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ABSTRACT

We present a method to compress relations clodeioentropy
while still allowing efficient queries. Column vas are
encoded into variable length codes to exploit skawtheir
frequencies. The codes in each tuple are concatbraatd the
resulting tuplecodes are sorted and delta-codeexpdoit the
lack of ordering in a relation. Correlation is eoipd either by
co-coding correlated columns, or by using a sodeprthat
leverages the correlation. We prove that this nttleads to
near-optimal compression (within 4.3 bits/tuplesafropy), and
in practice, we obtain up to a 40 fold compressiatio on
vertical partitions tuned for TPC-H queries.

We also describe initial investigations infficeent querying
over compressed data. We present a novel Huffmatingo
scheme, called segregated codihgt allows range and equality
predicates on compressed dataithout accessing the full
dictionary. We also exploit the delta coding toesp@ip scans,
by reusing computations performed on nearly idahtiecords.
Initial results from a prototype suggest that withese
optimizations, we can efficiently scan, tokenized aapply
predicates on compressed relations.

1. INTRODUCTION

Data movement is a major bottleneck in data pracgssn a

database management system (DBMS), data is generall

moved from a disk, though an /O network, and iatonain
memory buffer pool. After that it must be transéeirup
through two or three levels of processor cachei fimlly it is
loaded into processor registers. Even taking acegnof multi-
task parallelism, hardware threading,
protocols, processors are often stalled waiting data: the
price of a computer system is often determinedheyduality
of its I/0 and memory system, not the speed opitecessors.
Parallel and distributed DBMSs are even more likelyhave
processors that stall waiting for data from anottede. Many
DBMS “utility” operations such as replication/bagkuETL
(extract-transform and load), and internal and rexetlesorting
are also limited by the cost of data moverhent

DBMSs have traditionally used compression to adtvi
this data movement bottleneck. For example, in IBNDB2
DBMS, an administrator can mark a table as compks&
which case individual records are compressed using
dictionary scheme [1]. While this approach reduk€s, the
data still needs to be decompressed, typicallyge a record
at a time, before it can be queried. This decongiwas
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and fast mmgmo

increases CPU cost, especially for large comprassio
dictionaries that don't fit in cacheWorse, since querying is
done on uncompressed data, the in-memory queryug@ads
not sped up at all. Furthermore, as we see lateandla gzip

or dictionary coder give suboptimal compressione-aan do
much better by exploiting semantics of relations.

Another popular way to compress data is a methatidan
be termed domain coding [6, 8]. In this approadues from a
domain are coded into a tighter representation,caredies run
directly against the coded representation. For @kanvalues
in aCHAR( 20) column that takes on only 5 distinct values can
be coded with 3 bits. Often such coding is combingih a
layout where all values from a column are storegbtioer [5, 6,
11, 12]. Operations like scan, select, project, #ten become
array operations that can be done with bit vectors.

Although it is very useful, domain coding alone is
insufficient, because it poorly exploits three sms of
redundancy in a relation:
= Skew:Real-world data sets tend to have highly skewédaeva

distributions. Domain coding assigns fixed lendtften

byte aligned) codes to allow fast array access. iBus
inefficient in space utilization because it codafdquent
values in the same number of bits as frequent galue
= Correlation: Correlation between columns within the same
row is common. Consider an order ship date andrdero
receipt date; taken separately, both dates may theveame
value distribution and may code to the same nurbéits.
However, the receipt date is most likely to be with one
week period of ship date. So, for a given ship déte
probability distribution of receipt date is highékewed, and
the receipt date can be coded in fewer bits.
= Lack of Tuple OrderRelations are multi-sets of tuples, not
sequences of tuples. A physical representation reflagion
is free to choose its own order — or no order laivéé shall
see that this representation flexibility can be duder
additional, often substantial compression.

Column and Row Coding
This paper presents a new compression method loasadnix
of column and tuple coding.

Our method has three components: We encode column
values with Huffman codes [16] in order to expkbi¢ skew in
the value frequencies — this results in variablegtle field
codes We then concatenate the field codes within eaptetto
form tuplecodesand sort and then delta code these tuplecodes,
taking advantage of the lack of order within a tiela We
exploit correlation between columns within a tuplg using

! For typical distributions, radix sort runs in laretime and thus
in-memory sort is dominated by the time to moveadattween
memory and cache (e.g., see Jim Gray’s commentaryhe
2005 Datamation benchmark [17]). External sortm@fi course
almost entirely movement-bound.



either value concatenation and co-coding, or careflumn
ordering within the tuplecode. We also allow dorsjrecific
transformations to be applied to the column betbesHuffman
coding, e.g. text compression for strings.

We define a notion of entropy for relations, andvar that
our method is near-optimal under this notion, irattht
asymptotically compresses a relation to within Eit8/tuple of
its entropy.

We have prototyped this method in a system catldip
for compression and querying of relational data. Mfgort on
experiments with csvzip over data sets from TPCFRC-E
and SAP/R3. We obtain compression factors from 7Qp
substantially better than what is obtained withpgar with
domain coding, and also much better than what sthewe
reported earlier. When we don’t use co-coding, lthel of
compression obtained is sensitive to the positibnoorelated
columns within the tuplecode. We discuss some btcsifor
choosing this order, though this needs furtherystud

Efficient Operations over Compressed Data

In addition to compression, we also investigatensand joins
over compressed data. We currently do not supporéimental
updates to compressed tables.

Operating on the compressed data reduces
decompression cost; we only need to decode fiblaisrteed to
be returned to the user or are used in aggregatibredso
reduces our memory throughput and capacity reqenesn
The latter allows for larger effective buffer sizegreatly
increasing the speed of external data operati@asshrt.

Querying compressed data involves parsing the exttbi
stream into records and fields, evaluating predikatn the
encoded fields, and computing joins and aggregsti®rior
researchers have suggesteder-preserving code§2,15,18]
that allow range queries on encoded fields. Howetés
method does not extend efficiently to variable tbngodes.
Just tokenizing a record into fields, if done néjyénvolves
navigating through several Huffman dictionaries. ffhhan
dictionaries can be large and may not fit in the dahe,
making the basic operation of scanning a tuple applying
selection or projection operations expensive. Weduce two
optimizations to speed up querying:

= Segregated Codingur first optimization is a novel scheme

for assigning codes to prefix treednlike a true order
preserving code, we preserve order only within soafethe

1.1 Background and Related Work

1.1.1 Information Theory

The theoretical foundation for much of data comgpias is
information theory [3]. In the simplest model, iudies the
compression of sequences emitted Yorder information
sources— ones that generate values i.i.d (independent and
identically distributed) from a probability disttibon D.
Shannon’s celebrated source coding theorensd$} that one
cannot code a sequence of values in less th&) Hifs per
value on average, where B){= Z; 5 p; Ig (1/p) is theentropy

of the distributionD with probabilitiesp;.

Several well studied codes like the Huffman andnBba-
Fano codes achieve 1 +DB)(bits/tuple asymptotically, using a
dictionary that maps values in D toodewords A value with
occurrence probability; is coded in roughly Ig (B bits, so
that more frequent values are coded in fewer bits.

Most coding schemes amefix codes -codes where no
codeword is a prefix of another codeword. A prefiade
dictionary is often implemented aspaefix tree where each
edge is labelled 0 or 1 and each leaf maps to eveod (the
string of labels on its path from the root). By kiag the tree
one can tokenize a string of codewords withoutgislielimiters
— every time we hit a leaf we output a codeword jantp back
to the root.

The primary distinction between relations and tharses
considered in information theory is the lack of emdrelations
are multi-sets, and not sequences. Secondarilyweu the
compressed relation to be directly queryable, wdeeitis more
common in the information theory literature for seguence to
be decompressed and then pipelined to the applicati

1.1.2 Related work on database compression
DBMSs have long used compression to help allevlaté data
movement problems. The literature has proceededgatwo
strands: field wise compression, and row wise c@sgion.
Field Wise Compression: Graefe and Shapiro [20] were
among the first to propose field-wise compressibacause
only fields in the projection list need to be deeddThey also
observed that operations like join that involve yoeluality
comparisons can be done without decoding. Goldsteid
Ramakrishnan [8] propose to store a separate referor the
values in each page, resulting in smaller codesiyMalumn-
wise storage schemes (e.g., [5,6,12]) also compvedses

same length. This allows us to evaluate many commoRithin a column. Some researchers have investigateler-

predicates directly on the coded data, and alsfintb the

preserving codes in order to allow predicate euanaon

Ie_ngth of each codewor(_zl/ithout accessing the_Huffman compressed data [2,15,18]. [2] study order presgrvi
dictionary, thereby reducing the memory working set of compression of multi-column keys. An important pical

tokenization and predicate evaluation.

= Short Circuited EvaluationOur delta coding scheme sorts

the tuplecodes, and represents each tuplecodeshbyelta
from the previous tuplecode. A side-effect of thiscess is
to cluster tuples with identical prefixes togetherhich

means identical values for columns that are earlythie

concatenation order. This allows us to avoid deaugpdi
selecting and projecting columns that are uncharfgad

the previous tuple.

Before diving into details of our method, we recapme
information theory basics and discuss some relatadt.
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issue is that field compression can make fixed#efiglds into
variable-length ones. Parsing and tokenizing végidbngth
fields increases the CPU cost of query processang, field
delimiters, if used, undo some of the compress&m.almost
all of these systems use fixed length codes, mdsyfe-
aligned. This approximation can lead to substariigk of
compression as we argue in Section 2.1.1. Moreaw&,not
clear how to exploit correlation with a column stor

Row Wise Compression: Commercial DBMS
implementations have mostly followed the row or @dgvel
compression approach where data is read from disk,



Domain | Num. possible | Num. Likely vals | Entropy Comments
values (in top 90 percentile) | (bits/value)
We assume that the db must support all dates0i0@ A.D., but 99%
Ship Date 3650000 1547.5 9.92|of dates will be in 1995-2005, 99% of those arekdays, 40% of
those are in the 10 days each before New Year asttiévis day.
Last 160 N We use exact frequencies for all U.S. names ranikirtige top 90
Names |2 (char(20)) ~80000 26.81 percentile (frombcensus.gov), and extrapolate, rassmthat all-2'%
Male first | ~160 names below 1Dpercentile are equally likely. This over-estimates
names 27" (char (20) 1219 22.98 entropy.
Customer We use country distribution from import statistios Canada (from
Nation 215=2"" 2 1.82 |www.wto.org) — the entropy is lesser if we factopoor countries,
which trade much less and mainly with their imméalizeighbours.

Table 1: Skew and Entropy in some common domains

decompressed, and then queried. IBM DB2 [1] and[IME This then leads into a discussion of methods torygque
use a non-adaptive dictionary scheme, with a dietip compressed relations, in Section 3.

mapping frequent symbols and phrases to short eamtes. . .

Some experiments on DB2 [1] indicate a factor of 22.1 Squeezingredundancy out of arelation
compression. Oracle uses a dictionary of frequemtied 2.1.1 Exploiting Skew by Entropy Coding

symbols to do page-level compression and repoactf of 2  Many domains have highly skewed data distributioBsie
to 4 compression [21]. The main advantage of rowpage form of skew is not inherent in the data itself upart of the
compression is that it is simpler to implement im existing  representation- a schema may model values from a domain
DBMS, because the code changes are contained witiein with a data type that is much larger. E.g., in TIRCthe
page access layer. But it has a huge disadvamaifat, while ~ C_MKTSEGMENT column has only 5 distinct values lisit
it reduces /0, the memory and cache behaviourdssened modelled asCHAR( 10) — out of 258 distinct 10-byte strings,
due to decompression costs. Some studies suggeshéhCPU  only 5 have non-zero probability of occurring! Lildse, post
cost of decompression is also quite high [8]. Y2K, a date is often stored as eight 4-bit digitamddyyyy),
Delta Coding: C-Store [6] is a recent system that does columnbut the vast majority of the 1@ossible values map to illegal
wise storage and compression. One of its techniguesdelta  dates.

code the sort column of each table. This allows esom  Prior work (e.g, [6, 12]) exploits this using a hemue
exploitation of the relation’s lack-of-order. [6pes not state we’ll call domain codinglegal values from a large domain are
how the deltas are encoded, so it is hard to géhmextent to mapped to values from a more densely packed domaim.,
which this is exploited. In a different contextyémted lists in  C_MKTSEGMENT can be coded as a 3 bit number. Tonfier
search engines are often compressed by computiftgsde array based access to columns, each column is ¢odeéixed
among the URLs, and using heuristics to assigntsinates to  number of bits.

common deltas (e.g, [19]). We are not aware of @ggrous While useful, this method does not address skewinvihe
work showing that delta coding can compress retaticdlose to  value distribution. Many domains have long-tailedqguency
their entropy. distributions where the number of possible valgesiich more

Lossy Compression: There is a vast literature on lossy than the number of likely values. Table 1 listseavfsuch
compression for images, audio, etc, and some mstliod domains. E.g., 90% of male first names fall with219 values,
relational data, e.g., see Spartan [7]. These mdsthare but to catch all corner cases we would need to dbdes a
complementary to our work — any domain-specific pogssion  CHAR( 20), using 160 bits, when the entropy is only 22.98
scheme can be plugged in as we show in Sectiod.28e  bits. We can exploit such skew fully throughtropy coding
believe lossy compression can be useful for meaasttributes

that are used only for aggregation. Probabilistic Model of a Relation: Consider a relatioR with

column domain€0Ly, ... COL,. For purposes of compression,

2. COMPRESSION METHOD we view the values irCOL; as being generated by an i.i.d.
Three factors lead to redundancy in relation sweremgmats: ~(independent and identically distributed) informatisource
skew, tuple ordering, and correlation. In Sectigh®e discuss ©OVer @ probability distributio;. Tuples ofR are viewed as
each of these in turn, before presenting a compositP€iNg generated by an iid information source wjitint
compression algorithm that exploits all three festm achieve ~Probability distribution:D = (Dy, Dy, ... D).* We can estimate
near-optimal compression.
Such extreme compression is ideal for pure dateemewnt 2 By modeling the tuple sources as i.i.d., we Idse ability to

tasks like backup or replication. But it is at oduh efficient exploit inter-tuple correlations. To our knowledge one has
querying. Section 2.2 describes some relaxatioas sacrifice studied such correlations in databases — all thek wan
some compression efficiency in return for simptifiguerying. correlations has been among fields within a tuffléter-tuple

correlations are significant, the information thedterature on
compression of non zero-order sources might bacaighé.
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m est. Hfdta(R)) in bits
10000 1.897577m
100,000 1.897808m
1,000,000 1.897952m
10,000,000 1.89801 m
40,000,000 1.898038m

Table 2: Entropy of delta(R) for a multi-set R ofm
values picked uniformly, i.i.d. from [1,m] (1004dis)

eachD; from the actual value distribution @OL;, optionally
extended with some domain knowledge. For exampleQL,
has {Apple, Apple, Banana, Mango, Mango, MangokniD;

is the distribution Pagpie= 0.333,Pranans 0.167 Pumango=0.5}.

Schemes like Huffman and Shannon-Fano code such

sequence of i.i.d values by assigning shorter cealéequent
values [3]. On average, they can code each val@Oh with

at most 1 + HD;) bits, where HX) is the entropy of distribution
X —hence these codes are also called “entropy codsiny an
entropy coding scheme, we can code the relatRn

with % . |[RI@+H(D;) + DictSize(COL;) bits, where

This bound is far from tight. Table 2 shows resditsm a
Monte-Carlo simulation where we pick numbers i.i.d from
[1,m], calculate the distribution of deltas, and estentheir
entropy. Notice that the entropy is always lessntRabits.
Thus, Delta coding compressBsfrom m Ig m bits to Igm +
2(m-1) bits, savingrt+1)(Ilgm — 2) bits. For large databases, Ig
m can be about 30 (e.g., 100GB at 100B/tuple). Amdrments

in Section 4.1 show, when a relation has only a éelumns,
such delta coding alone can give up to a 10 foldmession.

This analysis applies to a relation with one colyrahosen
uniformly from [1, m]. We generalize this to a method that
works on arbitrary relations in Section 2.1.4.

@ptimality of Delta Coding

Such delta coding is also very close to optiméhe-fbllowing
lemma shows we cannot reduce the size of a seqlno®re
than Igm! just by viewing it as a multi-set.

Lemma 2: Given a vectoR of m tuples chosen i.i.d. from a
distributionD and the multi-seR of values inR, (R andR are
both random variables), H(R) >mH(D) — Igm!

DictSizeCOL) is the size of the dictionary mapping code Proof Sketch: Since the elemen® are chosen i.i.d., ) =m

words to values oEOL,.

If a relation were sequenceof tuples, assuming that the
domainsD; are independent (we relax this in 2.1.3), this ogdi
is optimal, by Shannon’s source coding theorg8h But
relations are not sequences, they are multi-setsiplés, and
permit further compression.

2.1.2 Order: Delta Coding Multi-Sets
Consider a relatiolR with just one columnCOL,, containing
m numbers chosen uniformly and i.i.d from the intsga:
[1,m]. Traditional databases would stoRe in a way that
encodes both the content Rfand some incidental ordering of
its tuples. Denote this order-significant view bé&trelation as
R (we usebold font to indicate a sequence).

The number of possible instancesRofs m™, each of which
has equal likelihood, so R{ is mIg m. ButR needs much less
space because we don't care about the orderindn &atinct

H(D). Now, augment the tuples t, ..., t,, of R with a “serial-
number” column SNO, wheie SNO =i. Ignoring the ordering
of tuples in this augmented vector, we get a sai, it R;.
Clearly there is a bijection fromR; to R, so HR;) = m H(D).
But Ris just a projection oR;, on all columns except SNO. For
each relation R, there are at mast relations R, whose
projection isR. So HR,) <= HR) + Igm! |

So, with delta coding we are off by at mosig— m(lg m
—2)m(lgm-Ige)-m(gm-2)=m(2 —Ige) ~ 0.6
bits/tuple from the best possible compression. Té8s occurs
because the deltas are in fact mildly correlated.,(esum of
deltas =m), but we do not exploit this correlation — we code
each delta separately to allow pipelined decoding.

2.1.3 Correlation
Consider a pair of columns (partkey, price), wherach
partKey largely has a unique price. Storing bothiey and

instance ofR corresponds to a distinct outcome of throwing of price separately is wasteful; once the partKeyrisvin, the

m balls into m equal probability bins. So, by standard

combinatorial arguments (see [14], [4]), there égé?n—lj -

4m/«/4nm different choices forR, which is much less than

m". A simple way to encodRis as acodeddelta sequence

1) Sort the entries dR, forming sequence =vy, ...,V

2) Form a sequenaddlta(R) = Vi, Vo—Vq, Va—Va, ...y ViiVim1

3) Entropy code the differencesdielta to form a new
sequenceode(R) = v;, code(,—Vy), ..., codefn— Vin-1)

Space savings by delta coding

Intuitively, sorting and delta coding compressebecause the
distribution of deltas is tighter than that of thiginal integers
— small deltas are much more likely than large oResmally:
Lemma 1: If Ris a multi-set ofn values picked uniformly with
repetition from [1m], andm > 100, then each delta delta(R)
has entropy < 2.67 bits.

Proof Sketch: See Appendix 7.

Corollary 1.1: code(R) occupies < 2.6 bits on average.

O
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range of possible values for price is limited. Suwter-field
correlation is quite common and is a valuable oputy for
relation compression.

In Section 2.1.1, we coded each tuplejrH(D;) bits. This
is optimal only if the column domains are indeperidéhat is,
if the tuples are generated with an independentt joi
distribution ©,, D,, ... D). For any joint distribution, HJ,,
..., DY < Z; H(D)), with equality if and only if theD;'s are
independent [3]. Thus any correlation strictly rees the
entropy of relations over this set of domains.

We have three methods to exploit correlation: cdig,
dependent coding and column ordering.

Co-coding concatenates correlated columns, anddesco
them using a single dictionary. If there is caaten, this
combined code is more compact than the sum ofrithieidual
field codes.

A variant approach we call dependent coding buids
Markov model of the column probability distributgrand uses
it to assign Huffman codes. E.g, consider columagKey,
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1. for each tuple (t.c1, t.c2, ... t.ck) of IRl do
1a. for each col ¢i that needs type specific transform, do:
t.ci € type_specific_transform (t.ci)
1b. concatenate correlated columns together
1c. foreach coli=1tokdo:
t.ci € Huffman_Code(t.ci)
1d. tupleCode € concat(t.ci, t.Co, ... t.C)
1e. If size(tupleCode) <[ Ig(IRI)] bits
pad it with random bits to make it Lig(IRI) | bits long.
2. sort the coded tuples lexicographically.
3. for each pair of adjacent tuples p, q in sorted order do:
3a. letp=pipz q=qi0,
where p1,q+ are LIg(IRI)_-bit prefixes of p,q
3b. deltaCode < Huffman_Code(qgi-p1).
3c replace p with deltaCode.p2

Algorithm 3: Pseudo-Code for compressing arelation

price, and brand, where (partKey,price) and (payti&and)
are pair wise correlated, but price and brand adependent
given the partKey. Instead of co-coding all thredumns, we
can assign a Huffman code to partkey and then ehdtlos
Huffman dictionary for coding price and brand basedthe
code for partkey. Both co-coding and dependent rgpadiill
code this relation to the same number of bits bbemwthe
correlation is only pair wise, dependent codinguitssin
smaller Huffman dictionaries, which can mean fadesoding.

Both co-coding and dependent coding exploit cotimta
maximally, but cause problems when we want to ramge
queries on the dependent column. In Section 2n&XQresent a
different technique that keeps correlated colunmeasate (to
allow fast queries), and instead exploits correftatby tuning
the column ordering within a tuple.

gives an example of how the data is transformedurgi 4
shows a process flow chart. The algorithm has tworpieces:
Column Coding: For each tuple, we first perform any type
specific transforms (supplied by the user) on calarhat need
special handling (1a). For example, we can applyext
compressor on a longARCHAR column, or split a date into
week of year and day of week (to more easily capskew
towards weekdays). Next we co-code correlated cotu(ib),
and then replace each column value with a Huffnadedlc).
We use Huffman codes as a default because they are
asymptotically optimal, and we have developed ahottto
efficiently run selections and projections on cdanated
Huffman codes (Section 3). We currently compute ¢bdes
using a statically built dictionary rather thanis-EZempel style
adaptive dictionary because the data is typicatijnpressed
once and queried many times, so the work done velde a
better dictionary pays off.

Tuple Coding: We thenconcatenatall the field codes to form
a bit-vector for each tuple, pad them on the righta given
length and sort the bit-vectors lexicographicallye call these
bit vectorstuplecodesbecause each represents a tuplieer
sorting, adjacent tuplecodes are subtracted tdrobtaector of
deltas and each delta is further Huffman codedL&yma 2,
we cannot save more than Ig|R| bits/tuple by d=itding, so
our algorithm needs to pad tuples only to Ig |R{ fin Section
2.2.2 we describe a variation that pads tuples doenthan Ig
IR| bits; this is needed when we don’t co-code etated
columns).

The expensive step in this compression procedseisart.
But it need not be perfect, as any imperfectiorly meduce the
quality of compression. E.qg., if the data is toméafor an in-
memory sort, we can create memory-sized sorted andsnot
do a final merge; by an analysis similar to Theo&nwe lose
about Igx bits/tuple, if we have similar sized runs.

Analysis of compression efficiency

Lemma 2 gives a lower bound on the compressibditya
general relation: H) > m H(D) — Ig m!, wherem = R, and
tuples of R are chosen i.i.d from a joint distributidd. The
Huffman coding of the column values reduces thatimh size
to m H(D) asymptotically. Lemma 1 shows that, for a mutti-s
of mnumbers chosen uniformly from [f), delta coding saves
almost Ig m! bits. But the analysis of Algorithm 3 is
complicated because (a) our relati®rnis not such a multi-set,
and (b) because of the padding we have to do in @&). Still,
we can show that we are within 4.3 bits/tuple otiropl
compression:

Currently, csvzip implements co-coding and columnTheorem 3: Our algorithm compresses a relatiBnof tuples

ordering. The column pairs to be co-coded and thenen
order are specified manually as arguments to csvaip
important future challenge is to automate this pssc

2.1.4 Composite Compression Algorithm

Having seen the basic kinds of compression possitd¢enow
proceed to design a composite compression algoritab
exploits all three forms of redundancy and allowsra to plug
in custom compressors for idiosyncratic data tyfismges,

text, dates, etc). Algorithm 3 describes this ieym-code and
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chosen i.i.d from a distributioB to an expected bit size of no
more than HR) + 4.3R| bits, if |R |> 100.
Proof: See Appendis.

2.2 Relaxing Compression for Query Speed
csvzip implements the composite compression algoriof
Section 2.1.4 in order to maximally compress itguin
relations. But it also performs two relaxationsttsacrifice
some compression in return for faster querying.
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2.2.1 Huffman coding vs. Domain coding

As we have discussed, Huffman coding can be sufietgn
more space efficient than domain coding for skederhains.
But it does create variable length codes, which henaler to
tokenize (Section 3). For some numerical domair@mnain
coding also allows for efficient decoding (see hglo So
domain coding is useful in cases where it doedasat much in
space efficiency.

Consider a domain like “supplierKey integer” in able
with a few hundred suppliers. Using a 4 byte intege
obviously over-kill. But if the distribution of spfiers is
roughly uniform, a 10-bit domain code may compréss
column close to its entropy. Another example isldsa
integer”. If salary ranges from 1000 to 500000yistpit as a
22 bit integer may be fine. The fixed length mataeenization
easy. Moreover, decoding is just a bit-shift (tofgom 20 bits
to a uint32). Decoding speed is crucial for aggtiega
columns. We use domain coding as default for keymns
(like supplierkey) as well as for numerical columms which
the workload performs aggregations (salary, pricg,

2.2.2 Tuning the sort order to obviate co-coding
In Section 2.1.3, we co-coded correlated columnadboieve
greater compression. But co-coding can make qugityarder.
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Consider the example (partKey, price) again. Weesanluate a
predicate part Key=? AND price=? on the co-coded
values if the co-coding scheme preserves the aorgleon
(partKey, price). We can also evaluate standaloadipates on
partKey. But we cannot evaluate a predicate oneprnithout
decoding. Co-coding also increases the dictionegsswhich
can slow down decompression if the dictionariedamger fit
in cache.

We avoid co-coding such column pairs by tuning drger
of the columns in the tuplecode. Notice that inpSial of
Algorithm 3, theres no particular orderin which the fields of

the tuplet should be concatenated — we can choose any

concatenation order, as long as we follow the stonall the
tuples. Say we code partKey and price separately,place
partkey followed by price early in the concatenatimrder in
Step 1d. After sorting, identical values of partikeiyl mostly
appear together. Since partKey largely determinesep
identical values of price will also appear closgetiher. So the
contribution of price to the delta (Step 3b) igring of 0Os most
of the time. This O-string compresses very wellintyrthe
Huffman coding of the tuplecode deltas.
experiments in Section 4 that quantify this traéfe-o

3. QUERYING COMPRESSED DATA

We now turn our focus from compressing relationsutoning

queries on the compressed relation. Our goalsoare t

= Design query operators that work on compressed data

= Determine as soon as possible that the selectiteriaris
not met, avoiding additional work for a tuple,

= Evaluate the operators using small working memdry,
minimizing access to the full Huffman dictionaries.

3.1 Scan with Selection and Projection

Scans are the most basic operation over comprestains,
and the hardest to implement efficiently. In a leglDBMS,

scan is a simple operator: it reads data pageseganem into
tuples and fields, and sends parsed tuples to ofenators in
the plan. Projections are usually done implicitly part of
parsing. Selections are applied just after pardmdjjter tuples
early. But parsing a compressed table is more ctenpu
intensive because all tuples are concatenated hiegétto a
single bit stream. Tokenizing this stream involv@s: undoing
the delta coding to extract tuplecodes, and (tifleng field

boundaries within each tuplecode. We also want gplya
predicates during the parsing itself.

Undoing the delta coding. The first tuplecode in the stream is
always stored as-is. So we extract it directlyedatning its
end by knowing its schema and navigating the Huffinee for
each of its columns in order, as we read bits b& input
stream. Subsequent tuples are delta-coded on ghefix bits
(Algorithm 3). For each of these tuples, we firstract its
delta-code by navigating the Huffman tree for tledtatcodes.
We then add the decoded delta to the running tppéx of
the previous tuplecode to obtain the prefix of tharent
tuplecode. We then push this prefix back into thgut stream,
so that the head of the input bit stream contahes full
tuplecode for the current tuple. We repeat thiess till the
stream is exhausted.

We present



We make one optimization to speed decompressiatiheRa

as follows. We first rearrange the tree so thatdeaat smaller

than coding each delta by a Huffman code basedt®n idepth are to the left of leaves at greater depth thén permute

frequency, we Huffman code only the number of legdds in
the delta, followed by the rest of the delta inipfext. This
“number-of-leading-0s” dictionary is often much dkaa(and
hence faster to lookup) than the full delta dicdipn while
enabling almost the same compression, as we
experimentally (Section 4.1). Moreover, the additiof the
decoded delta is faster when we code the numbleadfng Os,
because it can be done with a bit-shift and a 64bdition
most of the time avoiding the use of multi-preaisarithmetic.
A second optimization we are investigating is tanpote
deltas on the full tuplecode itself. Experimentaile have
observed that this avoids the expensive push bdckh®
decoded prefix, but it does increase the entromd (thus
Huffman code length) of the deltas, by about ligiié.

Identifying field boundaries. Once delta coding has been
undone and we have reconstructed the tuplecodejesd to
parse the tuplecode intfield codes This is challenging
because there are no explicit delimiters betweeriéhd codes.
The standard approach mentioned in Section 1.1kimglthe
Huffman tree and exploiting the prefix code propgit too
expensive because the Huffman trees are typicadlylarge to
fit in cache (number of leaf entries = number dftidict values
in the column). Instead we use a neegregrated coding
scheme (Section 3.1.1).

Selecting without decompressing. We next want to evaluate
selection predicates on the field codes withoutodet.
Equality predicates are easily applied, because cibging
function is 1-to-1. But range predicates need opteserving
codes: e.g., to apply a predicate<cd2, we want: code(cH)
code(c?2) iff c1< c2. However, it is well known [13] that prefix
codes cannot be order-preserving without sacriicin
compression efficiency. The Hu-Tucker scheme [$5friown
to be the optimal order-preserving code, but etvéoses about
1 bit (vs optimal) for each compressed value. Syyesl
coding solves this problem as well.

3.1.1 Segregated coding

For fast tokenization with order-preservation, wepgnse a
new scheme for assigning code words in a Huffmaa our
scheme applies more generally, to any prefix code).

The standard method for constructing Huffman codéss a
list of values and their frequencies, and producéinary tree
[16]. Each value corresponds to a leaf, and codésvare
assigned by labelling edges 0 or 1.

The compression efficiency is determined by thethiep each
value — any tree that places values at the samingléps the
same compression efficiency. Segregated codingoggpthis

sat wed/\

fri thu tue mon

sat ) wed

wed sat A

mon tue thu fri

Figure5: Segregated Huffman Coding Example

fri thu tue mon
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the values at each depth so that leaves at eadh dep in
increasing order of value, when viewed from left right.

Finally, we label each node’s left-edge as O aghtredge as 1.
Figure 5 shows an example. It is easy to see tlsageegated

samding has two properties:

< within values of a given depth, greater valuesehgreater
codewords (e.g., encode(‘tue’) < encode (‘thu’)Figure 5)

* Longer codewords are numerically greater than tehor
codewords (e.g., encode(‘sat’) < encode (‘mon’)igure 5)

A Micro-Dictionary to tokenize Codewords

Using property 2), we can find the length of a cedel in time
proportional to the log of the code length. We doréed the
full dictionary; we just search the value rangesdufor each
code length. We can represent this efficiently byrisg the
smallest codeword at each length in an array wedll
mincode Given a bit-vectob, the length of the onlgodeword
that is contained in a prefix db is given by maxfen :
mincodélen] < b}, which can be evaluated efficiently using a
binary or linear search, depending on the lengtthefarray.

This arraymincodeis very small. Even if there are 15
distinct code lengths and a code can be up to 32ldng, the
mincodearray consumes only 60 bytes, and easily fithénltl
cache. We call it thenicro-dictionary We can tokenize and
extract the field code usimgincodealone.

Evaluating Range Queries using Literal Frontiers
Property 1) is weaker than full order-preservationg.,
encode(wed) < encode(mon) in Figure 5. So, to etalu<
col on a literal”—, we cannot simply compare encodg(with
the field code. Instead we pre-compute for eaahnditalist of
codewords, one at each length:
@) [d] = max {c a code word of lengtti] decodeg) < A}

To evaluate a predicate< col, we first find the lengthof
the current field code usingincode Then we check i@(A)[1]
< field code. We caltpA) the frontier of A. @A) is calculated
by binary search for encodg(within the leaves at each depth
of the Huffman tree. Although this is expensivdasitione only
once per query. Notice that this only works forgaupredicates
involving literals. Other predicates, such as ceglkol2 can
only be evaluated on decoded values, but are less common

3.1.2 Short circuited evaluation

Adjacent tuples processed in sorted order are like}y to
havethe same values for many of the initial column® take
advantage of this during the scan by keeping tratkhe
current value of sub-expressions used in the coatipus to
evaluate selections, projections, and aggregations.

When processing a new tuple, we first analyze dkad
code to determine the largest prefix of columns ih&entical
to the previous tuple. This is easy to do with optimization
of Huffman coding not the actual delta but the nembf
leading Os in the delta. We do need to verify ifrgdits from
the rest of the delta will propagate into the leadds, during
the addition of the delta with the previous tupldeo This
verification is just a right-shift followed by a epare with the
previous tuplecode. The shift does become experisiviarge



tuplecodes; we are investigating an alternative XfaRed
delta coding that doesn’t generate any carries.

3.2 Layering other Query Plan operators

The previous section described how we can scan &ssed
tuples from a compressed table, while pushing ds&lactions
and projections. To integrate this scan into a yysan, we
expose it using the typical iterator API, with od#éference:
getNext() returns not a tuple of values but a topiie — i.e., a
tuple of coded column values. Most other operatersept
aggregations, can be changed to operate directlythese
tuplecodes. We discuss four such operators negexiscan,
hash join, sort-merge join, and group-by with aggt®n.

3.2.1 Index Scan: Access Row by RID

Index scans take a bounding predicate, searchghran index
structure for matching row ids (RIDs), load theresponding
data pages, and extract matching records. The gsooé
mapping predicates to RIDs occurs as usual. Buaetig the

matching records is trickier because it involvesd@m access

within the table. Since we delta-code tuples, thriral way to
tokenize a table into tuples is to scan them segpln as in
Section 3.1.

Our solution is to punctuate a compressed tabldn wit

periodic non-delta-coded tuples (the fields in éhasples are
still Huffman coded). This divides the table inteparately
decodable pieces, callecompression blocks (cblocksyve

make each rid be a pair of cblock-id and index imittblock,

so that index-based access involves sequential witeim the

cblock only. Thus, short cblocks mean fast indexeas.
However, since the first tuple is not delta-codgubrt cblocks
also mean less compression. In practice this ispvbblem: A
Huffman-coded tuple takes only 10-20 bytes for dgpi
schemas (Section 4.1), so even with a cblock diZK8, the

loss in compression is only about 1%. 1KB fits itréache on
many processors, so sequential scan in a cbldakeis

3.2.2 Hash Join & Group By with Aggregation
Huffman coding assigns a distinct field code toheaalue. So
we can compute hash values on the field codes tleass
without decoding. If two tuples have matching jaiolumn
values, they must hash to the same bucket. Withénhash
bucket, the equi-join predicate can also be evatudirectly on
the field codes.

One important optimization is to delta-code theuinfuples

40

as they are entered into the hash buckets (a sotineeded
here because the input stream is sorted). The talyars that
hash buckets are now compressed more tightly so kwger
relations can be joined using in-memory hash tafites effect
of delta coding will be reduced because of the Enaumber
of rows in each bucket).

Grouping tuples by a column value can be done tijrec
using the code words, because checking whethepla falls
into a group is simply an equality comparison. Hoere
aggregations are harder.

COUNT, COUNT DISTINCT, can be computed directly on
code words: to check for distinctness of values aheck
distinctness of the corresponding codewords. MAX MiIN
computation involves comparison between code woBitsce
our coding scheme preserves order only within cededs of
the same length, we need to maintain the curreximuan or
minimum separately on code words of each lengthterAf
scanning through the entire input, we evaluateotrerall max
or min by decoding the current code words of eamtheword
length and computing the maximum of those values.

SUM, AVG, STDEV, cannot be computed on the code
words directly; we need to decode first. Decodirgmein-
coded integer columns is just a bit-shift. Decodkigffman
codes from small domains or ones with large skevalso
cheap, because the Huffman tree is shallow. We place
columns that need to be decoded early in the colordaring,
to improve the chance that the scanner will see afindentical
codes, and benefit from short circuited evaluation.

3.2.3 Sort Merge Join

The principal comparisons operations that a sontgmgoin
performs on its inputs are < and =. Superficialtywould
appear that we cannot do sort merge join withoabdig the
join column, because we do not preserve order accosle
words of different lengths. But in fact, sort mejga does not
need to compare tuples on the traditional ‘<’ opmra- any
total ordering will do. In particular, the orderinge have
chosen for codewords — ordered by codeword lenigsh dnd
then within each length by the natural orderinghef values is
a total order. So we can do sort merge join diyeoth the
coded join columns, without decoding them first.

4, EXPERIMENTAL STUDY
We have implemented our compression method in etyfe
system called csvzip. csvzip currently supportscitrapression

— |

35 1

30 J @M Domain Coding

B csvzip

W gzip ®M csvzip+cocode
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Figure 7: Comparing the compression ratios of four compression methods on 6 datasets
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DATASET SCHEMA Original | DC-1 |DC-8|Huffman| csvzip | Delta code |Huffman +| Correlation| csvzip+ |Loss by not| Gzip

size 1) 2) savings Cocode saving | cocode | Cocoding

1-@2) €] 1)-B) ©)] 2-(5

P1. LPK LPR LSK LQTY 192 76 88 76 7.17 68.83 36 40 4.74 2.43 78.56
P2. LOK LQTY 96 37 40 37 5.64 31.36 37 0 5.64 0 33.92
P3. LOK LQTY LODATE 160 62 80| 48.97| 17.60 31.37 48.65% 0.32 17.60 0 4538.2
P4. LPK SNAT LODATE CNAT| 160 65 80| 4954, 17.7Y 31.77 49.1% 0.34 17.77 0 335.5
P5. LODATE LSDATE L
LRDATE LQTY LOK 288 86 | 112| 72.97| 24.6f 48.3 54.64 18.3 23.60 1.070.50
P6. OCK CNAT LODATE 128 59 72| 44.69 8.13 36.56 39.65 5.04 7.76 0.37 6649.
P7. SAP SEOCOMPODF 548 165 | 392 79 47 32 58 21 33 14 52
P8. TPC-E CUSTOMER 198 54 96 47 30 17 44 3 23 7 69

Table 6: Overall compression results on various datasétsifas are in # bits/tuple). DC-1 and DC-8 aredid byte aligned domain
coding. Csvzip is Huffman followed by delta codirgyzip+cocode is cocode followed by Huffman arehtbelta-coding.
Underscoréndicates skew anithlics denotes correlation. Column abbreviations are: Lipaftkey, LPR: extendedprice, LSK
suppkey, LQTY: quantity, LOK: orderkey, LODATE: @ntlate, SNAT: suppNation, CNAT: custNation, LSDAHBipDate,
LRDATE: receiptDate. TPC-E schema is tier, countrycountry 2, country_3, area_1, first name, genuétdle initial, last name.

of relations loaded from comma separated value) fdeg, and

table scan with selection, projection, and aggiegatUpdates

and joins are not implemented at this time. We diocarrently
have a SQL parser — we execute queries by writipgoQrams
that compose select, project, and aggregate pvisiti

We have used this prototype to perform an expertiaien
study of both compression efficiency and scan iefficy. Our
goal is to quantify the following:

1) How much can we compress, as compared to row cagfing
domain coding? What is the relative payoff of skender-
freeness, and correlation (Section 4.1)?

2) How efficiently can we run scan queries directly thiese
compressed tables (Section 4.2)?

= Arithmetic Correlation: We made | _receiptdate and
|_shipdate be uniformly distributed in the 7 daytemathe
corresponding o_orderdate.

There are two other correlations inherent in theesta:

= For a given |_partkey, |_suppkey is restricted ¢oome of 4
possible values.

= De-Normalization: Datase®6 in Table 6 is on lineitem X
order x customer X nation, and contains a non-key
dependency o_custke} c_nationkey

We use a 1 TB scale TPC-H datasé8R rows in each of our

datasets). To make our experiments manageable,idvaat

actually generate, sort, and delta-code this fathdet — rather

we tuned the data generator to only generate 1Mslmes of

it, and compressed these. For example, P2 of Talidedelta-

coded by sorting on <I_orderkey,|_qty>. We genefd¥row

slices of P2 by modifying the generator to filtens where

|_orderkey is not in the desired 1M row range.

We use three datasets in our experiments:

TPC-H views: We choose a variety of projections of Lineitem
x Orders x Part x Customer, that are appropriatafswering
TPC-H queries (Table 6). Our physical design ploipdg, like
C-Store, is to have a number of highly compressatérialized 4,1  Extent of Compression

views appropriate for the query workload. Table 6 lists the detailed compression results arh elataset.
TPC-E Customer: We tested using 648,721 records of Figyre 7 plots the overall compression ratio otgdiby csvzip
randomly generated data produced per the TPC-Efigation. (with and without co-coding) vs that obtained by:

This file contains many skewed data columns bulelit . g plain gzip (representing the ideal performanceoof and
correlation other than gender being predicted ks fiame. page level coders),

SAP/R3 SEOCOMPODF: We tested using projections of a « 3 fixed length domain coder aligned at bit boureari
table from SAP having 50 columns and 236,213 rathere is (representing the performance of column codershleT&

a lot of correlation between the columns, causiegdelta code also lists the numbers for domain coding at byterigaries;
savings to be much larger than usual. it is significantly worse.

_ One drawback with TPC-H is that uses uniform, Note that all ratios are with respect to the sizehe vertical
independent value d|str|but|o_ns, which is utterlgrealistic partition, not size of the original tables — anyisgs obtained
(and prevents us from showing off our segregatedfrkan  py not storing unused columns is orthogonal to c@sgion.
Coding ©). So we altere_d the data generator to generate tWo' Eyen without co-coding, csvzip consistently gets 10
skewed columns and 2 kinds of correlation: _ more compression, in contrast to 2-3x obtained &y @nd
Dates: We chose 99% of dates to be in 1995-2005,98%  domain coding. On some datasets such as LPK LPR LSK
of that on weekdays,’ 40% of that on two weeks dmfbre | QTY, our compression ratio without co-coding ishigh as
New Year & Mothers’ Day (20 days /yr). = 192/7.1%27; with co-coding it is 192/4.241. From Table 6,
c_nationkey, s_nationkey: We chose nation distilmst pnotice that the absolute per tuple sizes after cesgion are
from  WTO  statistics on international  trade typically 10-20bits.
(www.wio.org/english/res_e/statis_e/wt_overviewtrh We next analyze from where our substantial gaiisear

Soft Functional Dependency: We made |_extendedpree
functionally dependent on |_partkey

Exploitation of Skew: The first source of compression is
skew. Observe the bars labelled Huffman and Dor@aiding
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in the chart below. They show the compression ratioieved
just by Huffman coding column values, in contrast the

columns. Notice that the savings is now higher e tkelta
coding is able to exploit correlations also, as digcussed in
Section 2.2.2.

The plot on the opposite column illustrates the prassion
ratios obtained with the two forms of delta codiiige ratio is
as high as 10 times for small schemas like P1. Aighest
overall compression ratios result when the lendth mplecode
and bits per tuple saved by delta coding are simila

Exploiting Correlation via co-coding vs. delta-coding:

The extent to which it can exploit correlationdridicated
by the column labelled (2)-(5) in Table 6 — notibat we are
often close to the co-coding performance.

savings obtained by domain coding. All columns exce This strategy is powerful, because by not co-codiagge

nationkeys and dates are uniform, so Huffman anchailo
coding are identical for P1 and P2. But for thevsd@® domains
the savings is significant (e.g., 44.7 bits vs.5& for P6).

queries on the dependent become much easier asaessed
in Section 2.2.2. But a drawback is that the catesl columns
have to be placed early in the sort order — formgpie,

Table 6 lists the full results, includingpmpression results on LODATE, LRDATE, LSDATE in dataset P5. We have

SAP and TPC-E datasets. These have significant ¢keveral
char columns with few distinct values), so Huffmeoding
does very well. On SAP, Huffman coding compresse3a
bits/tuple vs. 165 bits/tuple for domain coding.

6
5 | B Huffman
0O Domain Coding
4 Huffman+CoCode

SRR
SRR

b

]

P1 P2 P3 P4 P5 P6

Correlation: The best way to exploit correlation is by co- 2

coding. Table 6 lists the extra benefit obtainedcbyrelation,

over that obtained by just Huffman coding individoalumns.

This is also illustrated in the bar labelled “Hufm-CoCode”

in the above plot. For example, we go down from972.
bits/tuple to 54.65 bits per tuple for P3n terms of

compression ratios, as a function of the origiale size, we
compress 2.6x to 5.3x by exploiting correlation akdw.

experimented with a pathological sort order — whéhne
correlated columns are placed at the end. WhenoneP$ by
(LOK, LQTY, LODATE, ...), the average compressed tuple
size increases by 16.9 bits. The total savings ftomelation is
only 18.32 bits, so we lose most of it. This suggdbhat we
need to do further investigation on efficient ramgeeries over
co-coded or dependent coded columns.

4.2 Querying Compressed Relations

We now investigate efficient querying of compressadtions.
We focus on scans, with selection, projections,
aggregations. Our queries test three aspects ohiipg over
compressed data:
1. How efficiently can we undo the delta-coding torimte
tuplecodes?
How efficiently can we tokenize tuples that contain
Huffman-coded columns?
How well can we apply equality and range predicates
Huffman coded and domain coded columns?
The first is the basic penalty for dealing with quessed data,
that every query has to pay. The second measures th
effectiveness of our segregated coding. The thiedsures the
ability to apply range predicates using literalnfiiers.

We run scans against 3 TPC-H schemas: (S1: LPR LPK

and

Delta-Coding: The last source of redundancy is from lack-of- LSK LQTY) has only domain coded columns, (S2: LPRKL

ordering. In Table 6, column(3) — column (5) gitkse savings
from delta coding when we co-code. Observe that #&most
always about 30 bits/tuple for all the TPC-H datssdhis
observation is consistent with Theorem 3 and Ler2nig m =

lg (6.5B) ~ 32.5, and we save a little fewer bits per tuple
delta-coding.

S1 S2 S3
8.4 10.1 154

8.1-10.8.7-11.5|17.7-19.6
10.2-18.317.8-20.2

11.7-15.620.6-22.7

Q1: select sum(lpr) fror81/2/3

Q2: Q1 where Isk>?
Q3: Q1 where oprio>?

Q4: Q1 where oprio=?

LSK LQTY OSTATUS OCLK) has 1 Huffman coded column
(OSTATUS), and (S3: LPR LPK LSK LQTY OSTATUS
OPRIO OCLK) has 2 Huffman coded columns
(OSTATUS,OPRIO). OSTATUS has a Huffman dictionary

bywith 2 distinct codeword lengths, and OPRIO hasctiachary

with 3 distinct codeword lengths. The table belolwtp the
scan bandwidth (in nanoseconds/tuple) for varioimlk of
scans against these schemas. All experiments wereom a
1.2GHz Power 4, on data that fit entirely in memory

Q1 is a straightforward scan plus aggregation dioraain
coded column. On S1, which has no Huffman colur@isjust
tests the speed of undoing the delta code — w8.4es/tuple.

On S2 and S3, it tests the ability to tokenize Hhafif

Again in Table 6, column (1) — column (2) gives the coded columns using the micro-dictionary (in ortbeskip over

savings from delta coding when we don’t co-coderedated
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them). Tokenizing the first Huffman coded colummeakatively



cheap because its offset is fixed; subsequent or®s an

overhead of about 5ns/tuple to navigate the miccteshary. If

a tuple has several Huffman coded columns, thigestg that
it will pay to encode the tuple length in front.

Q2, Q3, and Q4 are queries with predicates plus

aggregation. A range of numbers is reported fohemhema
because the run time depends on the predicatetisiéleaue
to short-circuiting. For small selectivities, theegicate adds at
most a couple of ns/tuple beyond the time to taenThis is
in line with our expectation, because once tokehizlee range
predicate is evaluated directly on the codeword.

These numbers indicate we can process 50-100Msdisple
using a single processor (equivalent to 1-2GB/s), @e quite
promising. Obviously, a full query processor negdsh more
than scan. Nevertheless, as we discussed in Se&&®prhash
joins and merge joins can be done on the compreisgaes
using these basic equality and range predicateatipes.

5. CONCLUSIONSAND FUTURE WORK
Compression is a promising approach to deal with data
movement bottleneck. We have developed a notioenobpy
for relations and described a method to compressiaes to
within 4.3 bits/tuple of the entropy. This results up to a
compression factor of up to 40 on TPC-H data, mbetter
than reported in prior literature. We have also alieped
techniques for efficient scans with selection ar@jgetion over
relations compressed with this method.

Much work remains to exploit thpromise of this idea.
Although we have shown the basic feasibility, weedheo
further investigate the engineering issues involueddoing
query operators both as a part of a commercial DBM& as a
utility, and figuring out how to utilize the 128t registers and
hardware threading available on modern procesgosecond
direction is lossy compression, whighe believe is vital for
efficient aggregates over compressed data. Finakyneed to
support incremental updates. We believe that mahyhe
standard warehousing ideas like keeping change mys
periodic merging will work here as well.
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7. ENTROPY OF MULTI-SET DELTAS
Lemma 1: For a multi-seR of m values picked uniformly and i.i.d
from [1.m], for m >100, the value distribution ofode(R) has
entropy< 2.67m bits.
Proof: Recall the pseudo-code for computing the codétd.de
1) Sort the entries d®, forming sequence =vy, ..., Vpy
2) Form adelta sequence, — Vi, V3= Va, ... , V= Vi1
3) Entropy code the values dfeltato form a new sequence
code(R) = codév, - v,), ..., code,— Vin1)

Now consider this situation: we have thromrballs numbered In
uniformly and i.i.d ontan numberedins arranged in a circle. Define
a random variabl®; for ballj that landed in bin

D; 0 if j is not the highest numbered ball in bin
k if j is the highest numbered ball bin and
andk is the clockwise distance from hiitto the next occupied bin. In
effect, D; is the random variable for the bin gap between cadia
balls. The distribution of each code dode(R) is that of D;. By
symmetry, this distribution is independentjpofo we shall call it
D. Our goal is to compute BY.
Now, letpg =Pr O =d), 0<d < mand define

A¢ =PrO=d|D=+0),1<d<m

S0,pg = (1= Ppo) Ag, and
H(D)= Zo<d<m Pa!19(1/Pa) = ~Po!9 Po ~Z1<d<m-1 (1-Po)AdI(1-Po)Ae-
SinceZgcgemPa = 1 =Ppg + Z1<g<m (1-Po)Ag, We have,
H(D) = —po g po — (1-Po)lg(1-Po) + (1-Po)Z1<gcmAalg(1Ag) (1)
Considemy= Pr(O >d |D=0), 1<d < m This is the probability
that, given that a ball is the highest numberetiiba bin © = 0),
that there is a clockwise gap greater tHaa the next occupied
bin, i.e., that alm— 1other balls fall into the othen—d bins. So,
dg=(1—-d/m™? for1<d<m,
}\d = PrD :dlD#:O) =0g4-1 — g,
ag = (1 —d/m™* = [m/(m-d)][(1 - d/m)™ < [m/(m-d)] eC,
by standard exponential inequalities [14], and

A= 0gy —0g < Ogg < [M/(M—d + 1)] ¢ @)
But, Ag = Og-q —0g = (1 = (d = 1)/m)™* - (1-d/m)™*

Ag (MV(M=d)™ = [(m-d+ 1)/m-d)]™*-1>1ford>1

So 1Ag4 < [m/(m-d)]™* 3)

Now, each occurrence of a zero delta corresponda &mpty bin,
so expected number of empty binarg,. But empty bins form a
binomial distribution with probability @1/m)™. Sopy= (1-1/m)"



< 1/e. Now, by simple calculusyx Ig x has its maximum value
whenx=1/e, and substituting into equation (1) we have
—Polg Po — (1-Po)lg(1-po) < (Ig€)/e + (1-1/e) Ig(1/(1-1/e))  (4)
Combining (1), (2), (3), (4) we get,
H(D) < (Ige)/e + (1-1/e) Ig(e/(e-1)) + (I-po) A11g /A, +
(1-Po)Z2<gema[ MV(M-d+1)] € (m-1)Ig(1+d/(m~d))
As In(1+) <x, Ig(1+) = In(1+x) / In 2 < x / In 2 we have
H(D) < (lge)/e + (1-1/e) Ig(e/(e-1)) + (I-Po)A11g VA, +
((1-Po)/In 2) Zpcgem-1 [dMM-1)/((M-d)(m-d +1))] €~ (5)
LetY, =Xgs[dm(m-1)/(mr g( m d1)] '€
Yo~ Yoy =Xin[2dnf 1)/ (m 3 modl)( mo€2)] '@
-m® o+ LE™ /2
=Y [Bm 6- Y (- d)r & H(m ¢ 2)fE
+me™[nf(d3-0.5) + n(e 0.5)+ 2¢/3]
> 0 for m>7 (the last quadrascD for m>7)
Hence Y, >Y,,, fom> 7.
ButY,,, <1.57, by calculation. So, for meQ, Y, <1.57. (6)
Also, A, =1- (I-1/m)™" is increasing in m. Since Ig(x/ )
is maximum at 1/e}, lg(l¥ ;X 0.631g0.63 0.2 m>100. (7,
Plugging (6), (7) into (5) and doing some algebra,
H(D)<Ige-(1-1/¢)lg(e-1)+ 0.42(x p, » 1.57( p, )/IA.
By calculusp, = (1-1m" >0.9% >0.36 for m>100.
Substituting, we get H(D) < 2.67 bits.

8. OPTIMALITY OF ALGORITHM 3

Lemma 3: Let X be a random variable over a distributidn and
let codeK) be a random variable representing the codewar fo
according to some compression scheme. Let g£¥)lebe the
random variable for thex-bit prefix of codeX). Then, if the
compression scheme is optimal and given that ¢Qdeds> o
bits, codg(X) is uniformly distributed over all bit-vectors keingth
a.

Proof: If the distribution of bits were not uniform, weuld further

compress each-bit prefix, contradicting the assumption that the

compression scheme is optimal.
We now show the algorithm of Section 2.1.4 is reggtimal.

Lemma 4: If tuples ofR are generated i.i.d. over a distributibn
the algorithm of Figure 3 encodesR in at most

m(+ H(D))- (m-1)(Ilg m- 2.67y+ > mp{ Ig m- b) bit: on

average, wheren = |R| > 100,Ds is the subset of tuples that get

coded in less thahlg m| bits at the end of step 1@, is the
occurrence probability of tuples Dg, andb; is the length to which
tuplei is coded at end of step 1d.

Pr oof:
expected size of the tuples at the end of Steps ITwbimore than
m(1+H(D)) bits. The padding of Step 1e adds (| —b;) random
bits for each tuple that codes < [Ig m| bits. So the overall
padding has expected length Emos mp(lg M- D) pits. By

Lemma 3, after Step 1e, thig ml-bit prefix of the coded tuple is
uniformly distributed over all bit vectors of lehdtig mJ. So, by
Lemma 1, average length of the coded delta is at @67 bits. So
the delta coding of Steps 2 and 3 saves on avétggel - 2.67
bits for each pair of adjacent tuplesnL){lg m| - 2.67) bits
overall. And by summing these quantities we getresultO
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By standard results on Huffman coding [3], the

Theorem 3: Algorithm 3 compresses a relatidd of tuples
chosen i.i.d from a finite distributiod to at most HR) + 4.3R|
bits, assumingR| > 100.
Proof: Considerm items chosen i.i.d. fror®. LetR be a random
variable for thesen items viewed as a sequence &lge a random
variable for thesen items viewed as a multi-set. Without loss of
generality let the distributiob be given by a set of valuesv,, ...
vV, and associated probabilitips, ..., p,, so that a sample drawn
from D has valuev, with probability p;. Let Ds be the subset of
those values that code to less thimm/ bits after step 1d. Let
MUL be a random variable for the vector of multiplast of
elements inDs in the random multi-seR, DomMUL) = a¢ IPs).
Use U to represent a particular multiplicity in DoshUL), p; to
denote thea'th element ofy, the multiplicity of the associated,
andp, to denote the probability thet UL =p.
H(R) = HMUL) + HR | MUL)
=HMUL) + %, .pomput) Py HR [MUL=p)

We now employ an argument similar to Lemma 3. fFgr\alue
of the multi-seR having multiplicityp = (U, Wy, ... HUps), there are
at mostm! / (! y! ... Ypg!) instances oR. So,
H(R|MUL =) > HR [MUL =) — Ig (m/(a! - Hpg!))
H(R) > HMUL) + HR [MUL = p) =%, p,lg (ml/(pa!... upg!))

=H(R) — Zycpommut) Py 19 (MY(Ha!-.. Upgt))-
Letk = Wy +..+ Upg Then, R ™. ppg (1! .. ppg!) is just
one term in the multinomial expansionkf Sok!/(py!... Mpg')
<K pps™™. Clearlyk <m, so
lg (M!/(Ha!... Mpg!) <MIg M=Zy0s1i 19 i
S0, HR) = H(R) — Zycoommu) Py (M1g M= pilg 1)
But, the last term can be simplified and replacét an
expectation giving us
H(R) = H(R) —mIlg m+E(Z; pilg W)

=HR) —mlgm+Z; E(ulg p).

Sincex Ig x is convex, we can apply Jensen’s inequali(§tX)
> f(E(X)) for convex functiond, yielding
H(R)= H(R) — m Ig m +Z; E(W) lg AW) (N
By Lemma 4, Algorithm A encodes R in space
m(l+ H(D))— (m-1)(Ig m- 2.67}+ 3> ;5 mp{ lg M- b) (2,
Since tuples are chosen i.id, R (=)mH D( ). Recall that
p; is the probability of the i'th elementBf  ahdis the
length of the code for the i'th elemeBDE (i )= mp . Thus,
the space overhead of Algorithm A ovetmpy = (2) - (1)
<3.6Mm+ Igm +nd,, mp(lg M- ;b-Ig mp
<3.6/m+ Igm+ nd,, mplg(l/ P - b.
Letp= ZiDDS p. andg = p /p. Then the overhead
3.6+ Igm+ m o, a(lg(2™ / g)-lg P. Since
ZiDDS g =1, and Igk ) is concave, by Jensen's inequality,
Y, G192 /9) 2195, q (27" /q). So overhead
3.6Mm+Igm+mig 3, 2% + mdg (Y p.
Now, for any unambiguous code, Kraft®quality [4] says
thaty, , 2% < 1. So overhead 3.6/# g+ mp Ig(p ).
By simple calculusx Ig(x ¥ (1¢ )lg’ 0.53. So,
space taken by Algghm A -H (R) is at most
4.2m+ Ig m bits < 4.3m bits (Ig x/x < 0.07 fon>100) 0



