
Grammar-like Functional Rules
for Representing Query Optimization Alternatives

Guy M. Lohman
IB M Almaden Research Center

San Jose, CA 95120

Abstract
Extensible query optimization requires that the "repertoire" of
alternative strategies for executing queries be represented as data,
not embedded in the optimizer code. Recognizing that query op­
timizers are essentially expert systems, several researchers have
suggested using strategy rules to transform query execution plans
into alternative or better plans. Though extremely flexible, these
systems can be very inefficient: at any step in the processing, many
rules may be eligible for application and complicated conditions
must be tested to determine that eligibility during unification. We
present a constructive, "building blocks" approach to defining al­
ternative plans, in which the rules defining alternatives are an
extension of the productions of a grammar to resemble the definition
of a function in mathematics. The extensions permit each token
of the grammar to be parametrized and each of its alternative
definitions to have a complex condition. The terminals of the
grammar are base-level database operations on tables that are
interpreted at run-time. The non-terminals are defined declaratively
by production rules that combine those operations into meaningful
plans for execution. Each production produces a set of alternative
plans, each having a vector of properties, including the estimated
cost of producing that plan. Productions can require certain prop­
erties of their inputs, such as tuple order and location, and we
describe a "glue" mechanism for augmenting plans to achieve the
required properties. We give detailed examples to illustrate the
power and robustness of our rules and to contrast them with related
ideas.

1. Introduction

Ever since the first query optimizers [WONG 76, SELI 79] were
built for relational databases, revising the "repertoire" of ways to
construct a procedural execution plan from a non-procedural query
has required complicated and costly changes to the optimizer code
itself. This has limited the repertoire of any one optimizer by
discouraging or slowing experimentation with — and implementation
of — all the new advances in relational technology, such as im­
proved join methods [BABB 79, BRAT 84, DEWI 85], distributed
query optimization [EPST 78, CHU 82, DANI 82, LOHM 85],

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage, the
ACM copyright notice and the title of the publication and its date appear, and
notice is given that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee and /o r specific
permission.
Reproduced by consent of IBM.
© 1988 ACM 0-89791-268-3/88/0006/0018 $1.50

semijoins [BERN 81], Bloomjoins [BABB 79, MACK 86], parallel
joins on fragments [WONG 83], join indexes [HAER 78, VALD
87], dynamic creation of indexes [MACK 86], and many other
variations of traditional processing strategies. The recent surge in
interest in extensible database systems [STON 86, CARE 86,
SCHW 86, BATO 86] has only exacerbated the burden on opti­
mizers, adding the need to customize a database system for a
particular class of applications, such as geographic [LOHM 83],
CAD/CAM, or expert systems. Now optimizers must adapt to
new access methods, storage managers, data types, user-defined
functions, etc., all combined in novel ways. Clearly the traditional
specification of all feasible strategies in the optimizer code cannot
support such fluidity.
Perhaps the most challenging aspect of extensible query optimization
is the representation of alternative execution strategies. Ideally,
this representation should be readily understood and modified by
the Database Customizer (DBC)1. Recognizing that query optimiz­
ers are expert systems, several authors have observed that rules
show great promise for this purpose [ULLM 85, FREY 87, GRAE
87a]. Rules provide a high-level, declarative (i.e., non-procedural),
and compact specification of legal alternatives, which may be input
as data to the optimizer and traced to explain the origin of any
execution plan. This makes it easy to modify the strategies without
impacting the optimizer, and to encapsulate the strategies executable
by a particular processor in a heterogeneous network. But how
should rules represent alternative strategies? The EXODUS project
[GRAE 87a, GRAE 87b] and Freytag [FREY 87] use rules to
transform a given execution plan into other feasible plans. The
NAIL! project [ULLM 85, MORR 86] employs "capture rules"
to determine which of a set of available plans can be used to
execute a query.
In this paper, we use rules to describe how to construct — rather
than to alter or to match — plans. Our rules "compose" low-level
database operations on tables (such as ACCESS, JOIN, and SORT)
into higher-level operations that can be re-used in other definitions.
These constructive, "building blocks" rules, which resemble the
productions of a grammar, have two major advantages over plan
transformation rules:
• They are more readily understood, because they enable the DBC

to build increasingly complex plans from common building blocks,
the details of which may be transparent to him; and

• They can be processed more efficiently during optimization, by
simply finding the definition of any building block that is refer­
enced, using a simple dictionary search, much as is done in macro
expanders. By contrast, plan transformation rules usually must

1 We feel this term more accurately describes the role of adapting an implemented
but extensible database system than does the term Database Implementor (DBI),
coined by Carey et al. [CARE 86],

18

examine a large set of rules and apply complicated conditions on
each of a large set of plans generated thus far, in order to
determine if that plan matches the pattern to which that rule
applies. As new rules create new patterns, existing rules may
have to add conditions that deal with those new patterns.

Our grammar-like approach is founded upon a few fundamental
observations about query optimization:
• All database operators consume and produce a common object —

a table, viewed as a stream of tuples that is generated by accessing
a table [BATO 87a], The output of one operation becomes the
input of the next. Streams from individual tables are merged by
joins, eventually into a single stream [FREY 87, GRAE 87a].

• Optimizers construct legal sequences of such operators that are
understood by an interpreter, the query evaluator. In other words,
the repertoire of legal plans is a language that might well be
defined by a grammar.

• Decisions made by the optimizer have an inherent sequence depen­
dency that limits the scope of subsequent decisions [BATO 87a,
FREY 87]. For example, for a given plan, the order in which
a given set of tables are joined must be determined before the
access path for any of those tables is chosen, because the table
order determines which predicates are eligible and hence might
be applied by the access path of any table (commonly referred
to as "pushing down the selection"). Thus, for any set of tables,
the rules for ordering table accesses must precede those for
choosing the access path of each table, and the former serve to
limit significantly which of the latter rules are applicable.

• Alternative plans may incorporate the same plan fragment, whose
alternatives need be evaluated only once. This further limits the
rules generating alternatives to just the new portions of the plan.

• Unlike the simple pattern-matching of tokens to determine the
applicability of productions in grammars, in query optimization
specifying the conditions under which a rule is applicable is usually
harder than specifying the rule’s transformation. For example, a
multi-column index can apply one or more predicates only if the
columns referenced in the predicates form a prefix of the columns
in the index. Assigning the predicates to be applied by the index
is far easier to express than the condition that permits that
assignment.

These observations prompted us to use "strategy" rules to construct
legal nestings of database operators declaratively, much as the
productions of a grammar construct legal sequences of tokens.
However, our rules resemble more the definition of a function in
mathematics or a rule in Prolog, in that the "tokens" of our
grammar may be parametrized and their definition alternatives may
have complex conditions. The reader is cautioned that the application
— not the representation — is our claim to novelty. Logic pro­
gramming uses rules to construct new relations from base relations
[ULLM 85], whereas we are using rules to construct new operators
from base operators that operate on tables.
Our approach is a general one, but we will present it in the context
of its intended use: the Starburst prototype extensible database
system, which is under development at the IBM Almaden Research
Center [SCHW 86, LIND 87].
The paper is organized as follows. Section 2 first defines thé
end-product of optimization — plans. We describe what they’re
made of, what they look like, how our rules are used to construct
all of them for a query. In Section 3, we associate properties with
plans, and allow rules to impose requirements on the properties of
their input plans. A set of possible rules for joins is given in
Section 4 to illustrate the power of our rules to specify some of
the most complicated strategies of existing systems, including several
not addressed by other authors. Section 5 outlines how the DBC

can make extensions to rules, properties, and database operators.
Having thoroughly described our approach, we contrast it with
related work in Section 6, and conclude in Section 7.

2. Plan Generation

In this section, we describe the form of our rules. We must first
define what we want to produce with these rules, namely a query
evaluation plan, and its constituents.

2.1. Plans
The basic object to be manipulated — and the class of "terminals"
in our grammar — is a LOw-LEvel Plan OPerator (LOLEPOP) that
will be interpreted by the query evaluator at run-time. LOLEPOPs
are a variation of the relational algrebra (e.g., JOIN, UNION, etc.),
supplemented with low-level operators such as ACCESS, SORT,
SHIP, etc. [FREY 87]. Each LOLEPOP is viewed as a function
that operates on 1 or 2 tables2, which are parameters to that
function, and produces a single table as output. A table can be
either a table stored on disk or a "stream of tuples" in memory
or a communication pipe. The ACCESS LOLEPOP converts a
stored table to a stream of tuples, and the STORE LOLEPOP
does the reverse. In addition to input tables, a LOLEPOP may
have other parameters that control its operation. For example, one
parameter of the SORT LOLEPOP is the set of columns on which
to sort. Parameters may also specify a flavor of LOLEPOP. For
example, different join methods having the same input parameter
structure are represented by different flavors of the JOIN
LOLEPOP; differences in input parameters would necessitate a
distinct LOLEPOP. Parameters may be optional; for example, the
ACCESS LOLEPOP may optionally apply a set of predicates.
A query evaluation plan (QEP, or plan) is a directed graph of
LOLEPOPs. An example plan is shown in Figure 1. Note that
arrows point toward the source of the stream, not the direction in
which tuples flow. This plan shows a sort-merge JOIN of DEPT
as the outer table and EMP as the inner table. The DEPT stream
is generated by an ACCESS to the stored table DEPT, then
SORTed into the order of column DNO for the merge-join. The
EMP stream is generated by an ACCESS to the stored index on
column EMP.DNO3 that includes as one "column" the tuple identifier
(TID). For each tuple in the stream, the GET LOLEPOP then
uses the TID to get additional columns from its stored table:
columns NAME and ADDRESS from EMP in this example.

Another way of representing this plan is as a nesting of functions
[BATO 87a, FREY 87]:

JOIN (sort-merge , D E P T . D N O = E M P . D N O ,

SORT(A C C E S S ! D E P T , {D N O ,M G R], {M G R = 'H a a s)) , D N O),

GET(A C C E S S ! Index on E M P .D N O , { T ID , DNO] , £) ,

E M P , {N A M E , ADDRESS), <f>))

This representation would be a lot more readable, and easier to
construct, if we were to define intermediate functions D and E for
the last two parameters to JOIN:

JOIN (sort-merge, D .D N O = E .D N O , D, E)
where

2 Nothing in the structure of our rules prevents LOLEPOPs from operating on
any number of tables.

3 Actually, ACCESSes to base tables and to access methods such as this index
use different flavors of ACCESS.

19

2.2. Rules

Figure 1: One potential query evaluation plan for the SQL
query:

SELECT NAME, ADDRESS
FROM EMP E, DEPT D
WHERE E.DNO - D.DNO AND MGR='Haas’

D = SO R T (A C C E S S ! D E P T , {D N O ,M G R}, { M G R = B a a J)) , DNO)

and
E = GET (A C C E S S !/mie* o n E M P .D N O , { T I B , D NO }, 0),

E M P , {N AM E , ADD RESS) , 4,)

If properly parametrized, these intermediate functions could be
re-used for creating an ordered stream for any table, e.g.

O rde red Stream l(r, C, P , order) = SO R T ! A C C E S S ! 7 , C, P) , order)

and

0rde redStream 2(r, C, P , order) =

G E T (A C C E S S ! a , { T ID } , 4>), T , C , P) IF orderE a

where T is the stored table (base table or base tables represented
in a stored intermediate result) to be accessed, C is the set of
columns to be accessed, P is the set of predicates to be applied,
and "orderC o" means "the ordered list of columns of order are a
prefix of those of access path a of 7". Now it becomes apparent
that OrderedStreaml and OrderedStream2 provide two alternative
definitions for a single concept, an OrderedStream, in which the
second definition depends upon the existence of a suitable access
path:

O rderedStream !r, C, P , order) =

[S O R T !A C C E S S ! T , C, P) , order)
GET ! A C C E S S ! a , { TID] , <j>), T , C , P) IF orderCa

This higher-level construct can now be nested within other functions
needing an ordered stream, without having to worry about the
details of how the ordered stream was created [BATO 87a]. It is
precisely this train of reasoning that inspired the grammar-like
design of our rules for constructing plans.

Executable plans are defined using a grammar-like set of
parametrized production rules called STrategy Alternative Rules
(STARs) that define higher-level constructs from lower-level con­
structs, in a way resembling common mathematical functions or a
functional programming language [BACK 78]. A STAR defines
a named, parametrized object (the "nonterminals" in our grammar)
in terms of one or more alternative definitions, each of which:
• may have a condition o f applicability, and
• defines a plan by referencing one or more LOLEPOPs or other

STARs, specifying arguments for their parameters.
Arguments and conditions of applicability may reference constants,
parameters of the STAR being defined, or other LOLEPOPs or
STARs. For example, the intermediate functions OrderedStreaml
and OrderedStream2, defined above, are examples of STARs with
only one alternative definition, but OrderedStream has two alter­
native definitions. The first of these references the SORT
LOLEPOP, whose first argument is a reference to the ACCESS
LOLEPOP and whose second argument is the parameter order.
The conditions of applicability for all the alternatives may either
overlap or be exclusive. If they overlap, as they do for
OrderedStream, then the STAR may return more than one plan.
In addition, we may wish to apply the function to every element
of a set. For example, in OrderedStream2 above, any other index
on EMP having DNO as its major column could achieve the desired
order. So we need a STAR to generate an ACCESS plan for each
index i in that set I:

IndexAccessfT) = V i e I : A C C E S S ! i , { T ID) , $)

Using rule IndexAccess in rule OrderedStream2 as the first argument
should apply the GET LOLEPOP to each such plan, i.e., for each
alternative plan returned by IndexAccess, the GET function will
be referenced with that plan as its first argument. So
GET (IndexAccess(EMP), C, P) will also return multiple plans.
Therefore any STAR having overlapping conditions or referencing
a multi-valued STAR will itself be multi-valued. It is easiest to
treat all STARs as operations on the abstract data type Set o f
Alternative Plans for a stream (SAP), which consume one or two
SAPs and are mapped (in the LISP sense [FREY 87]) onto each
element of those SAPs to produce an output SAP. Set-valued
parameters other than SAPs (such as the sets of columns C and
predicates P above) are treated as a single parameter unless oth­
erwise designated by the V clause, as was done in the definition
of IndexAccess.

2.3. Use and Implementation
As our functional notation suggests, the rule mechanism starts with
the root STAR, which is the "starting state" of our grammar. The
root STAR has one or more alternative definitions, each of which
may reference other STARs, which in turn may reference other
STARs, and so on top down until a STAR is defined totally in
terms of "terminals", i.e. LOLEPOPs operating on constants. Each
reference of a STAR is evaluated by replacing the reference with
its alternative definitions that satisfy the condition of applicability,
and replacing the parameters of those definitions with the arguments
of the reference. Unlike transformational rules, this substitution
process is remarkably simple and fast, the fanout of any reference
of a STAR is limited to just those STARs referenced in its defi­
nition, and alternative definitions may be evaluated in parallel.
Therein lies the real advantage of STARs over transformational
rules. The implementation of a prototype interpreter for STARs,
including a very general mechanism for controlling the order in
which STARs are evaluated, is described in [LEE 88].

20

Thus far in Starburst, we have sets of STARs for accessing indi­
vidual tables and joins, but STARs may be defined for any new
operation, e.g. outer join, and may reference any other STAR. The
root STAR for joins is called JoinRoot, a possible definition of
which appears in Section “4. Example: Join STARs”, along with
the STARs that it references. Simplified definitions of the single­
table access STARs are given in [LEE 88], For any given SQL
query, we build plans bottom up, first referencing the AccessRoot
STAR to build plans to access individual tables, and then repeatedly
referencing the JoinRoot STAR to join plans that were generated
earlier, until all tables have been joined. What constitutes a joinable
pair of streams depends upon a compile-time parameter. The
default is to give preference to those streams having an eligible
join predicate linking them, as did System R and R*, but this can
be overridden to also consider Cartesian products between two
streams of small estimated cardinality. In addition, in Starburst we
exploit all predicates that reference more than one table as join
predicates. This generalization of System R’s and R*’s "coll =
col2" join predicates, plus allowing plans to have composite inners
(e.g., (A*B)*(C*D)) and Cartesian products (when the appropriate
parameters are specified), significantly complicates the generation
of legal join pairs and increases their number. However, a cheaper
plan is more likely to be discovered among this expanded repertoire!
We will address this aspect of query optimization in a forthcoming
paper on join enumeration.

3. Properties of Plans

The concept of cost has been generalized to include all properties
a plan might have. We next present how properties are defined
and changed, and how they interact with STARs.

3.1. Description
Every table (either base table or result of a plan) has a set of
properties that summarize the work done on the table thus far (as
in [GRAE 87b], [BATO 87a],and [ROSE 87]) and hence are
important to the cost model. These properties are of three types:
relational: the relational content of the plan, e.g. due to joins,

projections, and selections
physical: the physical aspects of the tuples, which affect the

cost but not the relational content, e.g. the order
of the tuples

estimated: properties derived from the previous two as part
of the cost model, e.g. estimated cardinality of the
result and cost to produce it.

Examples of these properties are summarized in Figure 2. All
properties are handled uniformly as elements of a property vector,
which can easily be extended to add more properties (see section
5).
Initially, the properties of stored objects such as tables and access
methods are determined from the system catalogs. For example,
for a table, the catalogs contain its constituent columns (COLS),
the SITE at which it is stored [LOHM 85], and the access PATHS
defined on it. No predicates (PREDS) have been applied yet, it
is not a TEMPorary table, and no COST has been incurred in the
query. The ORDER is "unknown" unless the table is known to
store tuples in some order, in which case the order is defined by
the ordered set of columns on which the tuples are ordered.
Each LOLEPOP changes selected properties, including adding cost,
in a way determined by the arguments of its reference and the
properties of any arguments that are plans. For example, SORT

• Relational (WHAT)

TABLES Set of tables accessed
COLS Set of columns accessed
PREDS Set of predicates applied

• Physical (HOW)

ORDER Ordering of tuples
(an ordered list of columns)

SITE Site to which tuples delivered
TEMP "True" if materialized in a tempo­

rary table
PATHS Set of available access paths on

(set of) tables, each element an
ordered list of columns

• Estimate« (HOW MUCH)

CARD Estimated number of tuples result­
ing

COST Estimated cost (total resources, a
linear combination of I/O, CPU, and
communications costs [LOHM 85])

Figure 2: Example properties of a plan.

changes the ORDER of tuples to the order specified in a parameter.
SHIP changes the SITE property to the specified site. Both
LOLEPOPs add to the COST property of their input stream ad­
ditional cost that depends upon the size of that stream, which is a
function of its properties CARD and COLS. ACCESS changes a
stored table to a memory-resident stream of tuples, but optionally
can also subset columns (relational project) and apply predicates
(relational select) that may be enumerated as arguments. The
latter option will of course change the CARD property as well.
These changes, including the appropriate cost and cardinality esti­
mates, are defined in Starburst by a property function for each
LOLEPOP. Each property function is passed the arguments of the
LOLEPOP, including the property vector for arguments that are
STARs or LOLEPOPs, and returns the revised property vector.
Thus, once STARs are reduced to LOLEPOPs, the cost of any
plan can be assessed by invoking the property function for successive
LOLEPOPs. These cost functions are well established and validated
[MACK 86], so will not be discussed further here.

3.2. Required vs. Available
Properties

A reference of a STAR or LOLEPOP, especially for certain join
methods, may require certain properties for its arguments. For
example, the merge-join requires its input table streams to be
ordered by the join columns, and the nested-loop join requires the
inner table’s access method to apply the join predicate as though
it were a single-table predicate ("pushes the selection down").
Dyadic LOLEPOPs such as GET, JOIN, and UNION require that
the SITE of both input streams be the same.
In the previous section, we constructed a STAR for an
OrderedStream, where the desired order was a parameter of that
STAR. Clearly we could require a particular order by referencing
OrderedStream with the required order as the corresponding argu­
ment. The problem is that we may simultaneously require values
for any of the 2n combinations of n properties, and hence would
have to have a differently-named STAR for each combination. For
example, if the sort-merge JOIN in the example is to take place

21

ai SiTE=x, then we need to define a SitedOrderedStream that has
parameters for SITE and ORDER and references in its definition
SHIP LOLEPOPs to send any stream to SITE x, as well as a
SitedStream, an OrderedStream, and a STREAM. Actually,
SitedOrderedStream subsumes the others, since we can pass nulls
for the properties not required. But in general, every STAR will
need this same capability to specify some or all of the properties
that might be required by referencing STARs as parameters. Much
of the definition of each of these STARs would be redundant,
because these properties really are orthogonal to what the stream
produces. In addition, we often want to find the cheapest plan
that satisfies the required properties, even if there is a plan that
naturally produces the required properties. For example, even
though there is an index EMP.DNO by which we can access EMP
in the required DNO order, it might be cheaper, if EMP were not
ordered by DNO, to access EMP sequentially and sort it into DNO
order.

We therefore factor out a separate mechanism called Glue, which
can be referenced by any STAR and which:

1. checks if any plans exist for the required relational properties
(TABLES, COLS, and PREDS), referencing the top-most
STAR with those parameters if not;

2. adds to any existing plan "Glue" operators as a "veneer" to
achieve the required properties (for example, a SORT

LOLEPOP can be added to change the tuple ORDER, or a
SHIP LOLEPOP to change the SITE); and

3. either returns the cheapest plan satisfying the requirments or
(optionally) all plans satisfying the requirements.

In fact, Glue can be specified using STARs, and Glue operators
can be STARs as well as LOLEPOPs, as described in [LEE 88].

Required properties in the STAR reference are enclosed in square
brackets next to the affected SAP argument, to associate the re­
quired properties with the stream on which they are imposing
requirements. Different properties may be required by references
in different STARs; the requirements are accumulated until Glue
is referenced. This will be illustrated in the next section.

An example of this Glue mechanism is shown in Figure 3. In this
example, we assume that table DEPT is stored at SITE=N.Y., but
the STAR requires DEPT to be delivered to SITE=L.A. in DNO
order. None of the available plans meets those requirements. The
first available plan must be augmented with a SHIP LOLEPOP to
change the SITE property from N.Y. to L.A. The second plan, a
simple ACCESS of DEPT, must be both SORTed and SHIPped
The third plan, perhaps created by an earlier reference of Glue
that didn’t have the ORDER requirement, has already added a
SHIP to plan 2 to get it to L.A., but still needs a SORT to achieve
the ORDER requirement.

STAR
R e q u ir in g
P r o p e r t ie s

"Glue"

A v a ila b le
P la n s
fo r
DEPT

JOIN
Method: sort-m erge
Prod: DEPT.DNO - eup.dnoSl+o: L.A.Irnor:Outer:

JhfUlTRl
J V n p t rH M _ _ _ _ _ _on DEPT \DNO\L.A.\

GET
Table: DEPT
Cols: MGR
Prod: MGR - 'H a a s '
Input:

ACCESS
Table: DEPT
Cols: DNO, MGR
Pred: MGR - 'H a a s '

ACCESS
Table: Index on DEPT. DNO
Cols: T1D, DNO

Figure 3: Example of "Glue" mechanism injecting "Glue" operators to match plans
Only two properties, order and site, are shown here, as "ears" on top of

to required properties, and choosing the cheapest,
the top-most LOLEPOP for each plan.

22

4. Example: Join STARs

To illustrate the power of STARs, in this section we discuss one
possible set of STARs for generating the join strategies of the R*
optimizer (in Sections 4.1 - 4.4), plus several additional strategies
such as
• composite inners (Sections 4.1 and 4.3),
• new access methods (Section 4.5.2),
• new join methods (Section 4.4),
• dynamic creation of indexes on intermediate results (Section

4.5.3),
• materialization of inner streams of nested-loop joins to force

projection (Section 4.5.2).
Although there may be better ways within our STAR structure to
express the same set of strategies, the purpose of this section is to
illustrate the full power of STARs. Some of the strategies (e.g.,
hash joins) have not yet been implemented in Starburst; they are
included merely for illustrating what is involved in adding these
strategies to the optimizer.

These STARs are by no means complete: we have intentionally
simplified them by removing parameters and STARs that deal with
subqueries treated as joins, for example. The reader is cautioned
against construing this omission as an inability to handle other
cases; on the contrary, it illustrates the flexibility of STARs! We
can construct, but have omitted for brevity, additional STARs for
• sorting TIDs taken from an unordered index in order to order

I/O accesses to data pages,
• ANDing and ORing of multiple indexes for a single table,
• treating subqueries as joins having different quantifier types (i.e.,

generalizing the predicate calculus quantifiers of ALL and EXISTS
to include the FOR EACH quantifier for joins and the UNIQUE
quantifier for scalar (" = ") subqueries),

• filtration methods such as semi-joins and Bloom-joins.
We believe that any desired strategy for non-recursive queries will
be expressible using STARs, and are currently investigating what
difficulties, if any, arise with recursive queries and multiple execution
streams resulting from table partitioning [BATO 87a].

In these definitions, for readability we denote exclusive alternative
definitions by a left curly brace and inclusive alternative definitions by
a left square bracket. In practice, no distinction is necessary. In
all examples, we will write non-terminals (STAR names) in
RegularMixedCase, parameters in italics (those which may be sets
are denoted by capital letters), and terminals in bold, with
LOLEPOPs distinguished by BOLD CAPITAL LETTERS. Re­
quired properties are written in small bold letters and surrounded
by a pair of [square brackets]. For brevity, we have had to
shorten names, e.g., "JMeth" should read "JoinMethod". The
function "x (.)" denotes "columns of (•)", where • can be a set
of tables, an index, etc. We assume the existence of the basic set
functions of e ,f l ,s ,— (set difference), etc.

STARs are defined here top down (i.e., a STAR referenced by any
STAR is defined after its reference), which is also the order in
which they will be referenced. We start with the root STAR,
JoinRoot, which is referenced for a given set of parameters:

4.1. Join Permutation Alternatives

JoinRoot(n, T2 , P) [PermutedJoin(J';) T2 , P)
PermutedJointTZ, t j , p)

The meaning of this STAR should be obvious: either table-set T1
or table-set T2 can be the outer stream, with the other table-set
as the inner stream. Both are possible alternatives, denoted by an
inclusive (square) bracket. Note that we have no conditions on
either alternative; to exclude a composite inner (i.e., an inner that
is itself the result of a join), we could add a condition restricting
the inner table-set to be one table.
This simple STAR fails to adequately tax the power of STARs,
and thus resembles the comparable rule of transformational ap­
proaches. However, note that since none of the STARs referenced
by JoinRoot or any of its descendants will reference JoinRoot,
there is no danger of this STAR being invoked again and "undoing"
its effect, as there is in transformational rules [GRAE 87a].
4.2. Join-Site Alternatives

PermutedJoincn, T2, P) =

{SitedJoin(rt, T2, P) IF local query
Vs €o : RemoteJoinCn , T 2 , p , s) OTHERWISE

RemoteJoinen, T2, P , s) =
SitedJoin(Ti[s/i»= s], T2 [s i t e = s], P)

where
a = set of sites at which tables of the query

are stored, plus the query site

This STAR generates the same join-site alternatives as R* [LOHM
84], and illustrates the specification of a required property. Note
that Glue is not referenced yet, so the required site property
accumulates on each alternative until it is. The interpretation is:

1. If all tables (of the query) are located at the query site, go
on to SitedJoin, i.e., bypass the RemoteJoin STAR which
dictates the join site.

2. Otherwise, require that the join take place at one of the sites
at which tables are stored or the query originated.

If a site with a particularly efficient join engine were available,
then that site could easily be added to the definition of o.

4.3. Store Inner Stream?

SitedJoinCn, T2, P) Í JMeth(T l , T2 [t emp] , P) IF Cl
JMeth(T I , T2 , P) OTHERWISE

where

Cl = IF IT 21 > 1 OR T2 [site] ? T2 ! [site]

Again, this simple STAR has an obvious interpretation, although
the condition C l is a bit complicated:

• table (quantifier) sets Tl and T2 (with no order implied)
■ the set of (newly) eligible predicates, P

Suppose, for example, that plans for joining tables X and Y and
for accessing table Z had already been generated, so we were ready
to construct plans for joining X*Y with Z. Then JoinRoot would
be referenced with Tl = [X,Yj, T2 = [Zj, and
P= {X.g = Z.m, Y.h = Z.n}.

1. IF the inner stream (72) is a composite, or its site is not the
same as its required site (! [s /fe]) , then dictate that it be
stored as a temp and call JMeth.

2. OTHERWISE, reference JMeth with no additional require­
ments.

Note that if the second disjunct of condition Cl were absent, there
would be no reason that this STAR couldn’t be the parent

23

(referencer) of the previous STAR, instead of vice versa. As
written, SitedJoin exploits decisions made in its parent STAR,
PermutedJoin. A transformational rule would either have to test
if the site decision were made yet, or else inject the temp require­
ment redundantly in every transformation that dictated a site.

4.4. Alternative Join Methods

JMeth(n, T2 , p) =
JOIN (1VL, GlueCn, <t>), Glue(T2 , JPU IP), JP, p-(JPU IP))

j o i n ! m g , GlueCn [order = x(SP) n x(rj)l. $) ,
Glue(r2[ortfe«-=x(SP)nx(T2)], IP),

SP, p-(IPuSP)) IF SP**

where

P = all eligible predicates
JP s join predicates (multi-table, no ORs or

subqueries, etc., but expressions OK)
SP a sortable predicates

= {ptJP of form 'coll op col2', where
coll£x(ri) & col2 e x (T2) or vice versa }

IP = predicates eligible on the inner only,
i.e., predicates P such that x (p) £ x (T2)

This STAR references two alternative join methods, both represented
as references of the JOIN LOLEPOP with different parameters:
1. the join method (flavor of JOIN),
2. the outer stream and any required properties on that stream,
3. the inner stream and any required properties on that stream,
4. the join predicate(s) applicable by that join method (needed

for the cost equations),
5. any residual predicates to apply after the join.

The two join methods here are:
1. Nested-Loop (NL) Join, which can always be done. For each

outer tuple instance, columns of the join predicates (JP) in
the outer are instantiated to convert each JP to a single-table
predicate on the inner stream4. These and any predicates on
just the inner (DP) are "pushed down" to be applied by the
inner stream, if possible. Any multi-table predicates that don’t
qualify as join predicates must be applied as residual predicates.
Note that the predicates to be applied by the inner stream are
parameters, not required attributes. This forces Glue to re­
reference the single-table STARs to generate plans that exploit
the converted JP predicates rather than retrofitting a FILTER
LOLEPOP to existing plans that applied only the IP predicates.

2. Merge (MG) Join: If there are sortable predicates (SP), dictate
that both inner and outer be sorted on their columns of SP.
Note that the merge join, unlike the nested-loop join, applies
the sortable predicates as part of the join itself, pushing down
to the inner stream only the single-table predicates on the
inner (IP). The JOIN LOLEPOP in Figure 1, for example,
would be generated by this alternative. As before, remaining
multi-table predicates must be applied by JOIN as residuals
after the join.

Glue will first reference the STARs for accessing the given table(s),
applying the given predicate(s), if no plans exist for those param­
eters. In Starburst, a data structure hashed on the tables and
predicates facilitates finding all such plans, if they exist. Glue then
adds the necessary operators to each of these plans, as described
in the previous section. Simplified STARs for Glue, which this
STAR references, and for accessing stored tables, which Glue
references, are given in [LEE 88].

4.5. Additional Join Methods
Suppose now we wanted to augment the above alternatives with
additional join methods. All of the following alternative definitions
would be added to the right-hand side of the above STAR (JMeth).

4 .5 .1 . Hash Join Alternative

The hash join has shown promising performance [BABB 79, BRAT
84, DEWI 85]. We assume here a hash-join flavor (HA) that
atomically bucketizes both input streams and does the join on the
buckets.

JOIN (HA , Glue(rj, *), Glue(T2 , IP), HP, p-IP) IF HP**

where

HP = hashable predicates
s {peJP of form 'expr(x(Ti)) - e x p r (x (T2))'l

As in the merge join, only single-table predicates can be pushed
down to the inner. Note that all multi-table predicates (P-IP) —
even the hashable predicates (HP) — remain as residual predicates,
since there may be hash collisions. Also note that the set of
hashable predicates HP contains some predicates not in the set of
sortable predicates SP (expressions on any number of columns in
the same table), and vice versa (inequalities).
An alternate (and probably preferable) approach would be to add
a bucketized property to the property vector and a LOLEPOP to
achieve that property, so that any join method in the JMeth STAR
could perform the join in parallel on each of the bucketized streams,
with appropriate adjustments to its cost.

4 .5 .2 . Forcing Projection Alternative

To avoid expensive in-memory copying, tuples are normally retained
as pages in the buffer just as they were ACCESSed, until they are
materialized as a temp or SMPped to another site. Therefore, in
nested-loop joins it may be advantageous to materialize (STORE)
the selected and projected inner and re-ACCESS it before joining,
whenever a very small percentage of the inner table results (i.e.,
when the predicates on the inner table are quite selective and/or
only a few columns are referenced). Batory suggests the same
strategy whenever the inner "is generated by a complex expression"
[BATO 87a]. The following forces that alternative:

JOIN (NL, Glue(n, *),
TableAccess(Glue(r2[t«mp], IP), *, JP),

JP.P-(IPUJP))

This JMeth alternative accesses the inner stream (72), applying
only the single-table predicates (IP), and forcing Glue to STORE
the result in a temp (permanently stored tables are not considered
temps initially). All columns (*) of the temp are then re-accessed,
re-using the STAR for accessing any stored table, TableAccess.
Note that the STAR structure allows us to specify that the join
predicates (JP) can be pushed down only to this access, to prevent
the temp from being re-materialized for each outer tuple!

4 Ullman has coined the term "sideways information passing" [ULLM 85] for
this conversion of join predicates to single-table predicates by instantiating one
side of the predicate, which was done in System R [SELI 793.

24

TableAccess(T, C, P) =
Í ACCESS (H e a p , T , C, P) IF StMgr(T)= 'heap'
(A C C E SS (B T r e e , T, C, P) IF StMgr(T)= 'B-tree'

A TableAccess can be one (and only one) of the following flavors
of ACCESS, depending upon the type of storage manager (StMgr)
used, as described in [LIND 87]:

without impacting the Starburst system code at all [LEE 88]. Jf
STARs are compiled to generate an optimizer (as in [GRAE 87a,
GRAE 87b]), then updates of the STARs would be followed by
a re-generation of the optimizer. In either case, any STAR having
a condition not yet defined would require defining a C function
for that condition, compiling that function, and relinking that part
of the optimizer to Starburst. Note that we assume that the DBC
specifies the STARs correctly, i.e. without infinite cycles or mean­
ingless sequences of LOLEPOPs. An open issue is how to verify
that any given set of STARs is correct.

1. A physically-sequential ACCESS of the pages of table T, if
the storage manager type of T is ’heap’, or

2. A B-Tree type ACCESS of table T, if the storage manager
type of T is ’B-tree',

retrieving columns C and applying predicates P. By now it should
be apparent how easily alternatives for additional storage manager
types could be added to this STAR alone, and affect all STARs
that reference TableAccess.

4 .5 .3 . Dynamic Indexes Alternative

The nested-loop join works best when an index on the inner table
can be used to limit the search of the inner to only those tuples
satisfying the join and/or single-table predicates on the inner. Such
an index may not have been created by the user, or the inner may
be an intermediate result, in which case no auxiliary access paths
such as an index are normally created. However, we can force
Glue to create the index as another alternative. Although this
sounds more expensive than sorting for a merge join, it saves
sorting the outer for a merge join, and will pay for itself when the
join predicate is selective [MACK 86].

JOIN (NL, Glue(Tj, <j>),
Glue (T 2 [p a t / i s s IX], XPuIP), XP-IP, F-(XPUIP))

where

XP = indexable multi-table predicates

= i p e J P o f form ' e x pr (x (T i)) op T2.coi'i
IX h columns of indexable predicates

= (x(IP)U x(XP)) n x (T 2) , ' = ' predicates f i r s t

This alternative forces Glue to make sure that the access paths
property of the inner contains an index on the columns that have
either single-table (IP) or indexable (XP) predicates, ordered so
that those involved in equality predicates are applied first. If this
index needs to be created, the STARs implementing Glue will add
[order] and [temp] requirements to ensure the creation of a
compact index on a stored table. As in the nested-loop alternative,
the indexable multi-table predicates "pushed down" to the inner
are effectively converted to single-table predicates that change for
each outer tuple.

5. Extensibility —
W hat's Really Involved

Here we discuss briefly the steps required to change various aspects
of the optimizer strategies, in order to demonstrate the extensibility
and modularity of our STAR mechanism.
Easiest to change are the STARs themselves, when an existing set
of LOLEPOPs suffices. If the STARs are treated as input data
to a rule interpreter, then new STARs can be added to that file

Less frequently, we may wish to add a new LOLEPOP, e.g.
OUTERJOIN. This necessitates defining and compiling two C
functions: a run-time execution routine that will be invoked by the
query evaluator, and a property function for the optimizer to specify
the changes to plan properties (including cost) made by that
LOLEPOP. In addition, STARs must be added and/or modified,
as described above, to reference the LOLEPOP under the appro­
priate circumstances.
Probably the least likely and most serious alterations occur when
a property is added (or changed in any way) in the property vector.
Since the default action of any LOLEPOP on any property is to
leave the input property unchanged, only those property functions
that reference the new property would have to be updated, re­
compiled, and relinked to Starburst. By representing the property
vector as a self-defining record having a variable number of fields,
each of which is a property, we can insulate unaffected property
functions from any changes to the structure of the property vector.
STARs would be affected only if the new property were required
or produced by that STAR.

6. Related Work

Some aspects of our STARs resemble features of earlier work, but
there are some important differences. As we mentioned earlier,
our STARs are inspired by functional programming concepts
[BACK 78]. A major difference is that our "functions" (STARs)
can be multi-valued, i.e. a set of alternative objects (plans). The
other major inspiration, a production of a grammar, does not permit
a condition upon alternative expansions of a non-terminal: it either
matches or it doesn’t (and the alternatives must be exclusive).
Hoping to use a standard compiler generator to compile our STARs,
we investigated the use of partially context-sensitive W-grammars
[CLEA 77] for enforcing the "context" of required properties,
but were discouraged by the same combinatorial explosion of pro­
ductions described above when many properties are possible. Koster
[KOST 71] has solved this using a technique similar to ours, in
which a predicate called an "affix" (comparable to our condition
of applicability) may be associated with each alternative definition.
He has shown affix grammars to be Turing complete. In addition,
grammars are typically used in a parser to find just one expansion
to terminals, whereas our goal is to construct all such expansions.
Although a grammar can be used to construct all legal sequences,
this set may be infinite [ULLM 85].
The transformational approach of the EXODUS optimizer [GRAE
87a, GRAE 87b] uses C functions for the IF conditions and
expresses the alternatives in rules, as do we, but then compiles
those rules and conditions using an "optimizer generator" into
executable code. Given one initial plan, this code generates all
legal variations of that plan using two kinds of rules: transformation
rules to define alternative transformations of a plan, and imple­
mentation rules to define alternative methods for implementing an
operator (e.g., nested-loop and sort-merge algorithms for imple­
menting the JOIN operator). Our approach does not require an
initial plan, and has only one type of rule, which permits us to
express interactions between transformations and methods. Our
property functions are indistinguishable from Graefe’s property and

25

cost functions, although we have identified more properties than
any other author to date. Graefe does not deal with the need of
some rules (e.g. merge join) to require certain properties, as dis­
cussed in Section 3.2 and illustrated in Sections 4.2 - 4.4, 4.5.2,
and 4.5.3. Although Graefe re-uses common subplans in alternative
plans, transformational rules may subsequently generate alternatives
and pick a new optimal plan for the subplan, forcing re-estimation
of the cost of every plan that has already incorporated that subplan.
Our building blocks approach avoids this problem by generating all
plans for the subplan before incorporating that subplan in other
plans, although Glue may generate some new plans having different
properties and/or parameters. And while the structure Of our
STARs does not preclude compilation by an optimizer generator,
it also permits interpreting the STARs by a simple yet efficient
interpreter during optimization, as was done in our prototype.
Interpretation saves re-compiling the optimizer component every
time a strategy is added or changed, and also allows greater control
of the order of evaluation. For example, depending upon the value
of a STAR’S parameter, we may never have to construct entire
subtrees within the decision tree, but a compiled optimizer must
contain a completely general decision tree for all queries.
Freytag [FREY 87] proposes a more LISP-like set of transforma­
tional rules that starts from a non-procedural set of parameters
from the query, as do we, and transforms them into all alternative
plans. He points to the EXODUS optimizer generator as a possible
implementation, but does not address several key implementation
issues such as his ellipsis ("...") operator, which denotes any number
of expressions, e.g.:

((JOIN t , (. . .t 2 ...)) (join t 1 (...)r2))

And the ORDER and SITE properties (only) are expressed as
functions, which presumably would have to be re-derived each time
they were referenced in the conditions. Freytag does not exploit
the structure of query optimization to limit what rules are applicable
at any time and to prevent re-application of the same rules to
common subplans shared by two alternative plans, although he
suggests the need to do so.
Rosenthal and Helman [ROSE 87] suggest specifications for "well-
formed" plans, so that transformational rules can be verified as
valid if they transform well-formed plans to well-formed plans.
Like Graefe, they associate properties with plans, viewed as pred­
icates that are true about the plan. Alternative plans producing the
same intermediate result with the same properties converge on
"data nodes", on which "transformations that insert unary
operators...are more naturally applied". An operator is then well-
formed if any input plan satisfying the required input properties
produces an output plan that satisfies the output properties. The
paper emphasizes representations for verifiability and search issues,
rather than detailing mechanisms (1) to construct well-formed trans­
formations, (2) to match input data nodes to output data nodes
(corresponding to our Glue), and (3) to recalculate the cost of all
plans that share (through a common data node) a common subplan
that is altered by a transformation.
Probably the closest work to ours is Batory’s "synthetic" architecture
for the entire GENESIS extensible database system (not just the
query optimizer [BATO 87b]), in which "atoms" of "primitive
algorithms" are composed by functions into "molecules", in layers
that successively add implementation details [BATO 87a]. Devel­
oped concurrently and independently, Batory’s functional notation
closely resembles STARs, but is presented and implemented as
rewrite (transformational) rules that are used to construct and
compile the complete set of alternatives a priori for a given opti­
mizer, after first selecting from a catalog of available algorithms
those desired to implement operators for each layer. At the highest
layer, for example, the DBC chooses from many optimization al­
gorithms (e.g., depth-first vs. breadth-first), while the choices at
the lowest layers correspond to our flavors of LOLEPOPs or
Graefe’s methods. The functions that compose these operations do

not explicitly permit conditions on the alternative definitions, as do
we; Batory considers them unnecessary when rules are constructed
properly, but alludes to them in comments next to some alternatives
and in a footnote. Inclusive alternatives automatically become
arguments of a CHOOSE__CHEAPEST function during the com­
position process. The rewrite rules include rules to match properties
(which he calls characteristics) even if they are unneeded, e.g. a
SORT may be applied to a stream that is already ordered appro­
priately by an index, as well as rules to simplify the resulting
compositions and eliminate any such unnecessary operations. By
treating the stored vs. in-memory distinction as a property of
streams, and by having a general-purpose Glue mechanism, we
manage to factor out most of these redundancies in our STARs.
Although clearly relevant to query optimization, Batory’s larger
goal was to incorporate an encyclopedic array of known query
processing algorithms within his framework, including operators for
splitting, processing in parallel, and assembling horizontal partitions
of tables.

7. Conclusions

We have presented a grammar for specifying the set of legal strat­
egies that can be executed by the query evaluator. The grammar
composes low-level database operators (LOLEPOPs) into higher-
level constructs using rules (STARs) that resemble the definition
of functions: they may have alternative definitions that have IF
conditions, and these alternative definitions may, in turn, reference
other functions that have already been defined. The functions are
parametrized objects that produce one or more alternative plans.
Each plan has a vector of properties, including the cost to produce
that plan, which may be altered only by LOLEPOPs. When an
alternative definition requires certain properties of an input, "Glue"
can be referenced to do "impedance matching" between the plans
created thus far and the required properties by injecting a veneer
of Glue operators.

We have shown the power of STARs by specifying some of the
strategies considered by the R* system and several additional ones,
and believe that any desired extension can be represented using
STARs. We find our constructive, "building-blocks" grammar to
be a more natural paradigm for specifying the "language" of legal
sequences of database operators than plan transformational rules,
because they allow the DBC to build higher levels of abstraction
from lower-level constructs, without having to be aware of how
those lower-level constructs are defined. And unlike plan trans­
formational rules, which consider all rules applicable at every iter­
ation and which must do complicated unification to determine
applicability, referencing a STAR triggers in an obvious way only
those STARs referenced in its definition, just like a macro expander.
This limited fanout of STARs should make it possible to achieve
our goal of expressing alternative optimizer strategies as data and
still use these rules to generate and evaluate the cost of a large
number of plans within a reasonable amount of time.

8. Acknowledgements
We wish to acknowledge the contributions to this work by several
colleagues, especially the Starburst project team. We particularly
benefitted from lengthy discussions with — and suggestions by —
Johann Christoph Freytag (now at the European Community Re­
search Center in Munich), Laura Haas, and Kiyoshi Ono (visiting
from the IBM Tokyo Research Laboratory). Laura Haas, Bruce
Lindsay, Tim Malkemus (IBM Entry Systems Division in Austin,
TX), John McPherson, Kiyoshi Ono, Hamid Pirahesh, Irv Traiger,
and Paul Wilms constructively critiqued an earlier draft of this
paper, improving its readability significantly. We also thank the
referees for their helpful suggestions.

26

Bibliography

[BABB 79]

[BATO 86]

[BATO 87a]

[BATO 87b]

[BACK 78]

[BERN 81]

[BRAT 84]

[CARE 86]

[CHU 82]

[CLEA 77]

[DANI 82]

[DEWI 85]

[EPST 78]

[FREY 87]

[GRAE 87a]

[GRAE 87b]

[HAER 78]

E. Babb, Implementing a Relational Database by
Means of Specialized Hardware, ACM Trans, on Da­
tabase Systems 4,1 (1979) pp. 1-29.
D.S. Batory et al., GENESIS: An Extensible Database
Management System, Tech. Report TR-86-07 (Dept,
of Comp. Sei., Univ. of Texas at. To appear in IEEE
Trans, on Software Engineering.
D.S. Batory, A Molecular Database Systems Tech­
nology, Tech. Report TR-87-23 (Dept, of Comp. Sei.,
Univ. of Texas at.
D. Batory, Extensible Cost Models and Query Op­
timization in GENESIS, IEEE Database Engineering
10,4 (Nov. 1987).
j. Backus, Can programming be liberated from the
von Neumann style? A functional style and its
algebra of programs", Comm. ACM 21,8 (Aug.
1978).
P. Bernstein and D.-H. Chiu, Using Semi-Joins to
Solve Relational Queries, Journal ACM 28,1 (Jan.
1981) pp. 25-40.
K. Bratbergsengen, Hashing Methods and Relational
Algebra Operations, Procs. o f the Tenth International
Conf. on Very Large Data Bases (Singapore), Morgan
Kaufmann Publishers (Los Altos, CA, 1984) pp.
323-333.
M.J. Carey, D.J. DeWitt, D. Frank, G. Graefe, J.E.
Richardson, E.J. Shekita, and M. Muralikrishna, The
Architecture of the EXODUS Extensible DBMS: a
Preliminary Report, Procs. o f the International Work­
shop on Object-Oriented Database Systems (Asilomar,
CA, Sept. 1986).
W.W. Chu and P. Hurley, Optimal Query Processing
for Distributed Database Systems, IEEE Trans, on
Computers C-31,9 (Sept. 1982) pp. 835-850.
J.C. Cleaveland and R.C. Uzgalis, Grammars for
Programming Languages, Elsevier North-Holland
(New York, 1977).
D. Daniels, P.G. Selinger, L.M. Haas, B.G. Lindsay,
C. Mohan, A. Walker, and P. Wilms, An Introduction
to Distributed Query Compilation in R*, Procs. Sec­
ond International Conf. on Distributed Databases (Ber­
lin, September 1982). Also available as IBM Re­
search Report RJ3497, San Jose, CA, June 1982.
D. J. DeWitt and R. Gerber, Multiprocessor Hash-
Based Join Algorithms, Procs. o f the Eleventh Inter­
national Conf. on Very Large Data Bases (Stockholm,
Sweden), Morgan Kaufmann Publishers (Los Altos,
CA, September 1985) pp. 151-164.
R. Epstein, M. Stonebraker, and E. Wong, Distributed
Query Processing in a Relational Data Base System,
Procs. o f ACM-SIGMOD (Austin, TX, May 1978)
pp. 169-180.
J.C. Freytag, A Rule-Based View of Query Optimi­
zation, Procs. o f ACM-SIGMOD (San Francisco,
CA, May 1987) pp. 173-180.
G. Graefe and D.J. DeWitt, The EXODUS Optimizer
Generator, Procs. o f ACM-SIGMOD (San Francisco,
CA, May 1987) pp. 160-172.
G. Graefe, Software Modularization with the EXO­
DUS Optimizer Generator, IEEE Database Engineer­
ing 10,4 (Nov. 1987).
T. Haerder, Implementing a Generalized Access Path
Structure for a Relational Database System, ACM
Trans, on Database Systems 3,3 (Sept. 1978) pp.
258-298.

[KOST 71]

[LEE 88]

[LIND 87]

[LOHM 83]

[LOHM 84]

[LOHM 85]

[MACK 86]

[MORR 86]

[ROSE 87]

[SCHW 86]

[SELI 79]

[STON 86]
[ULLM 85]

[VALD 87]
[WONG 76]

[WONG 83]

C.H.A. Koster, Affix Grammars, ALGOL 68 Imple­
mentation Elsevier North-Holland (J.E.L. Peck (ed.),
Amsterdam, 1971) pp. 95-109.
M.K. Lee, J.C. Freytag, and G.M. Lohman, Imple­
menting an Interpreter for Functional Rules in a
Query Optimizer, IBM Research Report RJ6I25 IBM
Almaden Research Center (San Jose, CA, March
1988).
B. Lindsay, J. McPherson, and H. Pirahesh, A Data
Management Extension Architecture, Procs. o f ACM-
SIGMOD (San Francisco, CA, May 1987) pp.
220-226. Also available as IBM Res. Report RJ5436,
San Jose, CA, Dec. 1986.
G.M. Lohman, J.C. Stoltzfus, A.N. Benson, M.D.
Martin, and A.F. Cardenas, Remotely-Sensed Geo­
physical Databases: Experience and Implications for
Generalized DBMS, Procs. o f ACM-SIGMOD (San
Jose, CA, May 1983) pp. 146-160.
G.M. Lohman, D. Daniels, L.M. Haas, R. Kistler,
P.G. Selinger, Optimization of Nested Queries in a
Distributed Relational Database, Procs. o f the Tenth
International Conf. on Very Large Data Bases (Sing­
apore), Morgan Kaufmann Publishers (Los Altos, CA,
1984) pp. 403-415. Also available as IBM Research
Report RJ4260, San Jose, CA, April 1984.
G.M. Lohman, C. Mohan, L.M. Haas, B.G. Lindsay,
P.G. Selinger, P.F. Wilms, and D. Daniels, Query
Processing in R*, Query Processing in Database Sys­
tems, Springer-Verlag (Kim, Batory, & Reiner (eds.),
1985) pp. 31-47. Also available as IBM Research
Report RJ4272, San Jose, CA, April 1984.
L. F. Mackert and G.M. Lohman, R* Optimizer Val­
idation and Performance Evaluation for Distributed
Queries, Procs. o f the Twelfth International Conference
on Very Large Data Bases (Kyoto) Morgan Kaufmann
Publishers (Los Altos, CA, August 1986) pp.
149-159. Also available as IBM Research Report
RJ5050, San Jose, CA, April 1986.
K. Morris, J.D. Ullman, and A. Van Gelder, Design
Overview of the NAIL! System, Report No. STAN-
CS-86-1108 Stanford University (Stanford, CA, May
1986) .
A. Rosenthal and P. Helman, Understanding and
Extending Transformation-Based Optimizers, IEEE
Database Engineering 10,4 (Nov. 1987).
P.M. Schwarz, W. Chang, J.C. Freytag, G.M.
Lohman, J. McPherson, C. Mohan, and H. Pirahesh,
Extensibility in the Starburst Database System, Procs.
o f the International Workshop on Object-Oriented Da­
tabase Systems (Asilomar, CA), IEEE (Sept. 1986).
P.G. Selinger, M.M. Astrahan, D.D. Chamberlin,
R.A. Lorie, and T.G. Price, Access Path Selection
in a Relational Database Management System, Procs.
o f ACM-SIGMOD (May 1979) pp. 23-34.
M. Stonebraker and L. Rowe, The Design of Postgres.
Procs. o f ACM-SIGMOD (May 1986) pp. 340-355.
J.D. Ullman, Implementation of Logical Query Lan­
guages for Databases, ACM Trans, on Database Sys­
tems 10,3 (September 1985) pp. 289-321.
P. Valduriez, Join Indices, ACM Trans, on Database
Systems 12,2 (June 1987) pp. 219-246.
E. Wong and K. Youssefi, Decomposition — a Strat­
egy for Query Processing, ACM Trans, on Database
Systems 1,3 (Sept. 1976) pp. 223-241.
E. Wong and R. Katz, Distributing a Database for
Parallelism, Procs. o f ACM-SIGMOD (San Jose, CA,
May 1983) pp. 23-29.

27

