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ABSTRACT 

We present a method to compress relations close to their entropy 
while still allowing efficient queries. Column values are 
encoded into variable length codes to exploit skew in their 
frequencies. The codes in each tuple are concatenated and the 
resulting tuplecodes are sorted and delta-coded to exploit the 
lack of ordering in a relation. Correlation is exploited either by 
co-coding correlated columns, or by using a sort order that 
leverages the correlation. We prove that this method leads to 
near-optimal compression (within 4.3 bits/tuple of entropy), and 
in practice, we obtain up to a 40 fold compression ratio on 
vertical partitions tuned for TPC-H queries.  
     We also describe initial investigations into efficient querying 
over compressed data. We present a novel Huffman coding 
scheme, called segregated coding, that allows range and equality 
predicates on compressed data, without accessing the full 
dictionary. We also exploit the delta coding to speed up scans, 
by reusing computations performed on nearly identical records. 
Initial results from a prototype suggest that with these 
optimizations, we can efficiently scan, tokenize and apply 
predicates on compressed relations. 

1. INTRODUCTION 
Data movement is a major bottleneck in data processing. In a 
database management system (DBMS), data is generally 
moved from a disk, though an I/O network, and into a main 
memory buffer pool. After that it must be transferred up 
through two or three levels of processor caches until finally it is 
loaded into processor registers. Even taking advantage of multi-
task parallelism, hardware threading, and fast memory 
protocols, processors are often stalled waiting for data: the 
price of a computer system is often determined by the quality 
of its I/O and memory system, not the speed of its processors. 
Parallel and distributed DBMSs are even more likely to have 
processors that stall waiting for data from another node. Many 
DBMS “utility” operations such as replication/backup, ETL 
(extract-transform and load), and internal and external sorting 
are also limited by the cost of data movement1. 

DBMSs have traditionally used compression to alleviate 
this data movement bottleneck. For example, in IBM’s DB2 
DBMS, an administrator can mark a table as compressed, in 
which case individual records are compressed using a 
dictionary scheme [1]. While this approach reduces I/Os, the 
data still needs to be decompressed, typically a page or record 
at a time, before it can be queried. This decompression 

increases CPU cost, especially for large compression 
dictionaries that don’t fit in cache1. Worse, since querying is 
done on uncompressed data, the in-memory query execution is 
not sped up at all. Furthermore, as we see later, a vanilla gzip 
or dictionary coder give suboptimal compression – we can do 
much better by exploiting semantics of relations. 

Another popular way to compress data is a method that can 
be termed domain coding [6, 8]. In this approach values from a 
domain are coded into a tighter representation, and queries run 
directly against the coded representation. For example, values 
in a CHAR(20) column that takes on only 5 distinct values can 
be coded with 3 bits. Often such coding is combined with a 
layout where all values from a column are stored together [5, 6, 
11, 12]. Operations like scan, select, project, etc. then become 
array operations that can be done with bit vectors. 

Although it is very useful, domain coding alone is 
insufficient, because it poorly exploits three sources of 
redundancy in a relation: 
� Skew: Real-world data sets tend to have highly skewed value 

distributions. Domain coding assigns fixed length (often 
byte aligned) codes to allow fast array access. But it is 
inefficient in space utilization because it codes infrequent 
values in the same number of bits as frequent values. 

� Correlation: Correlation between columns within the same 
row is common. Consider an order ship date and an order 
receipt date; taken separately, both dates may have the same 
value distribution and may code to the same number of bits. 
However, the receipt date is most likely to be within a one 
week period of ship date. So, for a given ship date, the 
probability distribution of receipt date is highly skewed, and 
the receipt date can be coded in fewer bits. 

� Lack of Tuple Order: Relations are multi-sets of tuples, not 
sequences of tuples. A physical representation of a relation 
is free to choose its own order – or no order at all. We shall 
see that this representation flexibility can be used for 
additional, often substantial compression. 

Column and Row Coding 
This paper presents a new compression method based on a mix 
of column and tuple coding. 

Our method has three components: We encode column 
values with Huffman codes [16] in order to exploit the skew in 
the value frequencies – this results in variable length field 
codes. We then concatenate the field codes within each tuple to 
form tuplecodes and sort and then delta code these tuplecodes, 
taking advantage of the lack of order within a relation. We 
exploit correlation between columns within a tuple by using 

                                                             
1 For typical distributions, radix sort runs in linear time and thus 

in-memory sort is dominated by the time to move data between 
memory and cache (e.g., see Jim Gray’s commentary on the 
2005 Datamation benchmark [17]). External sorting is of course 
almost entirely movement-bound. 
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either value concatenation and co-coding, or careful column 
ordering within the tuplecode. We also allow domain-specific 
transformations to be applied to the column before the Huffman 
coding, e.g. text compression for strings. 

We define a notion of entropy for relations, and prove that 
our method is near-optimal under this notion, in that it 
asymptotically compresses a relation to within 4.3 bits/tuple of 
its entropy. 

We have prototyped this method in a system called csvzip 
for compression and querying of relational data. We report on 
experiments with csvzip over data sets from TPC-H, TPC-E 
and SAP/R3. We obtain compression factors from 7 to 40, 
substantially better than what is obtained with gzip or with 
domain coding, and also much better than what others have 
reported earlier. When we don’t use co-coding, the level of 
compression obtained is sensitive to the position of correlated 
columns within the tuplecode. We discuss some heuristics for 
choosing this order, though this needs further study. 

Efficient Operations over Compressed Data 
In addition to compression, we also investigate scans and joins 
over compressed data. We currently do not support incremental 
updates to compressed tables.  

Operating on the compressed data reduces our 
decompression cost; we only need to decode fields that need to 
be returned to the user or are used in aggregations. It also 
reduces our memory throughput and capacity requirements. 
The latter allows for larger effective buffer sizes, greatly 
increasing the speed of external data operations like sort. 

Querying compressed data involves parsing the encoded bit 
stream into records and fields, evaluating predicates on the 
encoded fields, and computing joins and aggregations. Prior 
researchers have suggested order-preserving codes [2,15,18] 
that allow range queries on encoded fields. However this 
method does not extend efficiently to variable length codes. 
Just tokenizing a record into fields, if done naively, involves 
navigating through several Huffman dictionaries. Huffman 
dictionaries can be large and may not fit in the L2 cache, 
making the basic operation of scanning a tuple and applying 
selection or projection operations expensive. We introduce two 
optimizations to speed up querying: 
� Segregated Coding: Our first optimization is a novel scheme 

for assigning codes to prefix trees. Unlike a true order 
preserving code, we preserve order only within codes of the 
same length. This allows us to evaluate many common 
predicates directly on the coded data, and also to find the 
length of each codeword without accessing the Huffman 
dictionary, thereby reducing the memory working set of 
tokenization and predicate evaluation. 

� Short Circuited Evaluation: Our delta coding scheme sorts 
the tuplecodes, and represents each tuplecode by its delta 
from the previous tuplecode. A side-effect of this process is 
to cluster tuples with identical prefixes together, which 
means identical values for columns that are early in the 
concatenation order. This allows us to avoid decoding, 
selecting and projecting columns that are unchanged from 
the previous tuple. 

Before diving into details of our method, we recap some 
information theory basics and discuss some related work. 

1.1 Background and Related Work 

1.1.1 Information Theory 
The theoretical foundation for much of data compression is 
information theory [3]. In the simplest model, it studies the 
compression of sequences emitted by 0th-order information 
sources – ones that generate values i.i.d (independent and 
identically distributed) from a probability distribution D. 
Shannon’s celebrated source coding theorem [3] says that one 
cannot code a sequence of values in less than H(D) bits per 
value on average, where H(D) = ΣicD  pi lg (1/pi) is the entropy 
of the distribution D with probabilities pi. 

Several well studied codes like the Huffman and Shannon-
Fano codes achieve 1 + H(D) bits/tuple asymptotically, using a 
dictionary that maps values in D to codewords. A value with 
occurrence probability pi is coded in roughly lg (1/pi) bits, so 
that more frequent values are coded in fewer bits. 

Most coding schemes are prefix codes – codes where no 
codeword is a prefix of another codeword. A prefix code 
dictionary is often implemented as a prefix tree where each 
edge is labelled 0 or 1 and each leaf maps to a codeword (the 
string of labels on its path from the root). By walking the tree 
one can tokenize a string of codewords without using delimiters 
– every time we hit a leaf we output a codeword and jump back 
to the root. 

The primary distinction between relations and the sources 
considered in information theory is the lack of order: relations 
are multi-sets, and not sequences. Secondarily, we want the 
compressed relation to be directly queryable, whereas it is more 
common in the information theory literature for the sequence to 
be decompressed and then pipelined to the application. 

1.1.2 Related work on database compression 
DBMSs have long used compression to help alleviate their data 
movement problems. The literature has proceeded along two 
strands: field wise compression, and row wise compression. 
Field Wise Compression: Graefe and Shapiro [20] were 
among the first to propose field-wise compression, because 
only fields in the projection list need to be decoded. They also 
observed that operations like join that involve only equality 
comparisons can be done without decoding. Goldstein and 
Ramakrishnan [8] propose to store a separate reference for the 
values in each page, resulting in smaller codes. Many column-
wise storage schemes (e.g., [5,6,12]) also compress values 
within a column. Some researchers have investigated order-
preserving codes in order to allow predicate evaluation on 
compressed data [2,15,18]. [2] study order preserving 
compression of multi-column keys. An important practical 
issue is that field compression can make fixed-length fields into 
variable-length ones. Parsing and tokenizing variable length 
fields increases the CPU cost of query processing, and field 
delimiters, if used, undo some of the compression. So almost 
all of these systems use fixed length codes, mostly byte-
aligned. This approximation can lead to substantial loss of 
compression as we argue in Section 2.1.1. Moreover, it is not 
clear how to exploit correlation with a column store. 
Row Wise Compression: Commercial DBMS 
implementations have mostly followed the row or page level 
compression approach where data is read from disk, 
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decompressed, and then queried. IBM DB2 [1] and IMS[10] 
use a non-adaptive dictionary scheme, with a dictionary 
mapping frequent symbols and phrases to short code words. 
Some experiments on DB2 [1] indicate a factor of 2 
compression. Oracle uses a dictionary of frequently used 
symbols to do page-level compression and report a factor of 2 
to 4 compression [21]. The main advantage of row or page 
compression is that it is simpler to implement in an existing 
DBMS, because the code changes are contained within the 
page access layer. But it has a huge disadvantage in that, while 
it reduces I/O, the memory and cache behaviour is worsened 
due to decompression costs. Some studies suggest that the CPU 
cost of decompression is also quite high [8]. 
Delta Coding: C-Store [6] is a recent system that does column-
wise storage and compression. One of its techniques is to delta 
code the sort column of each table. This allows some 
exploitation of the relation’s lack-of-order. [6] does not state 
how the deltas are encoded, so it is hard to gauge the extent to 
which this is exploited. In a different context, inverted lists in 
search engines are often compressed by computing deltas 
among the URLs, and using heuristics to assign short codes to 
common deltas (e.g, [19]). We are not aware of any rigorous 
work showing that delta coding can compress relations close to 
their entropy. 
Lossy Compression: There is a vast literature on lossy 
compression for images, audio, etc, and some methods for 
relational data, e.g., see Spartan [7]. These methods are 
complementary to our work – any domain-specific compression 
scheme can be plugged in as we show in Section 2.1.4. We 
believe lossy compression can be useful for measure attributes 
that are used only for aggregation. 

2. COMPRESSION METHOD 
Three factors lead to redundancy in relation storage formats: 
skew, tuple ordering, and correlation. In Section 2.1 we discuss 
each of these in turn, before presenting a composite 
compression algorithm that exploits all three factors to achieve 
near-optimal compression. 

Such extreme compression is ideal for pure data movement 
tasks like backup or replication. But it is at odds with efficient 
querying. Section 2.2 describes some relaxations that sacrifice 
some compression efficiency in return for simplified querying. 

This then leads into a discussion of methods to query 
compressed relations, in Section 3. 

2.1 Squeezing redundancy out of a relation 
2.1.1 Exploiting Skew by Entropy Coding 
Many domains have highly skewed data distributions. One 
form of skew is not inherent in the data itself but is part of the 
representation – a schema may model values from a domain 
with a data type that is much larger. E.g., in TPC-H, the 
C_MKTSEGMENT column has only 5 distinct values but is 
modelled as CHAR(10) – out of 25610 distinct 10-byte strings, 
only 5 have non-zero probability of occurring! Likewise, post 
Y2K, a date is often stored as eight 4-bit digits (mmddyyyy), 
but the vast majority of the 168 possible values map to illegal 
dates. 

Prior work (e.g, [6, 12]) exploits this using a technique 
we’ll call domain coding: legal values from a large domain are 
mapped to values from a more densely packed domain – e.g., 
C_MKTSEGMENT can be coded as a 3 bit number. To permit 
array based access to columns, each column is coded to a fixed 
number of bits. 

While useful, this method does not address skew within the 
value distribution. Many domains have long-tailed frequency 
distributions where the number of possible values is much more 
than the number of likely values. Table 1 lists a few such 
domains. E.g., 90% of male first names fall within 1219 values, 
but to catch all corner cases we would need to code it as a 
CHAR(20), using 160 bits, when the entropy is only 22.98 
bits. We can exploit such skew fully through entropy coding. 

Probabilistic Model of a Relation: Consider a relation R with 
column domains COL1, … COLk. For purposes of compression, 
we view the values in COLi as being generated by an i.i.d. 
(independent and identically distributed) information source 
over a probability distribution Di. Tuples of R are viewed as 
being generated by an i.i.d information source with joint 
probability distribution: D = (D1, D2, … Dk).

2 We can estimate 

                                                             
2 By modeling the tuple sources as i.i.d., we lose the ability to 

exploit inter-tuple correlations. To our knowledge, no one has 
studied such correlations in databases – all the work on 
correlations has been among fields within a tuple. If inter-tuple 
correlations are significant, the information theory literature on 
compression of non zero-order sources might be applicable. 

Domain Num. possible 
values 

Num. Likely vals 
(in top 90 percentile) 

Entropy  
(bits/value) 

Comments 

Ship Date 3650000 1547.5 9.92 
We assume that the db must support all dates till 10000 A.D., but 99% 
of dates will be  in 1995-2005, 99% of those are weekdays, 40% of 
those are in the 10 days each before New Year and Mother’s day. 

Last 
Names 

2160 (char (20)) j80000 26.81 

Male first 
names 

2160 (char (20)) 1219 22.98 

We use exact frequencies for all U.S. names ranking in the top 90 
percentile (from census.gov), and extrapolate, assuming that all ∫2160 
names below 10th percentile are equally likely. This over-estimates 
entropy. 

Customer 
Nation 

215 ∫ 27.75 2 1.82 
We use country distribution from import statistics for Canada (from 
www.wto.org) – the entropy is lesser if we factor in poor countries, 
which trade much less and mainly with their immediate neighbours. 

Table 1: Skew and Entropy in some common domains 
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each Di from the actual value distribution in COLi, optionally 
extended with some domain knowledge. For example, if COLi 
has {Apple, Apple, Banana, Mango, Mango, Mango}, then Di 
is the distribution {pApple = 0.333, pBanana = 0.167, pMango =0.5}. 

Schemes like Huffman and Shannon-Fano code such a 
sequence of i.i.d values by assigning shorter codes to frequent 
values [3]. On average, they can code each value in COLi with 
at most 1 + H(Di) bits, where H(X) is the entropy of distribution 
X – hence these codes are also called “entropy codes.” Using an 
entropy coding scheme, we can code the relation R 
with ∑ ≤≤ ++ki ii COLDR1 )DictSize()H(1(  bits, where 

DictSize(COLi) is the size of the dictionary mapping code 
words to values of COLi. 

If a relation were a sequence of tuples, assuming that the 
domains Di are independent (we relax this in 2.1.3), this coding 
is optimal, by Shannon’s source coding theorem [3]. But 
relations are not sequences, they are multi-sets of tuples, and 
permit further compression. 

2.1.2 Order: Delta Coding Multi-Sets 
Consider a relation R with just one column, COL1, containing 
m numbers chosen uniformly and i.i.d from the integers in 
[1,m]. Traditional databases would store R in a way that 
encodes both the content of R and some incidental ordering of 
its tuples. Denote this order-significant view of the relation as 
R (we use bold font to indicate a sequence). 

The number of possible instances of R is mm, each of which 
has equal likelihood, so H(R) is m lg m. But R needs much less 
space because we don’t care about the ordering. Each distinct 
instance of R corresponds to a distinct outcome of throwing of 
m balls into m equal probability bins. So, by standard 

combinatorial arguments (see [14], [4]), there are 






 −
m

m 12  ∫ 

mm π44 different choices for R, which is much less than 

mm. A simple way to encode R is as a coded delta sequence: 
1) Sort the entries of R, forming sequence v = v1, …, vm 
2) Form a sequence delta(R) = v1, v2–v1, v3–v2, …, vm–vm-1 
3) Entropy code the differences in delta to form a new 

sequence code(R) = v1, code(v2–v1), ... , code(vm – vm–1) 

Space savings by delta coding 
Intuitively, sorting and delta coding compresses R because the 
distribution of deltas is tighter than that of the original integers 
– small deltas are much more likely than large ones. Formally: 
Lemma 1: If R is a multi-set of m values picked uniformly with 
repetition from [1,m], and m > 100, then each delta in delta(R) 
has entropy < 2.67 bits. 
Proof Sketch: See Appendix 7.  ±±±± 
Corollary 1.1: code(R) occupies < 2.67 m bits on average. 

This bound is far from tight. Table 2 shows results from a 
Monte-Carlo simulation where we pick m numbers i.i.d from 
[1,m], calculate the distribution of deltas, and estimate their 
entropy. Notice that the entropy is always less than 2 bits. 
Thus, Delta coding compresses R from m lg m bits to lg m + 
2(m–1) bits, saving (m–1)(lg m – 2) bits. For large databases, lg 
m can be about 30 (e.g., 100GB at 100B/tuple). As experiments 
in Section 4.1 show, when a relation has only a few columns, 
such delta coding alone can give up to a 10 fold compression. 

This analysis applies to a relation with one column, chosen 
uniformly from [1, m]. We generalize this to a method that 
works on arbitrary relations in Section 2.1.4. 

Optimality of Delta Coding 
Such delta coding is also very close to optimal – the following 
lemma shows we cannot reduce the size of a sequence by more 
than lg m! just by viewing it as a multi-set. 

Lemma 2: Given a vector R of m tuples chosen i.i.d. from a 
distribution D and the multi-set R of values in R, (R and R are 
both random variables), H(R) >= m H(D) – lg m! 
Proof Sketch: Since the elements R are chosen i.i.d., H(R) = m 
H(D). Now, augment the tuples t1, t2, …, tm of R with a “serial-
number” column SNO, where ti.SNO = i. Ignoring the ordering 
of tuples in this augmented vector, we get a set, call it R1. 
Clearly there is a bijection from R1 to R, so H(R1) = m H(D). 
But R is just a projection of R1, on all columns except SNO. For 
each relation R, there are at most m! relations R1 whose 
projection is R. So H(R1) <= H(R) + lg m!                                ±                                                                 

So, with delta coding we are off by at most lg m! – m(lg m 
– 2) j m (lg m – lg e ) – m (lg m – 2) = m (2 – lg e) j 0.6 
bits/tuple from the best possible compression. This loss occurs 
because the deltas are in fact mildly correlated (e.g., sum of 
deltas = m), but we do not exploit this correlation – we code 
each delta separately to allow pipelined decoding. 

2.1.3 Correlation 
Consider a pair of columns (partKey, price), where each 
partKey largely has a unique price. Storing both partKey and 
price separately is wasteful; once the partKey is known, the 
range of possible values for price is limited. Such inter-field 
correlation is quite common and is a valuable opportunity for 
relation compression. 

In Section 2.1.1, we coded each tuple in Σj H(Dj) bits. This 
is optimal only if the column domains are independent, that is, 
if the tuples are generated with an independent joint 
distribution (D1, D2, … Dk). For any joint distribution, H(D1, 
…, Dk) ≤ Σj H(Dj), with equality if and only if the Dj’s are 
independent [3]. Thus any correlation strictly reduces the 
entropy of relations over this set of domains.  

We have three methods to exploit correlation: co-coding, 
dependent coding and column ordering. 

Co-coding concatenates correlated columns, and encodes 
them using a single dictionary.  If there is correlation, this 
combined code is more compact than the sum of the individual 
field codes. 

A variant approach we call dependent coding builds a 
Markov model of the column probability distributions, and uses 
it to assign Huffman codes. E.g, consider columns partKey, 

m est. H(delta(R)) in bits  
10000 1.897577 m 
100,000 1.897808 m 
1,000,000 1.897952 m 
10,000,000 1.89801   m 
40,000,000 1.898038 m 
Table 2: Entropy of delta(R) for a multi-set R of m 
values picked uniformly, i.i.d. from [1,m] (100 trials)  
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price, and brand, where (partKey,price) and (partKey,brand) 
are pair wise correlated, but price and brand are independent 
given the partKey. Instead of co-coding all three columns, we 
can assign a Huffman code to partKey and then choose the 
Huffman dictionary for coding price and brand based on the 
code for partKey. Both co-coding and dependent coding will 
code this relation to the same number of bits but when the 
correlation is only pair wise, dependent coding results in 
smaller Huffman dictionaries, which can mean faster decoding.  

Both co-coding and dependent coding exploit correlation 
maximally, but cause problems when we want to run range 
queries on the dependent column. In Section 2.2.2, we present a 
different technique that keeps correlated columns separate (to 
allow fast queries), and instead exploits correlation by tuning 
the column ordering within a tuple. 

Currently, csvzip implements co-coding and column 
ordering. The column pairs to be co-coded and the column 
order are specified manually as arguments to csvzip. An 
important future challenge is to automate this process. 

2.1.4 Composite Compression Algorithm 
Having seen the basic kinds of compression possible, we now 
proceed to design a composite compression algorithm that 
exploits all three forms of redundancy and allows users to plug 
in custom compressors for idiosyncratic data types (images, 
text, dates, etc). Algorithm 3 describes this in pseudo-code and 

gives an example of how the data is transformed. Figure 4 
shows a process flow chart. The algorithm has two main pieces: 
Column Coding: For each tuple, we first perform any type 
specific transforms (supplied by the user) on columns that need 
special handling (1a). For example, we can apply a text 
compressor on a long VARCHAR column, or split a date into 
week of year and day of week (to more easily capture skew 
towards weekdays). Next we co-code correlated columns (1b), 
and then replace each column value with a Huffman code (1c). 
We use Huffman codes as a default because they are 
asymptotically optimal, and we have developed a method to 
efficiently run selections and projections on concatenated 
Huffman codes (Section 3). We currently compute the codes 
using a statically built dictionary rather than a Ziv-Lempel style 
adaptive dictionary because the data is typically compressed 
once and queried many times, so the work done to develop a 
better dictionary pays off. 
Tuple Coding: We then concatenate all the field codes to form 
a bit-vector for each tuple, pad them on the right to a given 
length and sort the bit-vectors lexicographically. We call these 
bit vectors tuplecodes because each represents a tuple. After 
sorting, adjacent tuplecodes are subtracted to obtain a vector of 
deltas and each delta is further Huffman coded. By Lemma 2, 
we cannot save more than lg|R| bits/tuple by delta-coding, so 
our algorithm needs to pad tuples only to lg |R| bits (in Section 
2.2.2 we describe a variation that pads tuples to more than lg 
|R| bits; this is needed when we don’t co-code correlated 
columns). 

The expensive step in this compression process is the sort. 
But it need not be perfect, as any imperfections only reduce the 
quality of compression. E.g., if the data is too large for an in-
memory sort, we can create memory-sized sorted runs and not 
do a final merge; by an analysis similar to Theorem 3, we lose 
about lg x bits/tuple, if we have x similar sized runs. 

Analysis of compression efficiency 
Lemma 2 gives a lower bound on the compressibility of a 
general relation: H(R) ≥ m H(D) – lg m!, where m = |R|, and 
tuples of R are chosen i.i.d from a joint distribution D. The 
Huffman coding of the column values reduces the relation size 
to m H(D) asymptotically. Lemma 1 shows that, for a multi-set 
of m numbers chosen uniformly from [1, m], delta coding saves 
almost lg m! bits. But the analysis of Algorithm 3 is 
complicated because (a) our relation R is not such a multi-set, 
and (b) because of the padding we have to do in Step (1e). Still, 
we can show that we are within 4.3 bits/tuple of optimal 
compression: 
Theorem 3: Our algorithm compresses a relation R of tuples 
chosen i.i.d from a distribution D to an expected bit size of no 
more than H(R) + 4.3|R| bits, if |R |> 100. 
Proof: See Appendix 8. 

2.2 Relaxing Compression for Query Speed 
csvzip implements the composite compression algorithm of 
Section 2.1.4 in order to maximally compress its input 
relations. But it also performs two relaxations that sacrifice 
some compression in return for faster querying. 

1.  for each tuple (t.c1, t.c2, … t.ck) of |R| do 
1a.  for each col ci that needs type specific transform, do: 
             t.ci � type_specific_transform (t.ci) 
1b.   concatenate correlated columns together 
1c.   for each col i = 1 to k do: 
             t.ci � Huffman_Code(t.ci) 
1d.   tupleCode � concat(t.c1, t.c2, … t.ck) 
1e.   If size(tupleCode) < ≈lg(|R|)∆ bits 
             pad it with random bits to make it ≈lg(|R|)∆ bits long. 
2.  sort the coded tuples lexicographically. 
3.  for each pair of adjacent tuples p, q in sorted order do: 
3a.   let p = p1p2, q = q1q2,  
        where p1,q1 are ≈lg(|R|)∆-bit prefixes of p,q 
3b.   deltaCode � Huffman_Code(q1-p1). 
3c    replace p with deltaCode.p2 

Algorithm 3: Pseudo-Code for compressing a relation 
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2.2.1 Huffman coding vs. Domain coding 
As we have discussed, Huffman coding can be substantially 
more space efficient than domain coding for skewed domains. 
But it does create variable length codes, which are harder to 
tokenize (Section 3). For some numerical domains, domain 
coding also allows for efficient decoding (see below). So 
domain coding is useful in cases where it does not lose much in 
space efficiency. 

Consider a domain like “supplierKey integer” in a table 
with a few hundred suppliers. Using a 4 byte integer is 
obviously over-kill. But if the distribution of suppliers is 
roughly uniform, a 10-bit domain code may compress the 
column close to its entropy. Another example is “salary 
integer”. If salary ranges from 1000 to 500000, storing it as a 
22 bit integer may be fine. The fixed length makes tokenization 
easy. Moreover, decoding is just a bit-shift (to go from 20 bits 
to a uint32). Decoding speed is crucial for aggregation 
columns. We use domain coding as default for key columns 
(like supplierKey) as well as for numerical columns on which 
the workload performs aggregations (salary, price, …). 

2.2.2 Tuning the sort order to obviate co-coding 
In Section 2.1.3, we co-coded correlated columns to achieve 
greater compression. But co-coding can make querying harder. 

Consider the example (partKey, price) again. We can evaluate a 
predicate partKey=? AND price=? on the co-coded 
values if the co-coding scheme preserves the ordering on 
(partKey, price). We can also evaluate standalone predicates on 
partKey. But we cannot evaluate a predicate on price without 
decoding. Co-coding also increases the dictionary sizes which 
can slow down decompression if the dictionaries no longer fit 
in cache. 

We avoid co-coding such column pairs by tuning the order 
of the columns in the tuplecode. Notice that in Step 1d of 
Algorithm 3, there is no particular order in which the fields of 
the tuple t should be concatenated – we can choose any 
concatenation order, as long as we follow the same for all the 
tuples. Say we code partKey and price separately, but place 
partKey followed by price early in the concatenation order in 
Step 1d. After sorting, identical values of partKey will mostly 
appear together. Since partKey largely determines price, 
identical values of price will also appear close together. So the 
contribution of price to the delta (Step 3b) is a string of 0s most 
of the time. This 0-string compresses very well during the 
Huffman coding of the tuplecode deltas. We present 
experiments in Section 4 that quantify this trade-off. 

3. QUERYING COMPRESSED DATA 
We now turn our focus from compressing relations to running 
queries on the compressed relation. Our goals are to: 
� Design query operators that work on compressed data, 
� Determine as soon as possible that the selection criteria is 

not met, avoiding additional work for a tuple, 
� Evaluate the operators using small working memory, by 

minimizing access to the full Huffman dictionaries. 

3.1 Scan with Selection and Projection 
Scans are the most basic operation over compressed relations, 
and the hardest to implement efficiently. In a regular DBMS, 
scan is a simple operator: it reads data pages, parses them into 
tuples and fields, and sends parsed tuples to other operators in 
the plan. Projections are usually done implicitly as part of 
parsing. Selections are applied just after parsing, to filter tuples 
early. But parsing a compressed table is more compute 
intensive because all tuples are concatenated together into a 
single bit stream. Tokenizing this stream involves: (a) undoing 
the delta coding to extract tuplecodes, and (b) identifying field 
boundaries within each tuplecode. We also want to apply 
predicates during the parsing itself. 

Undoing the delta coding. The first tuplecode in the stream is 
always stored as-is. So we extract it directly, determining its 
end by knowing its schema and navigating the Huffman tree for 
each of its columns in order, as we read bits off the input 
stream. Subsequent tuples are delta-coded on their prefix bits 
(Algorithm 3). For each of these tuples, we first extract its 
delta-code by navigating the Huffman tree for the delta-codes. 
We then add the decoded delta to the running tuple prefix of 
the previous tuplecode to obtain the prefix of the current 
tuplecode. We then push this prefix back into the input stream, 
so that the head of the input bit stream contains the full 
tuplecode for the current tuple. We repeat this process till the 
stream is exhausted. 

863



We make one optimization to speed decompression. Rather 
than coding each delta by a Huffman code based on its 
frequency, we Huffman code only the number of leading 0s in 
the delta, followed by the rest of the delta in plain-text. This 
“number-of-leading-0s” dictionary is often much smaller (and 
hence faster to lookup) than the full delta dictionary, while 
enabling almost the same compression, as we see 
experimentally (Section 4.1). Moreover, the addition of the 
decoded delta is faster when we code the number of leading 0s, 
because it can be done with a bit-shift and a 64-bit addition 
most of the time avoiding the use of multi-precision arithmetic. 

A second optimization we are investigating is to compute 
deltas on the full tuplecode itself. Experimentally we have 
observed that this avoids the expensive push back of the 
decoded prefix, but it does increase the entropy (and thus 
Huffman code length) of the deltas, by about 1bit/tuple. 

Identifying field boundaries. Once delta coding has been 
undone and we have reconstructed the tuplecode, we need to 
parse the tuplecode into field codes. This is challenging 
because there are no explicit delimiters between the field codes. 
The standard approach mentioned in Section 1.1 (walking the 
Huffman tree and exploiting the prefix code property) is too 
expensive because the Huffman trees are typically too large to 
fit in cache (number of leaf entries = number of distinct values 
in the column). Instead we use a new segregrated coding 
scheme (Section 3.1.1). 

Selecting without decompressing. We next want to evaluate 
selection predicates on the field codes without decoding. 
Equality predicates are easily applied, because the coding 
function is 1-to-1. But range predicates need order-preserving 
codes: e.g., to apply a predicate c1 ≤ c2, we want: code(c1) ≤ 
code(c2) iff c1 ≤ c2. However, it is well known [13] that prefix 
codes cannot be order-preserving without sacrificing 
compression efficiency. The Hu-Tucker scheme [15] is known 
to be the optimal order-preserving code, but even it loses about 
1 bit (vs optimal) for each compressed value. Segregated 
coding solves this problem as well. 

3.1.1 Segregated coding 
For fast tokenization with order-preservation, we propose a 
new scheme for assigning code words in a Huffman tree (our 
scheme applies more generally, to any prefix code). 
The standard method for constructing Huffman codes takes a 
list of values and their frequencies, and produces a binary tree 
[16]. Each value corresponds to a leaf, and codewords are 
assigned by labelling edges 0 or 1. 
The compression efficiency is determined by the depth of each 
value – any tree that places values at the same depths has the 
same compression efficiency. Segregated coding exploits this 

as follows. We first rearrange the tree so that leaves at smaller 
depth are to the left of leaves at greater depth. We then permute 
the values at each depth so that leaves at each depth are in 
increasing order of value, when viewed from left to right. 
Finally, we label each node’s left-edge as 0 and right-edge as 1. 
Figure 5 shows an example. It is easy to see that a segregated 
coding has two properties: 
• within values of a given depth, greater values have greater 
codewords (e.g., encode(‘tue’) < encode (‘thu’), in Figure 5) 
• Longer codewords are numerically greater than shorter 
codewords (e.g., encode(‘sat’) < encode (‘mon’), in Figure 5) 

A Micro-Dictionary to tokenize Codewords 
Using property 2), we can find the length of a codeword in time 
proportional to the log of the code length. We don’t need the 
full dictionary; we just search the value ranges used for each 
code length. We can represent this efficiently by storing the 
smallest codeword at each length in an array we’ll call 
mincode. Given a bit-vector b, the length of the only codeword 
that is contained in a prefix of b is given by max{len : 
mincode[len] ≤ b}, which can be evaluated efficiently using a 
binary or linear search, depending on the length of the array. 

This array mincode is very small. Even if there are 15 
distinct code lengths and a code can be up to 32 bits long, the 
mincode array consumes only 60 bytes, and easily fits in the L1 
cache. We call it the micro-dictionary. We can tokenize and 
extract the field code using mincode alone. 

Evaluating Range Queries using Literal Frontiers 
Property 1) is weaker than full order-preservation, e.g., 
encode(wed) < encode(mon) in Figure 5. So, to evaluate �< 
col on a literal �, we cannot simply compare encode(�) with 
the field code. Instead we pre-compute for each literal a list of 
codewords, one at each length:  
φ(λ) [d] = max {c a code word of length d| decode(c) ≤ λ} 

To evaluate a predicate λ < col, we first find the length l of 
the current field code using mincode. Then we check if φ(λ)[l] 
< field code. We call φ(λ) the frontier of λ. φ(λ) is calculated 
by binary search for encode(λ) within the leaves at each depth 
of the Huffman tree. Although this is expensive, it is done only 
once per query. Notice that this only works for range predicates 
involving literals. Other predicates, such as col1 < col2 can 
only be evaluated on decoded values, but are less common.  

3.1.2 Short circuited evaluation 
Adjacent tuples processed in sorted order are very likely to 
have the same values for many of the initial columns. We take 
advantage of this during the scan by keeping track of the 
current value of sub-expressions used in the computations to 
evaluate selections, projections, and aggregations. 

When processing a new tuple, we first analyze its delta 
code to determine the largest prefix of columns that is identical 
to the previous tuple. This is easy to do with our optimization 
of Huffman coding not the actual delta but the number of 
leading 0s in the delta. We do need to verify if carry-bits from 
the rest of the delta will propagate into the leading 0s, during 
the addition of the delta with the previous tuplecode. This 
verification is just a right-shift followed by a compare with the 
previous tuplecode. The shift does become expensive for large Figure 5: Segregated Huffman Coding Example 
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tuplecodes; we are investigating an alternative XOR-based 
delta coding that doesn’t generate any carries. 

3.2 Layering other Query Plan operators 
The previous section described how we can scan compressed 
tuples from a compressed table, while pushing down selections 
and projections. To integrate this scan into a query plan, we 
expose it using the typical iterator API, with one difference: 
getNext() returns not a tuple of values but a tuplecode – i.e., a 
tuple of coded column values. Most other operators, except 
aggregations, can be changed to operate directly on these 
tuplecodes. We discuss four such operators next: index-scan, 
hash join, sort-merge join, and group-by with aggregation. 

3.2.1 Index Scan: Access Row by RID 
Index scans take a bounding predicate, search through an index 
structure for matching row ids (RIDs), load the corresponding 
data pages, and extract matching records. The process of 
mapping predicates to RIDs occurs as usual. But extracting the 
matching records is trickier because it involves random access 
within the table. Since we delta-code tuples, the natural way to 
tokenize a table into tuples is to scan them sequentially, as in 
Section 3.1. 

Our solution is to punctuate a compressed table with 
periodic non-delta-coded tuples (the fields in these tuples are 
still Huffman coded). This divides the table into separately 
decodable pieces, called compression blocks (cblocks). We 
make each rid be a pair of cblock-id and index within cblock, 
so that index-based access involves sequential scan within the 
cblock only. Thus, short cblocks mean fast index access. 
However, since the first tuple is not delta-coded, short cblocks 
also mean less compression. In practice this is not a problem: A 
Huffman-coded tuple takes only 10-20 bytes for typical 
schemas (Section 4.1), so even with a cblock size of 1KB, the 
loss in compression is only about 1%. 1KB fits in L1-cache on 
many processors, so sequential scan in a cblock is fine. 

3.2.2 Hash Join & Group By with Aggregation 
Huffman coding assigns a distinct field code to each value. So 
we can compute hash values on the field codes themselves 
without decoding. If two tuples have matching join column 
values, they must hash to the same bucket. Within the hash 
bucket, the equi-join predicate can also be evaluated directly on 
the field codes. 

One important optimization is to delta-code the input tuples 

as they are entered into the hash buckets (a sort is not needed 
here because the input stream is sorted). The advantage is that 
hash buckets are now compressed more tightly so even larger 
relations can be joined using in-memory hash tables (the effect 
of delta coding will be reduced because of the smaller number 
of rows in each bucket). 

Grouping tuples by a column value can be done directly 
using the code words, because checking whether a tuple falls 
into a group is simply an equality comparison. However 
aggregations are harder. 

COUNT, COUNT DISTINCT, can be computed directly on 
code words: to check for distinctness of values we check 
distinctness of the corresponding codewords. MAX and MIN 
computation involves comparison between code words. Since 
our coding scheme preserves order only within code words of 
the same length, we need to maintain the current maximum or 
minimum separately on code words of each length. After 
scanning through the entire input, we evaluate the overall max 
or min by decoding the current code words of each codeword 
length and computing the maximum of those values. 

SUM, AVG, STDEV, cannot be computed on the code 
words directly; we need to decode first. Decoding domain-
coded integer columns is just a bit-shift. Decoding Huffman 
codes from small domains or ones with large skew is also 
cheap, because the Huffman tree is shallow. We also place 
columns that need to be decoded early in the column ordering, 
to improve the chance that the scanner will see runs of identical 
codes, and benefit from short circuited evaluation. 

3.2.3 Sort Merge Join 
The principal comparisons operations that a sort merge join 
performs on its inputs are < and =. Superficially, it would 
appear that we cannot do sort merge join without decoding the 
join column, because we do not preserve order across code 
words of different lengths. But in fact, sort merge join does not 
need to compare tuples on the traditional ‘<’ operator – any 
total ordering will do. In particular, the ordering we have 
chosen for codewords – ordered by codeword length first and 
then within each length by the natural ordering of the values is 
a total order. So we can do sort merge join directly on the 
coded join columns, without decoding them first. 

4. EXPERIMENTAL STUDY 
We have implemented our compression method in a prototype 
system called csvzip. csvzip currently supports the compression 
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of relations loaded from comma separated value (csv) files, and 
table scan with selection, projection, and aggregation. Updates 
and joins are not implemented at this time. We do not currently 
have a SQL parser – we execute queries by writing C programs 
that compose select, project, and aggregate primitives. 

We have used this prototype to perform an experimental 
study of both compression efficiency and scan efficiency. Our 
goal is to quantify the following: 
1) How much can we compress, as compared to row coding or 

domain coding? What is the relative payoff of skew, order-
freeness, and correlation (Section 4.1)? 

2) How efficiently can we run scan queries directly on these 
compressed tables (Section 4.2)? 

We use three datasets in our experiments: 
TPC-H views: We choose a variety of projections of Lineitem 
x Orders x Part x Customer, that are appropriate for answering 
TPC-H queries (Table 6). Our physical design philosophy, like 
C-Store, is to have a number of highly compressed materialized 
views appropriate for the query workload. 
TPC-E Customer: We tested using 648,721 records of 
randomly generated data produced per the TPC-E specification. 
This file contains many skewed data columns but little 
correlation other than gender being predicted by first name.  
SAP/R3 SEOCOMPODF: We tested using projections of a 
table from SAP having 50 columns and 236,213 rows. There is 
a lot of correlation between the columns, causing the delta code 
savings to be much larger than usual. 

One drawback with TPC-H is that uses uniform, 
independent value distributions, which is utterly unrealistic 
(and prevents us from showing off our segregated Huffman 
Coding ☺). So we altered the data generator to generate two 
skewed columns and 2 kinds of correlation: 
� Dates: We chose 99% of dates to be in 1995-2005, with 99% 

of that on weekdays, 40% of that on two weeks each before 
New Year & Mothers’ Day (20 days / yr). 

� c_nationkey, s_nationkey: We chose nation distributions 
from WTO statistics on international trade 
(www.wto.org/english/res_e/statis_e/wt_overview_e.htm). 

� Soft Functional Dependency: We made l_extendedprice be 
functionally dependent on l_partkey 

� Arithmetic Correlation: We made l_receiptdate and 
l_shipdate be uniformly distributed in the 7 days after the 
corresponding o_orderdate. 

There are two other correlations inherent in the schema: 
� For a given l_partkey, l_suppkey is restricted to be one of 4 

possible values. 
� De-Normalization: Dataset P6 in Table 6 is on lineitem x 

order x customer x nation, and contains a non-key 
dependency o_custkey � c_nationkey 

We use a 1 TB scale TPC-H dataset (j6B rows in each of our 
datasets). To make our experiments manageable, we did not 
actually generate, sort, and delta-code this full dataset – rather 
we tuned the data generator to only generate 1M row slices of 
it, and compressed these. For example, P2 of Table 6 is delta-
coded by sorting on <l_orderkey,l_qty>. We generate 1M row 
slices of P2 by modifying the generator to filter rows where 
l_orderkey is not in the desired 1M row range. 

4.1 Extent of Compression 
Table 6 lists the detailed compression results on each dataset. 
Figure 7 plots the overall compression ratio obtained by csvzip 
(with and without co-coding) vs that obtained by: 
� a plain gzip (representing the ideal performance of row and 

page level coders),  
� a fixed length domain coder aligned at bit boundaries 

(representing the performance of column coders). Table 6 
also lists the numbers for domain coding at byte boundaries; 
it is significantly worse. 

Note that all ratios are with respect to the size of the vertical 
partition, not size of the original tables – any savings obtained 
by not storing unused columns is orthogonal to compression. 

Even without co-coding, csvzip consistently gets 10x or 
more compression, in contrast to 2-3x obtained by gzip and 
domain coding. On some datasets such as LPK LPR LSK 
LQTY, our compression ratio without co-coding is as high as 
192/7.17j27; with co-coding it is 192/4.74j41. From Table 6, 
notice that the absolute per tuple sizes after compression are 
typically 10-20bits. 

We next analyze from where our substantial gains arise. 

Exploitation of Skew: The first source of compression is 
skew. Observe the bars labelled Huffman and Domain Coding 

DATASET SCHEMA Original 
size 

DC-1 DC-8 Huffman 
(1) 

csvzip 
(2) 

Delta code 
savings  
(1)-(2) 

Huffman + 
Cocode  

(3) 

Correlation 
saving  
(1)-(3) 

csvzip+ 
cocode  

(5) 

Loss by not 
Cocoding 

(2)-(5) 

Gzip 

P1. LPK LPR LSK LQTY 192 76 88 76 7.17 68.83 36 40 4.74 2.43 73.56 
P2. LOK LQTY 96 37 40 37 5.64 31.36 37 0 5.64 0 33.92 
P3. LOK LQTY LODATE 160 62 80 48.97 17.60 31.37 48.65 0.32 17.60 0 58.24 
P4. LPK SNAT LODATE CNAT 160 65 80 49.54 17.77 31.77 49.15 0.39 17.77 0 65.53 
P5. LODATE LSDATE 
LRDATE LQTY LOK 288 86 112 72.97 24.67 48.3 54.65 18.32 23.60 1.07 70.50 

P6. OCK CNAT LODATE 128 59 72 44.69 8.13 36.56 39.65 5.04 7.76 0.37 49.66 
P7. SAP SEOCOMPODF 548 165 392 79 47 32 58 21 33 14 52 
P8. TPC-E CUSTOMER 198 54 96 47 30 17 44 3 23 7 69 

Table 6: Overall compression results on various datasets (all sizes are in # bits/tuple). DC-1 and DC-8 are bit and byte aligned domain 
coding. Csvzip is Huffman followed by delta coding; csvzip+cocode is cocode followed by Huffman and then delta-coding. 
Underscore indicates skew and italics denotes correlation. Column abbreviations are: LPK: partkey, LPR: extendedprice, LSK 
suppkey, LQTY: quantity, LOK: orderkey, LODATE: orderdate, SNAT: suppNation, CNAT: custNation, LSDATE: shipDate, 
LRDATE: receiptDate. TPC-E schema is tier, country_1, country_2, country_3, area_1, first name, gender, middle initial, last name. 
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in the chart below. They show the compression ratio achieved 
just by Huffman coding column values, in contrast to the 
savings obtained by domain coding. All columns except 
nationkeys and dates are uniform, so Huffman and domain 
coding are identical for P1 and P2. But for the skewed domains 
the savings is significant (e.g., 44.7 bits vs. 59 bits for P6). 
Table 6 lists the full results, including compression results on 
SAP and TPC-E datasets. These have significant skew (several 
char columns with few distinct values), so Huffman coding 
does very well. On SAP, Huffman coding compresses to 79 
bits/tuple vs. 165 bits/tuple for domain coding. 
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Correlation: The best way to exploit correlation is by co-
coding. Table 6 lists the extra benefit obtained by correlation, 
over that obtained by just Huffman coding individual columns. 
This is also illustrated in the bar labelled “Huffman+CoCode” 
in the above plot. For example, we go down from 72.97 
bits/tuple to 54.65 bits per tuple for P5. In terms of 
compression ratios, as a function of the original table size, we 
compress 2.6x to 5.3x by exploiting correlation and skew. 

Delta-Coding: The last source of redundancy is from lack-of-
ordering. In Table 6, column(3) – column (5) gives the savings 
from delta coding when we co-code. Observe that it is almost 
always about 30 bits/tuple for all the TPC-H datasets. This 
observation is consistent with Theorem 3 and Lemma 2; lg m = 
lg (6.5B) j 32.5, and we save a little fewer bits per tuple by 
delta-coding.  

Again in Table 6, column (1) – column (2) gives the 
savings from delta coding when we don’t co-code correlated 

columns. Notice that the savings is now higher – the delta 
coding is able to exploit correlations also, as we discussed in 
Section 2.2.2. 

The plot on the opposite column illustrates the compression 
ratios obtained with the two forms of delta coding. The ratio is 
as high as 10 times for small schemas like P1. The highest 
overall compression ratios result when the length of a tuplecode 
and bits per tuple saved by delta coding are similar. 

Exploiting Correlation via co-coding vs. delta-coding: 
The extent to which it can exploit correlations is indicated 

by the column labelled (2)-(5) in Table 6 – notice that we are 
often close to the co-coding performance. 
 
This strategy is powerful, because by not co-coding range 
queries on the dependent become much easier as we discussed 
in Section 2.2.2. But a drawback is that the correlated columns 
have to be placed early in the sort order – for example, 
LODATE, LRDATE, LSDATE in dataset P5. We have 
experimented with a pathological sort order – where the 
correlated columns are placed at the end. When we sort P5 by 
(LOK, LQTY, LODATE, …), the average compressed tuple 
size increases by 16.9 bits. The total savings from correlation is 
only 18.32 bits, so we lose most of it. This suggests that we 
need to do further investigation on efficient range queries over 
co-coded or dependent coded columns. 

4.2 Querying Compressed Relations 
We now investigate efficient querying of compressed relations. 
We focus on scans, with selection, projections, and 
aggregations. Our queries test three aspects of operating over 
compressed data: 
1. How efficiently can we undo the delta-coding to retrieve 

tuplecodes? 
2. How efficiently can we tokenize tuples that contain 

Huffman-coded columns?  
3. How well can we apply equality and range predicates on 

Huffman coded and domain coded columns? 
The first is the basic penalty for dealing with compressed data, 
that every query has to pay. The second measures the 
effectiveness of our segregated coding. The third measures the 
ability to apply range predicates using literal frontiers. 

We run scans against 3 TPC-H schemas: (S1: LPR LPK 
LSK LQTY) has only domain coded columns, (S2: LPR LPK 
LSK LQTY OSTATUS OCLK) has 1 Huffman coded column 
(OSTATUS), and (S3: LPR LPK LSK LQTY OSTATUS 
OPRIO OCLK) has 2 Huffman coded columns 
(OSTATUS,OPRIO). OSTATUS has a Huffman dictionary 
with 2 distinct codeword lengths, and OPRIO has a dictionary 
with 3 distinct codeword lengths. The table below plots the 
scan bandwidth (in nanoseconds/tuple) for various kinds of 
scans against these schemas. All experiments were run on a 
1.2GHz Power 4, on data that fit entirely in memory. 

Q1 is a straightforward scan plus aggregation on a domain 
coded column. On S1, which has no Huffman columns, Q1 just 
tests the speed of undoing the delta code – we get 8.4ns/tuple.  

On S2 and S3, it tests the ability to tokenize Huffman 
coded columns using the micro-dictionary (in order to skip over 
them). Tokenizing the first Huffman coded column is relatively 

 S1 S2 S3 

Q1: select sum(lpr) from S1/2/3 8.4 10.1 15.4 

Q2: Q1 where lsk>? 8.1-10.2 8.7-11.5 17.7-19.6 
Q3: Q1 where oprio>?  10.2-18.3 17.8-20.2 

Q4: Q1 where oprio=?  11.7-15.6 20.6-22.7 

0

2

4

6

8

10

12

P1 P2 P3 P4 P5 P6

DELTA
Delta w  cocode

867



cheap because its offset is fixed; subsequent ones incur an 
overhead of about 5ns/tuple to navigate the micro-dictionary. If 
a tuple has several Huffman coded columns, this suggests that 
it will pay to encode the tuple length in front. 

Q2, Q3, and Q4 are queries with predicates plus 
aggregation. A range of numbers is reported for each schema 
because the run time depends on the predicate selectivity, due 
to short-circuiting. For small selectivities, the predicate adds at 
most a couple of ns/tuple beyond the time to tokenize. This is 
in line with our expectation, because once tokenized, the range 
predicate is evaluated directly on the codeword. 

These numbers indicate we can process 50-100M tuples/s 
using a single processor (equivalent to 1-2GB/s), and are quite 
promising. Obviously, a full query processor needs much more 
than scan. Nevertheless, as we discussed in Section 3.2, hash 
joins and merge joins can be done on the compressed tuples 
using these basic equality and range predicate operations. 

5. CONCLUSIONS AND FUTURE WORK 
Compression is a promising approach to deal with the data 
movement bottleneck. We have developed a notion of entropy 
for relations and described a method to compress relations to 
within 4.3 bits/tuple of the entropy. This results in up to a 
compression factor of up to 40 on TPC-H data, much better 
than reported in prior literature. We have also developed 
techniques for efficient scans with selection and projection over 
relations compressed with this method. 

Much work remains to exploit the promise of this idea. 
Although we have shown the basic feasibility, we need to 
further investigate the engineering issues involved in doing 
query operators both as a part of a commercial DBMS and as a 
utility, and figuring out how to utilize the 128 bit registers and 
hardware threading available on modern processors. A second 
direction is lossy compression, which we believe is vital for 
efficient aggregates over compressed data. Finally, we need to 
support incremental updates. We believe that many of the 
standard warehousing ideas like keeping change logs and 
periodic merging will work here as well. 
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7. ENTROPY OF MULTI-SET DELTAS 
Lemma 1: For a multi-set R of m values picked uniformly and i.i.d 
from [1..m], for m >100, the value distribution of code(R) has 
entropy ≤ 2.67 m bits. 
Proof: Recall the pseudo-code for computing the coded delta: 
1) Sort the entries of R, forming sequence v = v1, …, vm 
2) Form a delta sequence v2 − v1, v3 − v2, … , vm − vm-1. 
3) Entropy code the values in delta to form a new sequence 

code(R) = code(v2 − v1), ... , code(vm − vm-1) 
Now consider this situation: we have thrown m balls numbered 1..m 
uniformly and i.i.d onto m numbered bins arranged in a circle. Define 
a random variable Dj for ball j that landed in bin i 
       Dj h 0 if j is not the highest numbered ball in bin i 
 h k if j is the highest numbered ball bin i and 
and k is the clockwise distance from bin i to the next occupied bin. In 
effect, Dj is the random variable for the bin gap between adjacent 
balls. The distribution of each code in code(R) is that of Dj. By 
symmetry, this distribution is independent of j, so we shall call it 
D. Our goal is to compute H(D). 
Now, let pd h Pr (D = d), 0 ≤ d < m and define 

λd  h Pr (D = d | D g 0), 1 ≤ d < m 
So, pd = (1 − p0) λd, and 
H(D)= Σ0≤d<m pd lg(1/pd) = −p0 lg p0 −Σ1≤d≤m–1 (1−p0)λdlg(1−p0)λd. 
Since Σ0≤d<m pd = 1 = p0 + Σ1≤d<m (1−p0)λd, we have, 
H(D) = −p0 lg p0 − (1−p0)lg(1−p0) + (1−p0)Σ1≤d<m λd lg(1/λd)    (1) 
Consider αd h Pr(D > d | Dg0), 1 ≤ d < m. This is the probability 
that, given that a ball is the highest numbered ball in a bin (D g 0), 
that there is a clockwise gap greater than d to the next occupied 
bin, i.e., that all m – 1 other balls fall into the other m – d bins. So, 
αd  = (1 – d / m)m−1, for 1 ≤ d < m, 
λd  = Pr (D = d | Dg0) = αd−1 − αd,  
αd = (1 – d/m)m−1 = [m/(m − d)][(1 − d / m)m] < [m/(m − d)] e−d,  
by standard exponential inequalities [14], and 
λd = αd−1 – αd < αd−1

 < [m/(m – d + 1)] e1− d (2) 
But, λd = αd−1 – αd = (1 − (d − 1)/m)m−1 − (1−d/m)m−1 
λd (m/(m−d))m−1 = [(m − d + 1)/(m − d)]m−1 − 1 > 1 for d ≥ 1 
So 1/λd

  < [m/(m − d)]m−1 (3) 
Now, each occurrence of a zero delta corresponds to an empty bin, 
so expected number of empty bins is mp0. But empty bins form a 
binomial distribution with probability (1−1/m)m. So p0 = (1−1/m)m 
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< 1/e. Now, by simple calculus, −x lg x has its maximum value 
when x=1/e, and substituting into equation (1) we have 
−p0lg p0 − (1−p0)lg(1−p0) < (lg e)/e + (1−1/e) lg(1/(1−1/e))         (4) 
Combining (1), (2), (3), (4) we get, 
H(D) < (lg e)/e + (1−1/e) lg(e/(e−1)) + (1−p0) λ1 lg 1/λ1 +  

(1−p0)Σ2≤d≤m–1[m/(m−d+1)] e1−d (m−1)lg(1+d/(m−d))  
As ln(1+x) < x, lg(1+x) = ln(1+x) / ln 2 < x / ln 2 we have 
H(D) < (lg e)/e + (1−1/e) lg(e/(e−1)) + (1−p0)λ1 lg 1/λ1 + 
 ((1−p0)/ln 2) Σ2≤d≤m–1 [dm(m−1)/((m−d)(m−d +1))] e1 − d (5) 
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                  > 0 for m>7 (the last quadratic is >0 for m>7)
Hence Y >Y  for 7. 
But  < 1.57, by calculation. So, for m>100, Y 1.57.     (6)
Also,  1 (1

me m e m e e

m
Y

λ

− − + + +

>
<

= − − 1

1 1

0 0

1/ )  is increasing in m. Since lg(1/ )
is maximum at 1/e, lg(1/ ) 0.63lg0.63 0.42 for m>100. (7)
Plugging (6), (7) into (5) and doing some algebra,

( ) lg (1 1/ ) lg( 1) 0.42(1 ) 1.57(1 ) / ln

mm x x

H D e e e p p

λ λ
−

< <

< − − − + − + −
100

0

2.
By calculus, (1-1/ ) > 0.99 >0.36 for m>100. 
Substituting, we get H(D) < 2.67 bits.

mp m=

 

8. OPTIMALITY OF ALGORITHM 3 
Lemma 3: Let X be a random variable over a distribution D, and 
let code(X) be a random variable representing the codeword for X, 
according to some compression scheme. Let codeα(X) be the 
random variable for the α-bit prefix of code(X). Then, if the 
compression scheme is optimal and given that code(X) has ≥ α 
bits, codeα(X) is uniformly distributed over all bit-vectors of length 
α. 
Proof: If the distribution of bits were not uniform, we could further 
compress each α-bit prefix, contradicting the assumption that the 
compression scheme is optimal. ±±±± 

We now show the algorithm of Section 2.1.4 is near optimal. 

Lemma 4: If tuples of R are generated i.i.d. over a distribution D, 
the algorithm of Figure 3 encodes R in at most 

(1 ( )) ( 1)(lg 2.67) ( lg ) bits
s

i ii D
m H D m m mp m b

∈
+ − − − + −  ∑  on 

average, where m = |R| > 100, Ds is the subset of tuples that get 
coded in less than ≈lg m∆ bits at the end of step 1d, pi is the 
occurrence probability of tuple i c Ds, and bi is the length to which 
tuple i is coded at end of step 1d. 

Proof: By standard results on Huffman coding [3], the 
expected size of the tuples at the end of Step 1d is no more than 
m(1+H(D)) bits. The padding of Step 1e adds (≈lg m∆ – bi) random 
bits for each tuple that codes to bi < ≈lg m∆ bits. So the overall 
padding has expected length of ( lg )

s
i ii D

mp m b
∈

−  ∑  bits. By 

Lemma 3, after Step 1e, the ≈lg m∆-bit prefix of the coded tuple is 
uniformly distributed over all bit vectors of length ≈lg m∆. So, by 
Lemma 1, average length of the coded delta is at most 2.67 bits. So 
the delta coding of Steps 2 and 3 saves on average ≈lg m∆ − 2.67 
bits for each pair of adjacent tuples: (m−1)(≈lg m∆ − 2.67) bits 
overall. And by summing these quantities we get our result. ±±±± 

Theorem 3: Algorithm 3 compresses a relation R of tuples 
chosen i.i.d from a finite distribution D to at most H(R) + 4.3|R| 
bits, assuming |R| > 100. 
Proof: Consider m items chosen i.i.d. from D. Let R be a random 
variable for these m items viewed as a sequence and R be a random 
variable for these m items viewed as a multi-set. Without loss of 
generality let the distribution D be given by a set of n values v1, … 
,vn and associated probabilities p1, …, pn, so that a sample drawn 
from D has value vi with probability pi. Let Ds be the subset of 
those values that code to less than ≈lg m∆ bits after step 1d. Let 
MUL be a random variable for the vector of multiplicities of 
elements in Ds in the random multi-set R, Dom(MUL) = N  

|Ds|). 
Use µµµµ to represent a particular  multiplicity in Dom(MUL), µi to 
denote the i’th element of µµµµ, the multiplicity of the associated vi, 
and pµµµµ to denote the probability that MUL=µµµµ. 
H(R)  = H(MUL) + H(R | MUL)  
     = H(MUL) + ΣµµµµcDom(MUL) pµµµµ H(R | MUL=µµµµ) 
We now employ an argument similar to Lemma 3. For any value 
of the multi-set R having multiplicity µµµµ = (µ1, µ2, ... µ|Ds|), there are 
at most m! / (µ1!µ2! ... µ|Ds|!) instances of R. So,  
H(R | MUL = µµµµ) ≥ H(R | MUL = µµµµ) – lg (m!/(µ1!... µ|Ds|!)) 
H(R) ≥ H(MUL) + H(R | MUL = µµµµ) – Σµ pµ lg (m!/(µ1!... µ|Ds|!)) 
 = H(R) – ΣµµµµcDom(MUL) pµ lg (m!/(µ1!... µ|Ds|!)). 
Let k = µ1 +...+ µ|Ds|. Then, k! µ1

µ1... µ|Ds|
µ_|Ds|/(µ1!... µ|Ds|!) is just 

one term in the multinomial expansion of kk. So k!/(µ1!... µ|Ds|!)  
< kk / µ1

µ_1... µ|Ds|
µ_|Ds|. Clearly k < m, so 

lg (m!/(µ1!... µ|Ds|!) < m lg m −Σ1≤i≤Ds
 µi lg µi. 

So, H(R) ≥ H(R) – ΣµµµµcDom(MUL) pµµµµ (m lg m −Σi µilg µi) 
But, the last term can be simplified and replaced with an 
expectation giving us 
H(R) ≥  H(R) – m lg m + E(Σi µilg µi) 
    = H(R) – m lg m + Σi E(µilg µi). 
Since x lg x is convex, we can apply Jensen’s inequality: E(f(X) ≥ f(E(X)) for convex functions f, yielding 
H(R) ≥ H(R) – m lg m + Σi E(µi) lg Ε(µi)      (1) 
By Lemma 4, Algorithm A encodes R in space

(1 ( )) ( 1)(lg 2.67) ( lg ) (2)
Since tuples are chosen i.i.d, ( ) ( ). Recall that

 is the probability of the i'th element of  and 

s i ii D

i s i

m H D m m mp m b
H R mH D

p D b

∈+ − − − + −  
=
∑

 

 is the
length of the code for the i'th element. So ( ) . Thus,
the space overhead of Algorithm A over entropy = (2) - (1)  

3.67 lg  + ( lg lg )
3.67 lg (lg(1/ ) ).

Let

s

s

i i

i i ii D

i i ii D

E mp

m m m mp m b mp
m m m mp p b

µ

∈

∈

=

≤ + − −
≤ + + −

∑
∑

 p  and / . Then the overhead 

3.67 lg (lg(2 / ) lg ). Since 
1, and lg( ) is concave, by Jensen's inequality,

lg(2 / ) lg (2 / ). So overhead

3.67

s

i
s

s

i i
s s

i i ii D
b
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ii D
b b

i i i ii D i D
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∈
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∈ ∈
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∑
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∑
∑ ∑

lg lg 2 lg (1 ).
Now, for any unambiguous code, Kraft's inequality [4] says 
that 2 1. So overhead 3.67 lg lg (1 ).
By simple calculus, lg(1/ ) (1/ ) lg 0.53. So, 
space taken by Algor

i
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b
i D

b
i D

m m mp p

m m mp p
x x e e
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∑
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ithm A - ( ) is at most 
4.2 lg  bits < 4.3m bits (lg x/x < 0.07 for m>100)           

H R
m m+ �
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