (lg) bits
s

i ii D
m H D m m mp m b

∈
+ − − − + −  ∑ on

average, where m = |R| > 100, Ds is the subset of tuples that get
coded in less than ≈lg m∆ bits at the end of step 1d, pi is the
occurrence probability of tuple i c Ds, and bi is the length to which
tuple i is coded at end of step 1d.

Proof: By standard results on Huffman coding [3], the
expected size of the tuples at the end of Step 1d is no more than
m(1+H(D)) bits. The padding of Step 1e adds (≈lg m∆ – bi) random
bits for each tuple that codes to bi < ≈lg m∆ bits. So the overall
padding has expected length of (lg)

s
i ii D

mp m b
∈

−  ∑ bits. By

Lemma 3, after Step 1e, the ≈lg m∆-bit prefix of the coded tuple is
uniformly distributed over all bit vectors of length ≈lg m∆. So, by
Lemma 1, average length of the coded delta is at most 2.67 bits. So
the delta coding of Steps 2 and 3 saves on average ≈lg m∆ − 2.67
bits for each pair of adjacent tuples: (m−1)(≈lg m∆ − 2.67) bits
overall. And by summing these quantities we get our result. ±±±±

Theorem 3: Algorithm 3 compresses a relation R of tuples
chosen i.i.d from a finite distribution D to at most H(R) + 4.3|R|
bits, assuming |R| > 100.
Proof: Consider m items chosen i.i.d. from D. Let R be a random
variable for these m items viewed as a sequence and R be a random
variable for these m items viewed as a multi-set. Without loss of
generality let the distribution D be given by a set of n values v1, …
,vn and associated probabilities p1, …, pn, so that a sample drawn
from D has value vi with probability pi. Let Ds be the subset of
those values that code to less than ≈lg m∆ bits after step 1d. Let
MUL be a random variable for the vector of multiplicities of
elements in Ds in the random multi-set R, Dom(MUL) = N

|Ds|).
Use µµµµ to represent a particular multiplicity in Dom(MUL), µi to
denote the i’th element of µµµµ, the multiplicity of the associated vi,
and pµµµµ to denote the probability that MUL=µµµµ.
H(R) = H(MUL) + H(R | MUL)
 = H(MUL) + ΣµµµµcDom(MUL) pµµµµ H(R | MUL=µµµµ)
We now employ an argument similar to Lemma 3. For any value
of the multi-set R having multiplicity µµµµ = (µ1, µ2, ... µ|Ds|), there are
at most m! / (µ1!µ2! ... µ|Ds|!) instances of R. So,
H(R | MUL = µµµµ) ≥ H(R | MUL = µµµµ) – lg (m!/(µ1!... µ|Ds|!))
H(R) ≥ H(MUL) + H(R | MUL = µµµµ) – Σµ pµ lg (m!/(µ1!... µ|Ds|!))
 = H(R) – ΣµµµµcDom(MUL) pµ lg (m!/(µ1!... µ|Ds|!)).
Let k = µ1 +...+ µ|Ds|. Then, k! µ1

µ1... µ|Ds|
µ_|Ds|/(µ1!... µ|Ds|!) is just

one term in the multinomial expansion of kk. So k!/(µ1!... µ|Ds|!)
< kk / µ1

µ_1... µ|Ds|
µ_|Ds|. Clearly k < m, so

lg (m!/(µ1!... µ|Ds|!) < m lg m −Σ1≤i≤Ds
 µi lg µi.

So, H(R) ≥ H(R) – ΣµµµµcDom(MUL) pµµµµ (m lg m −Σi µilg µi)
But, the last term can be simplified and replaced with an
expectation giving us
H(R) ≥ H(R) – m lg m + E(Σi µilg µi)
 = H(R) – m lg m + Σi E(µilg µi).
Since x lg x is convex, we can apply Jensen’s inequality: E(f(X) ≥ f(E(X)) for convex functions f, yielding
H(R) ≥ H(R) – m lg m + Σi E(µi) lg Ε(µi) (1)
By Lemma 4, Algorithm A encodes R in space

(1 ()) (1)(lg 2.67) (lg) (2)
Since tuples are chosen i.i.d, () (). Recall that

 is the probability of the i'th element of and

s i ii D

i s i

m H D m m mp m b
H R mH D

p D b

∈+ − − − + −  
=
∑

 

 is the
length of the code for the i'th element. So () . Thus,
the space overhead of Algorithm A over entropy = (2) - (1)

3.67 lg + (lg lg)
3.67 lg (lg(1/)).

Let

s

s

i i

i i ii D

i i ii D

E mp

m m m mp m b mp
m m m mp p b

µ

∈

∈

=

≤ + − −
≤ + + −

∑
∑

 p and / . Then the overhead

3.67 lg (lg(2 /) lg). Since
1, and lg() is concave, by Jensen's inequality,

lg(2 /) lg (2 /). So overhead

3.67

s

i
s

s

i i
s s

i i ii D
b

i ii D

ii D
b b

i i i ii D i D

p q p p

m m mp q q p
q x

q q q q

m

∈
−

∈

∈
− −

∈ ∈

= = ≤
+ + −

=
≥ ≤

+

∑
∑

∑
∑ ∑

lg lg 2 lg (1).
Now, for any unambiguous code, Kraft's inequality [4] says
that 2 1. So overhead 3.67 lg lg (1).
By simple calculus, lg(1/) (1/) lg 0.53. So,
space taken by Algor

i
s

i

b
i D

b
i D

m m mp p

m m mp p
x x e e

−
∈

−
∈

+ +

≤ ≤ + +
≤

∑

∑
�

ithm A - () is at most
4.2 lg bits < 4.3m bits (lg x/x < 0.07 for m>100)

H R
m m+ �

869

