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Abstract
Extensible query optimization requires that the "repertoire" of 
alternative strategies for executing queries be represented as data, 
not embedded in the optimizer code. Recognizing that query op­
timizers are essentially expert systems, several researchers have 
suggested using strategy rules to transform query execution plans 
into alternative or better plans. Though extremely flexible, these 
systems can be very inefficient: at any step in the processing, many 
rules may be eligible for application and complicated conditions 
must be tested to determine that eligibility during unification. We 
present a constructive, "building blocks" approach to defining al­
ternative plans, in which the rules defining alternatives are an 
extension of the productions of a grammar to resemble the definition 
of a function in mathematics. The extensions permit each token 
of the grammar to be parametrized and each of its alternative 
definitions to have a complex condition. The terminals of the 
grammar are base-level database operations on tables that are 
interpreted at run-time. The non-terminals are defined declaratively 
by production rules that combine those operations into meaningful 
plans for execution. Each production produces a set of alternative 
plans, each having a vector of properties, including the estimated 
cost of producing that plan. Productions can require certain prop­
erties of their inputs, such as tuple order and location, and we 
describe a "glue" mechanism for augmenting plans to achieve the 
required properties. We give detailed examples to illustrate the 
power and robustness of our rules and to contrast them with related 
ideas.

1. Introduction

Ever since the first query optimizers [WONG 76, SELI 79] were 
built for relational databases, revising the "repertoire" of ways to 
construct a procedural execution plan from a non-procedural query 
has required complicated and costly changes to the optimizer code 
itself. This has limited the repertoire of any one optimizer by 
discouraging or slowing experimentation with — and implementation 
of — all the new advances in relational technology, such as im­
proved join methods [BABB 79, BRAT 84, DEWI 85], distributed 
query optimization [EPST 78, CHU 82, DANI 82, LOHM 85],
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semijoins [BERN 81], Bloomjoins [BABB 79, MACK 86], parallel 
joins on fragments [WONG 83], join indexes [HAER 78, VALD 
87], dynamic creation of indexes [MACK 86], and many other 
variations of traditional processing strategies. The recent surge in 
interest in extensible database systems [STON 86, CARE 86, 
SCHW 86, BATO 86] has only exacerbated the burden on opti­
mizers, adding the need to customize a database system for a 
particular class of applications, such as geographic [LOHM 83], 
CAD/CAM, or expert systems. Now optimizers must adapt to 
new access methods, storage managers, data types, user-defined 
functions, etc., all combined in novel ways. Clearly the traditional 
specification of all feasible strategies in the optimizer code cannot 
support such fluidity.
Perhaps the most challenging aspect of extensible query optimization 
is the representation of alternative execution strategies. Ideally, 
this representation should be readily understood and modified by 
the Database Customizer (DBC)1. Recognizing that query optimiz­
ers are expert systems, several authors have observed that rules 
show great promise for this purpose [ULLM 85, FREY 87, GRAE 
87a]. Rules provide a high-level, declarative (i.e., non-procedural), 
and compact specification of legal alternatives, which may be input 
as data to the optimizer and traced to explain the origin of any 
execution plan. This makes it easy to modify the strategies without 
impacting the optimizer, and to encapsulate the strategies executable 
by a particular processor in a heterogeneous network. But how 
should rules represent alternative strategies? The EXODUS project 
[GRAE 87a, GRAE 87b] and Freytag [FREY 87] use rules to 
transform a given execution plan into other feasible plans. The 
NAIL! project [ULLM 85, MORR 86] employs "capture rules" 
to determine which of a set of available plans can be used to 
execute a query.
In this paper, we use rules to describe how to construct — rather 
than to alter or to match — plans. Our rules "compose" low-level 
database operations on tables (such as ACCESS, JOIN, and SORT) 
into higher-level operations that can be re-used in other definitions. 
These constructive, "building blocks" rules, which resemble the 
productions of a grammar, have two major advantages over plan 
transformation rules:
• They are more readily understood, because they enable the DBC 

to build increasingly complex plans from common building blocks, 
the details of which may be transparent to him; and

• They can be processed more efficiently during optimization, by 
simply finding the definition of any building block that is refer­
enced, using a simple dictionary search, much as is done in macro 
expanders. By contrast, plan transformation rules usually must

1 We feel this term more accurately describes the role of adapting an implemented 
but extensible database system than does the term Database Implementor (DBI), 
coined by Carey et al. [CARE 86],
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examine a large set of rules and apply complicated conditions on 
each of a large set of plans generated thus far, in order to 
determine if that plan matches the pattern to which that rule 
applies. As new rules create new patterns, existing rules may 
have to add conditions that deal with those new patterns.

Our grammar-like approach is founded upon a few fundamental 
observations about query optimization:
• All database operators consume and produce a common object — 

a table, viewed as a stream of tuples that is generated by accessing 
a table [BATO 87a], The output of one operation becomes the 
input of the next. Streams from individual tables are merged by 
joins, eventually into a single stream [FREY 87, GRAE 87a].

• Optimizers construct legal sequences of such operators that are 
understood by an interpreter, the query evaluator. In other words, 
the repertoire of legal plans is a language that might well be 
defined by a grammar.

• Decisions made by the optimizer have an inherent sequence depen­
dency that limits the scope of subsequent decisions [BATO 87a, 
FREY 87]. For example, for a given plan, the order in which 
a given set of tables are joined must be determined before the 
access path for any of those tables is chosen, because the table 
order determines which predicates are eligible and hence might 
be applied by the access path of any table (commonly referred 
to as "pushing down the selection"). Thus, for any set of tables, 
the rules for ordering table accesses must precede those for 
choosing the access path of each table, and the former serve to 
limit significantly which of the latter rules are applicable.

• Alternative plans may incorporate the same plan fragment, whose 
alternatives need be evaluated only once. This further limits the 
rules generating alternatives to just the new portions of the plan.

• Unlike the simple pattern-matching of tokens to determine the 
applicability of productions in grammars, in query optimization 
specifying the conditions under which a rule is applicable is usually 
harder than specifying the rule’s transformation. For example, a 
multi-column index can apply one or more predicates only if the 
columns referenced in the predicates form a prefix of the columns 
in the index. Assigning the predicates to be applied by the index 
is far easier to express than the condition that permits that 
assignment.

These observations prompted us to use "strategy" rules to construct 
legal nestings of database operators declaratively, much as the 
productions of a grammar construct legal sequences of tokens. 
However, our rules resemble more the definition of a function in 
mathematics or a rule in Prolog, in that the "tokens" of our 
grammar may be parametrized and their definition alternatives may 
have complex conditions. The reader is cautioned that the application 
— not the representation — is our claim to novelty. Logic pro­
gramming uses rules to construct new relations from base relations 
[ULLM 85], whereas we are using rules to construct new operators 
from base operators that operate on tables.
Our approach is a general one, but we will present it in the context 
of its intended use: the Starburst prototype extensible database 
system, which is under development at the IBM Almaden Research 
Center [SCHW 86, LIND 87].
The paper is organized as follows. Section 2 first defines thé 
end-product of optimization — plans. We describe what they’re 
made of, what they look like, how our rules are used to construct 
all of them for a query. In Section 3, we associate properties with 
plans, and allow rules to impose requirements on the properties of 
their input plans. A set of possible rules for joins is given in 
Section 4 to illustrate the power of our rules to specify some of 
the most complicated strategies of existing systems, including several 
not addressed by other authors. Section 5 outlines how the DBC

can make extensions to rules, properties, and database operators. 
Having thoroughly described our approach, we contrast it with 
related work in Section 6, and conclude in Section 7.

2. Plan Generation

In this section, we describe the form of our rules. We must first 
define what we want to produce with these rules, namely a query 
evaluation plan, and its constituents.

2.1. Plans
The basic object to be manipulated —  and the class of "terminals" 
in our grammar — is a LOw-LEvel Plan OPerator (LOLEPOP) that 
will be interpreted by the query evaluator at run-time. LOLEPOPs 
are a variation of the relational algrebra (e.g., JOIN, UNION, etc.), 
supplemented with low-level operators such as ACCESS, SORT, 
SHIP, etc. [FREY 87]. Each LOLEPOP is viewed as a function 
that operates on 1 or 2 tables2, which are parameters to that 
function, and produces a single table as output. A table can be 
either a table stored on disk or a "stream of tuples" in memory 
or a communication pipe. The ACCESS LOLEPOP converts a 
stored table to a stream of tuples, and the STORE LOLEPOP 
does the reverse. In addition to input tables, a LOLEPOP may 
have other parameters that control its operation. For example, one 
parameter of the SORT LOLEPOP is the set of columns on which 
to sort. Parameters may also specify a flavor of LOLEPOP. For 
example, different join methods having the same input parameter 
structure are represented by different flavors of the JOIN 
LOLEPOP; differences in input parameters would necessitate a 
distinct LOLEPOP. Parameters may be optional; for example, the 
ACCESS LOLEPOP may optionally apply a set of predicates.
A query evaluation plan (QEP, or plan) is a directed graph of 
LOLEPOPs. An example plan is shown in Figure 1. Note that 
arrows point toward the source of the stream, not the direction in 
which tuples flow. This plan shows a sort-merge JOIN of DEPT 
as the outer table and EMP as the inner table. The DEPT stream 
is generated by an ACCESS to the stored table DEPT, then 
SORTed into the order of column DNO for the merge-join. The 
EMP stream is generated by an ACCESS to the stored index on 
column EMP.DNO3 that includes as one "column" the tuple identifier 
(TID). For each tuple in the stream, the GET LOLEPOP then 
uses the TID to get additional columns from its stored table: 
columns NAME and ADDRESS from EMP in this example.

Another way of representing this plan is as a nesting of functions 
[BATO 87a, FREY 87]:

JOIN ( sort-merge , D E P T . D N O =  E M P . D N O ,

SORT( A C C E S S ! D E P T , {D N O ,M G R ], {M G R = 'H a a s ) ) , D N O ), 

GET( A C C E S S ! Index on E M P  .D N O , { T ID ,  DNO] , £ ) ,

E M P , {N A M E , ADDRESS), <f> ) )

This representation would be a lot more readable, and easier to 
construct, if we were to define intermediate functions D and E for 
the last two parameters to JOIN:

JOIN (sort-merge, D .D N O = E .D N O , D, E)
where

2 Nothing in the structure of our rules prevents LOLEPOPs from operating on 
any number of tables.

3 Actually, ACCESSes to base tables and to access methods such as this index 
use different flavors of ACCESS.
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2.2. Rules

Figure 1: One potential query evaluation plan for the SQL 
query:

SELECT NAME, ADDRESS
FROM EMP E, DEPT D
WHERE E.DNO - D.DNO AND MGR='Haas’

D = SO R T ( A C C E S S !  D E P T , {D N O ,M G R}, { M G R = B a a J ) ) , DNO)

and
E =  GET  ( A C C E S S !/mie* o n E M P .D N O ,  { T I B ,  D NO }, 0),

E M P ,  {N AM E , ADD RESS) , 4, )

If properly parametrized, these intermediate functions could be 
re-used for creating an ordered stream for any table, e.g.

O rde red Stream l(r, C, P ,  order) =  SO R T ! A C C E S S !  7 , C, P ) ,  order)

and

0rde redStream 2(r, C, P ,  order) =

G E T (A C C E S S ! a , { T ID } , 4>), T ,  C , P )  IF  orderE a

where T  is the stored table (base table or base tables represented 
in a stored intermediate result) to be accessed, C is the set of 
columns to be accessed, P is the set of predicates to be applied, 
and "orderC o" means "the ordered list of columns of order are a 
prefix of those of access path a of 7". Now it becomes apparent 
that OrderedStreaml and OrderedStream2 provide two alternative 
definitions for a single concept, an OrderedStream, in which the 
second definition depends upon the existence of a suitable access 
path:

O rderedStream !r, C, P ,  order) =

[S O R T !A C C E S S ! T ,  C, P ) ,  order)
GET  ! A C C E S S !  a , { TID] , <j>), T ,  C , P )  IF  orderCa

This higher-level construct can now be nested within other functions 
needing an ordered stream, without having to worry about the 
details of how the ordered stream was created [BATO 87a]. It is 
precisely this train of reasoning that inspired the grammar-like 
design of our rules for constructing plans.

Executable plans are defined using a grammar-like set of 
parametrized production rules called STrategy Alternative Rules 
(STARs) that define higher-level constructs from lower-level con­
structs, in a way resembling common mathematical functions or a 
functional programming language [BACK 78]. A STAR defines 
a named, parametrized object (the "nonterminals" in our grammar) 
in terms of one or more alternative definitions, each of which:
• may have a condition o f applicability, and
• defines a plan by referencing one or more LOLEPOPs or other 

STARs, specifying arguments for their parameters.
Arguments and conditions of applicability may reference constants, 
parameters of the STAR being defined, or other LOLEPOPs or 
STARs. For example, the intermediate functions OrderedStreaml 
and OrderedStream2, defined above, are examples of STARs with 
only one alternative definition, but OrderedStream has two alter­
native definitions. The first of these references the SORT 
LOLEPOP, whose first argument is a reference to the ACCESS 
LOLEPOP and whose second argument is the parameter order. 
The conditions of applicability for all the alternatives may either 
overlap or be exclusive. If they overlap, as they do for 
OrderedStream, then the STAR may return more than one plan.
In addition, we may wish to apply the function to every element 
of a set. For example, in OrderedStream2 above, any other index 
on EMP having DNO as its major column could achieve the desired 
order. So we need a STAR to generate an ACCESS plan for each 
index i in that set I:

IndexAccessfT) =  V i e I : A C C E S S !  i , { T ID ) ,  $  )

Using rule IndexAccess in rule OrderedStream2 as the first argument 
should apply the GET LOLEPOP to each such plan, i.e., for each 
alternative plan returned by IndexAccess, the GET function will 
be referenced with that plan as its first argument. So 
GET ( IndexAccess(EMP), C, P ) will also return multiple plans. 
Therefore any STAR having overlapping conditions or referencing 
a multi-valued STAR will itself be multi-valued. It is easiest to 
treat all STARs as operations on the abstract data type Set o f 
Alternative Plans for a stream (SAP), which consume one or two 
SAPs and are mapped (in the LISP sense [FREY 87]) onto each 
element of those SAPs to produce an output SAP. Set-valued 
parameters other than SAPs (such as the sets of columns C and 
predicates P above) are treated as a single parameter unless oth­
erwise designated by the V clause, as was done in the definition 
of IndexAccess.

2.3. Use and Implementation
As our functional notation suggests, the rule mechanism starts with 
the root STAR, which is the "starting state" of our grammar. The 
root STAR has one or more alternative definitions, each of which 
may reference other STARs, which in turn may reference other 
STARs, and so on top down until a STAR is defined totally in 
terms of "terminals", i.e. LOLEPOPs operating on constants. Each 
reference of a STAR is evaluated by replacing the reference with 
its alternative definitions that satisfy the condition of applicability, 
and replacing the parameters of those definitions with the arguments 
of the reference. Unlike transformational rules, this substitution 
process is remarkably simple and fast, the fanout of any reference 
of a STAR is limited to just those STARs referenced in its defi­
nition, and alternative definitions may be evaluated in parallel. 
Therein lies the real advantage of STARs over transformational 
rules. The implementation of a prototype interpreter for STARs, 
including a very general mechanism for controlling the order in 
which STARs are evaluated, is described in [LEE 88].
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Thus far in Starburst, we have sets of STARs for accessing indi­
vidual tables and joins, but STARs may be defined for any new 
operation, e.g. outer join, and may reference any other STAR. The 
root STAR for joins is called JoinRoot, a possible definition of 
which appears in Section “4. Example: Join STARs”, along with 
the STARs that it references. Simplified definitions of the single­
table access STARs are given in [LEE 88], For any given SQL 
query, we build plans bottom up, first referencing the AccessRoot 
STAR to build plans to access individual tables, and then repeatedly 
referencing the JoinRoot STAR to join plans that were generated 
earlier, until all tables have been joined. What constitutes a joinable 
pair of streams depends upon a compile-time parameter. The 
default is to give preference to those streams having an eligible 
join predicate linking them, as did System R and R*, but this can 
be overridden to also consider Cartesian products between two 
streams of small estimated cardinality. In addition, in Starburst we 
exploit all predicates that reference more than one table as join 
predicates. This generalization of System R’s and R*’s "coll = 
col2" join predicates, plus allowing plans to have composite inners 
(e.g., (A*B)*(C*D)) and Cartesian products (when the appropriate 
parameters are specified), significantly complicates the generation 
of legal join pairs and increases their number. However, a cheaper 
plan is more likely to be discovered among this expanded repertoire! 
We will address this aspect of query optimization in a forthcoming 
paper on join enumeration.

3. Properties of Plans

The concept of cost has been generalized to include all properties 
a plan might have. We next present how properties are defined 
and changed, and how they interact with STARs.

3.1. Description
Every table (either base table or result of a plan) has a set of 
properties that summarize the work done on the table thus far (as 
in [GRAE 87b], [BATO 87a],and [ROSE 87]) and hence are 
important to the cost model. These properties are of three types:
relational: the relational content of the plan, e.g. due to joins,

projections, and selections
physical: the physical aspects of the tuples, which affect the

cost but not the relational content, e.g. the order 
of the tuples

estimated: properties derived from the previous two as part
of the cost model, e.g. estimated cardinality of the 
result and cost to produce it.

Examples of these properties are summarized in Figure 2. All 
properties are handled uniformly as elements of a property vector, 
which can easily be extended to add more properties (see section 
5).
Initially, the properties of stored objects such as tables and access 
methods are determined from the system catalogs. For example, 
for a table, the catalogs contain its constituent columns (COLS), 
the SITE at which it is stored [LOHM 85], and the access PATHS 
defined on it. No predicates (PREDS) have been applied yet, it 
is not a TEMPorary table, and no COST has been incurred in the 
query. The ORDER is "unknown" unless the table is known to 
store tuples in some order, in which case the order is defined by 
the ordered set of columns on which the tuples are ordered.
Each LOLEPOP changes selected properties, including adding cost, 
in a way determined by the arguments of its reference and the 
properties of any arguments that are plans. For example, SORT

• Relational (WHAT)

TABLES Set of tables accessed
COLS Set of columns accessed
PREDS Set of predicates applied

• Physical (HOW)

ORDER Ordering of tuples
(an ordered list of columns)

SITE Site to which tuples delivered
TEMP "True" if materialized in a tempo­

rary table
PATHS Set of available access paths on 

(set of) tables, each element an 
ordered list of columns

• Estimate« (HOW MUCH)

CARD Estimated number of tuples result­
ing

COST Estimated cost (total resources, a 
linear combination of I/O, CPU, and 
communications costs [LOHM 85])

Figure 2: Example properties of a plan.

changes the ORDER of tuples to the order specified in a parameter. 
SHIP changes the SITE property to the specified site. Both 
LOLEPOPs add to the COST property of their input stream ad­
ditional cost that depends upon the size of that stream, which is a 
function of its properties CARD and COLS. ACCESS changes a 
stored table to a memory-resident stream of tuples, but optionally 
can also subset columns (relational project) and apply predicates 
(relational select) that may be enumerated as arguments. The 
latter option will of course change the CARD property as well. 
These changes, including the appropriate cost and cardinality esti­
mates, are defined in Starburst by a property function for each 
LOLEPOP. Each property function is passed the arguments of the 
LOLEPOP, including the property vector for arguments that are 
STARs or LOLEPOPs, and returns the revised property vector. 
Thus, once STARs are reduced to LOLEPOPs, the cost of any 
plan can be assessed by invoking the property function for successive 
LOLEPOPs. These cost functions are well established and validated 
[MACK 86], so will not be discussed further here.

3.2. Required vs. Available 
Properties

A reference of a STAR or LOLEPOP, especially for certain join 
methods, may require certain properties for its arguments. For 
example, the merge-join requires its input table streams to be 
ordered by the join columns, and the nested-loop join requires the 
inner table’s access method to apply the join predicate as though 
it were a single-table predicate ("pushes the selection down"). 
Dyadic LOLEPOPs such as GET, JOIN, and UNION require that 
the SITE of both input streams be the same.
In the previous section, we constructed a STAR for an 
OrderedStream, where the desired order was a parameter of that 
STAR. Clearly we could require a particular order by referencing 
OrderedStream with the required order as the corresponding argu­
ment. The problem is that we may simultaneously require values 
for any of the 2n combinations of n properties, and hence would 
have to have a differently-named STAR for each combination. For 
example, if the sort-merge JOIN in the example is to take place
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ai SiTE=x, then we need to define a SitedOrderedStream that has 
parameters for SITE and ORDER and references in its definition 
SHIP LOLEPOPs to send any stream to SITE x, as well as a 
SitedStream, an OrderedStream, and a STREAM. Actually, 
SitedOrderedStream subsumes the others, since we can pass nulls 
for the properties not required. But in general, every STAR will 
need this same capability to specify some or all of the properties 
that might be required by referencing STARs as parameters. Much 
of the definition of each of these STARs would be redundant, 
because these properties really are orthogonal to what the stream 
produces. In addition, we often want to find the cheapest plan 
that satisfies the required properties, even if there is a plan that 
naturally produces the required properties. For example, even 
though there is an index EMP.DNO by which we can access EMP 
in the required DNO order, it might be cheaper, if EMP were not 
ordered by DNO, to access EMP sequentially and sort it into DNO 
order.

We therefore factor out a separate mechanism called Glue, which 
can be referenced by any STAR and which:

1. checks if any plans exist for the required relational properties 
(TABLES, COLS, and PREDS), referencing the top-most 
STAR with those parameters if not;

2. adds to any existing plan "Glue" operators as a "veneer" to 
achieve the required properties (for example, a SORT

LOLEPOP can be added to change the tuple ORDER, or a 
SHIP LOLEPOP to change the SITE); and

3. either returns the cheapest plan satisfying the requirments or 
(optionally) all plans satisfying the requirements.

In fact, Glue can be specified using STARs, and Glue operators 
can be STARs as well as LOLEPOPs, as described in [LEE 88].

Required properties in the STAR reference are enclosed in square 
brackets next to the affected SAP argument, to associate the re­
quired properties with the stream on which they are imposing 
requirements. Different properties may be required by references 
in different STARs; the requirements are accumulated until Glue 
is referenced. This will be illustrated in the next section.

An example of this Glue mechanism is shown in Figure 3. In this 
example, we assume that table DEPT is stored at SITE=N.Y., but 
the STAR requires DEPT to be delivered to SITE=L.A. in DNO 
order. None of the available plans meets those requirements. The 
first available plan must be augmented with a SHIP LOLEPOP to 
change the SITE property from N.Y. to L.A. The second plan, a 
simple ACCESS of DEPT, must be both SORTed and SHIPped 
The third plan, perhaps created by an earlier reference of Glue 
that didn’t have the ORDER requirement, has already added a 
SHIP to plan 2 to get it to L.A., but still needs a SORT to achieve 
the ORDER requirement.

STAR
R e q u ir in g
P r o p e r t ie s

"Glue"

A v a ila b le
P la n s
fo r
DEPT

JOIN
Method: sort-m erge 
Prod: DEPT.DNO -  eup.dnoSl+o: L.A.Irnor:Outer:

JhfUlTRl
J V n p t rH M  _ _ _ _ _ _on DEPT \DNO\L.A.\

GET
Table: DEPT 
Cols: MGR 
Prod: MGR -  'H a a s ' 
Input:

ACCESS
Table: DEPT 
Cols: DNO, MGR 
Pred: MGR -  'H a a s '

ACCESS
Table: Index on DEPT. DNO 
Cols: T1D, DNO

Figure 3: Example of "Glue" mechanism injecting "Glue" operators to match plans 
Only two properties, order and site, are shown here, as "ears" on top of

to required properties, and choosing the cheapest, 
the top-most LOLEPOP for each plan.
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4. Example: Join STARs

To illustrate the power of STARs, in this section we discuss one 
possible set of STARs for generating the join strategies of the R* 
optimizer (in Sections 4.1 - 4.4), plus several additional strategies 
such as
• composite inners (Sections 4.1 and 4.3),
• new access methods (Section 4.5.2),
• new join methods (Section 4.4),
• dynamic creation of indexes on intermediate results (Section 

4.5.3),
• materialization of inner streams of nested-loop joins to force 

projection (Section 4.5.2).
Although there may be better ways within our STAR structure to 
express the same set of strategies, the purpose of this section is to 
illustrate the full power of STARs. Some of the strategies (e.g., 
hash joins) have not yet been implemented in Starburst; they are 
included merely for illustrating what is involved in adding these 
strategies to the optimizer.

These STARs are by no means complete: we have intentionally 
simplified them by removing parameters and STARs that deal with 
subqueries treated as joins, for example. The reader is cautioned 
against construing this omission as an inability to handle other 
cases; on the contrary, it illustrates the flexibility of STARs! We 
can construct, but have omitted for brevity, additional STARs for
• sorting TIDs taken from an unordered index in order to order 

I/O  accesses to data pages,
• ANDing and ORing of multiple indexes for a single table,
• treating subqueries as joins having different quantifier types (i.e., 

generalizing the predicate calculus quantifiers of ALL and EXISTS 
to include the FOR EACH quantifier for joins and the UNIQUE 
quantifier for scalar (" = ") subqueries),

• filtration methods such as semi-joins and Bloom-joins.
We believe that any desired strategy for non-recursive queries will 
be expressible using STARs, and are currently investigating what 
difficulties, if any, arise with recursive queries and multiple execution 
streams resulting from table partitioning [BATO 87a].

In these definitions, for readability we denote exclusive alternative 
definitions by a left curly brace and inclusive alternative definitions by 
a left square bracket. In practice, no distinction is necessary. In 
all examples, we will write non-terminals (STAR names) in 
RegularMixedCase, parameters in italics (those which may be sets 
are denoted by capital letters), and terminals in bold, with 
LOLEPOPs distinguished by BOLD CAPITAL LETTERS. Re­
quired properties are written in small bold letters and surrounded 
by a pair of [square brackets]. For brevity, we have had to 
shorten names, e.g., "JMeth" should read "JoinMethod". The 
function "x (.)"  denotes "columns of (•)", where • can be a set 
of tables, an index, etc. We assume the existence of the basic set 
functions of e ,f l ,s ,— (set difference), etc.

STARs are defined here top down (i.e., a STAR referenced by any 
STAR is defined after its reference), which is also the order in 
which they will be referenced. We start with the root STAR, 
JoinRoot, which is referenced for a given set of parameters:

4.1. Join Permutation Alternatives

JoinRoot(n, T2 , P ) [PermutedJoin(J';) T2 , P) 
PermutedJointTZ, t j , p )

The meaning of this STAR should be obvious: either table-set T1 
or table-set T2 can be the outer stream, with the other table-set 
as the inner stream. Both are possible alternatives, denoted by an 
inclusive (square) bracket. Note that we have no conditions on 
either alternative; to exclude a composite inner (i.e., an inner that 
is itself the result of a join), we could add a condition restricting 
the inner table-set to be one table.
This simple STAR fails to adequately tax the power of STARs, 
and thus resembles the comparable rule of transformational ap­
proaches. However, note that since none of the STARs referenced 
by JoinRoot or any of its descendants will reference JoinRoot, 
there is no danger of this STAR being invoked again and "undoing" 
its effect, as there is in transformational rules [GRAE 87a].
4.2. Join-Site Alternatives

PermutedJoincn, T2,  P)  =

{SitedJoin(rt, T2,  P)  IF local query
Vs €o : RemoteJoinCn , T 2 , p ,  s) OTHERWISE

RemoteJoinen, T2,  P ,  s) =
SitedJoin(Ti[s/i»= s], T2 [ s i t e  = s ], P )

where
a = set of sites at which tables of the query 

are stored, plus the query site

This STAR generates the same join-site alternatives as R* [LOHM 
84], and illustrates the specification of a required property. Note 
that Glue is not referenced yet, so the required site property 
accumulates on each alternative until it is. The interpretation is:

1. If all tables (of the query) are located at the query site, go 
on to SitedJoin, i.e., bypass the RemoteJoin STAR which 
dictates the join site.

2. Otherwise, require that the join take place at one of the sites 
at which tables are stored or the query originated.

If a site with a particularly efficient join engine were available, 
then that site could easily be added to the definition of o.

4.3. Store Inner Stream?

SitedJoinCn, T2,  P ) Í JMeth( T l ,  T2 [ t emp]  , P )  IF Cl 
JMeth( T I ,  T2 ,  P)  OTHERWISE

where

Cl =  IF  IT 21 >  1 OR T2 [site] ?  T2 ! [site]

Again, this simple STAR has an obvious interpretation, although 
the condition C l is a bit complicated:

• table (quantifier) sets Tl and T2 (with no order implied)
■ the set of (newly) eligible predicates, P

Suppose, for example, that plans for joining tables X and Y and 
for accessing table Z had already been generated, so we were ready 
to construct plans for joining X*Y with Z. Then JoinRoot would 
be referenced with Tl = [X,Yj, T2 = [Zj, and 
P=  {X.g = Z.m, Y.h = Z.n}.

1. IF the inner stream (72) is a composite, or its site is not the 
same as its required site (! [s /fe ]) , then dictate that it be 
stored as a temp and call JMeth.

2. OTHERWISE, reference JMeth with no additional require­
ments.

Note that if the second disjunct of condition Cl were absent, there 
would be no reason that this STAR couldn’t be the parent
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(referencer) of the previous STAR, instead of vice versa. As 
written, SitedJoin exploits decisions made in its parent STAR, 
PermutedJoin. A transformational rule would either have to test 
if the site decision were made yet, or else inject the temp require­
ment redundantly in every transformation that dictated a site.

4.4. Alternative Join Methods

JMeth(n, T2 , p ) =
JOIN (1VL, GlueCn, <t>), Glue(T2 , JPU IP), JP, p-(JPU IP)) 

j o i n ! m g , GlueCn [ order  = x(SP) n x(rj)l. $ ) ,
Glue(r2[ortfe«-=x(SP)nx(T2)], IP),

SP, p-(IPuSP) ) IF SP**

where

P = all eligible predicates 
JP s join predicates (multi-table, no ORs or 

subqueries, etc., but expressions OK)
SP a sortable predicates

= {ptJP of form 'coll op col2', where
coll£x(ri) & col2 e x (T2) or vice versa }

IP = predicates eligible on the inner only,
i.e., predicates P such that x (p) £ x (T2)

This STAR references two alternative join methods, both represented 
as references of the JOIN LOLEPOP with different parameters:
1. the join method (flavor of JOIN),
2. the outer stream and any required properties on that stream,
3. the inner stream and any required properties on that stream,
4. the join predicate(s) applicable by that join method (needed 

for the cost equations),
5. any residual predicates to apply after the join.

The two join methods here are:
1. Nested-Loop (NL) Join, which can always be done. For each 

outer tuple instance, columns of the join predicates (JP) in 
the outer are instantiated to convert each JP to a single-table 
predicate on the inner stream4. These and any predicates on 
just the inner (DP) are "pushed down" to be applied by the 
inner stream, if possible. Any multi-table predicates that don’t 
qualify as join predicates must be applied as residual predicates. 
Note that the predicates to be applied by the inner stream are 
parameters, not required attributes. This forces Glue to re­
reference the single-table STARs to generate plans that exploit 
the converted JP predicates rather than retrofitting a FILTER 
LOLEPOP to existing plans that applied only the IP predicates.

2. Merge (MG) Join: If there are sortable predicates (SP), dictate 
that both inner and outer be sorted on their columns of SP. 
Note that the merge join, unlike the nested-loop join, applies 
the sortable predicates as part of the join itself, pushing down 
to the inner stream only the single-table predicates on the 
inner (IP). The JOIN LOLEPOP in Figure 1, for example, 
would be generated by this alternative. As before, remaining 
multi-table predicates must be applied by JOIN as residuals 
after the join.

Glue will first reference the STARs for accessing the given table(s), 
applying the given predicate(s), if no plans exist for those param­
eters. In Starburst, a data structure hashed on the tables and 
predicates facilitates finding all such plans, if they exist. Glue then 
adds the necessary operators to each of these plans, as described 
in the previous section. Simplified STARs for Glue, which this 
STAR references, and for accessing stored tables, which Glue 
references, are given in [LEE 88].

4.5. Additional Join Methods
Suppose now we wanted to augment the above alternatives with 
additional join methods. All of the following alternative definitions 
would be added to the right-hand side of the above STAR (JMeth).

4 .5 .1 . Hash Join Alternative

The hash join has shown promising performance [BABB 79, BRAT 
84, DEWI 85]. We assume here a hash-join flavor (HA) that 
atomically bucketizes both input streams and does the join on the 
buckets.

JOIN ( HA , Glue(rj, *), Glue(T2 , IP), HP, p-IP ) IF HP** 

where

HP = hashable predicates
s {peJP of form 'expr(x(Ti)) - e x p r ( x (T2) )'l

As in the merge join, only single-table predicates can be pushed 
down to the inner. Note that all multi-table predicates (P-IP) — 
even the hashable predicates (HP) — remain as residual predicates, 
since there may be hash collisions. Also note that the set of 
hashable predicates HP contains some predicates not in the set of 
sortable predicates SP (expressions on any number of columns in 
the same table), and vice versa (inequalities).
An alternate (and probably preferable) approach would be to add 
a bucketized property to the property vector and a LOLEPOP to 
achieve that property, so that any join method in the JMeth STAR 
could perform the join in parallel on each of the bucketized streams, 
with appropriate adjustments to its cost.

4 .5 .2 . Forcing Projection Alternative

To avoid expensive in-memory copying, tuples are normally retained 
as pages in the buffer just as they were ACCESSed, until they are 
materialized as a temp or SMPped to another site. Therefore, in 
nested-loop joins it may be advantageous to materialize (STORE) 
the selected and projected inner and re-ACCESS it before joining, 
whenever a very small percentage of the inner table results (i.e., 
when the predicates on the inner table are quite selective and/or 
only a few columns are referenced). Batory suggests the same 
strategy whenever the inner "is generated by a complex expression" 
[BATO 87a]. The following forces that alternative:

JOIN ( NL, Glue(n, *),
TableAccess(Glue(r2[t«mp], IP), *, JP), 

JP.P-(IPUJP) )

This JMeth alternative accesses the inner stream (72), applying 
only the single-table predicates (IP), and forcing Glue to STORE 
the result in a temp (permanently stored tables are not considered 
temps initially). All columns (*) of the temp are then re-accessed, 
re-using the STAR for accessing any stored table, TableAccess. 
Note that the STAR structure allows us to specify that the join 
predicates (JP) can be pushed down only to this access, to prevent 
the temp from being re-materialized for each outer tuple!

4 Ullman has coined the term "sideways information passing" [ULLM 85] for 
this conversion of join predicates to single-table predicates by instantiating one 
side of the predicate, which was done in System R [SELI 793.
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TableAccess(T, C, P) =
Í ACCESS ( H e a p ,  T , C,  P ) IF StMgr(T)= 'heap'
(A C C E SS ( B T r e e ,  T, C, P ) IF StMgr(T)= 'B-tree'

A TableAccess can be one (and only one) of the following flavors 
of ACCESS, depending upon the type of storage manager (StMgr) 
used, as described in [LIND 87]:

without impacting the Starburst system code at all [LEE 88]. Jf 
STARs are compiled to generate an optimizer (as in [GRAE 87a, 
GRAE 87b]), then updates of the STARs would be followed by 
a re-generation of the optimizer. In either case, any STAR having 
a condition not yet defined would require defining a C function 
for that condition, compiling that function, and relinking that part 
of the optimizer to Starburst. Note that we assume that the DBC 
specifies the STARs correctly, i.e. without infinite cycles or mean­
ingless sequences of LOLEPOPs. An open issue is how to verify 
that any given set of STARs is correct.

1. A physically-sequential ACCESS of the pages of table T, if 
the storage manager type of T  is ’heap’, or

2. A B-Tree type ACCESS of table T, if the storage manager 
type of T  is ’B-tree',

retrieving columns C and applying predicates P. By now it should 
be apparent how easily alternatives for additional storage manager 
types could be added to this STAR alone, and affect all STARs 
that reference TableAccess.

4 .5 .3 . Dynamic Indexes Alternative

The nested-loop join works best when an index on the inner table 
can be used to limit the search of the inner to only those tuples 
satisfying the join and/or single-table predicates on the inner. Such 
an index may not have been created by the user, or the inner may 
be an intermediate result, in which case no auxiliary access paths 
such as an index are normally created. However, we can force 
Glue to create the index as another alternative. Although this 
sounds more expensive than sorting for a merge join, it saves 
sorting the outer for a merge join, and will pay for itself when the 
join predicate is selective [MACK 86].

JOIN ( NL, Glue(Tj, <j>),
Glue ( T 2 [ p a t / i s s IX], XPuIP), XP-IP, F-(XPUIP) )

where

XP = indexable multi-table predicates 

= i p e J P  o f  form ' e x pr ( x ( T i ) )  op T2.coi'i 
IX h columns of indexable predicates

= (x(IP)U x(XP))  n x (T 2 ) ,  ' = ' predicates f i r s t

This alternative forces Glue to make sure that the access paths 
property of the inner contains an index on the columns that have 
either single-table (IP) or indexable (XP) predicates, ordered so 
that those involved in equality predicates are applied first. If this 
index needs to be created, the STARs implementing Glue will add 
[order] and [temp] requirements to ensure the creation of a 
compact index on a stored table. As in the nested-loop alternative, 
the indexable multi-table predicates "pushed down" to the inner 
are effectively converted to single-table predicates that change for 
each outer tuple.

5. Extensibility —
W hat's Really Involved

Here we discuss briefly the steps required to change various aspects 
of the optimizer strategies, in order to demonstrate the extensibility 
and modularity of our STAR mechanism.
Easiest to change are the STARs themselves, when an existing set 
of LOLEPOPs suffices. If the STARs are treated as input data 
to a rule interpreter, then new STARs can be added to that file

Less frequently, we may wish to add a new LOLEPOP, e.g. 
OUTERJOIN. This necessitates defining and compiling two C 
functions: a run-time execution routine that will be invoked by the 
query evaluator, and a property function for the optimizer to specify 
the changes to plan properties (including cost) made by that 
LOLEPOP. In addition, STARs must be added and/or modified, 
as described above, to reference the LOLEPOP under the appro­
priate circumstances.
Probably the least likely and most serious alterations occur when 
a property is added (or changed in any way) in the property vector. 
Since the default action of any LOLEPOP on any property is to 
leave the input property unchanged, only those property functions 
that reference the new property would have to be updated, re­
compiled, and relinked to Starburst. By representing the property 
vector as a self-defining record having a variable number of fields, 
each of which is a property, we can insulate unaffected property 
functions from any changes to the structure of the property vector. 
STARs would be affected only if the new property were required 
or produced by that STAR.

6. Related Work

Some aspects of our STARs resemble features of earlier work, but 
there are some important differences. As we mentioned earlier, 
our STARs are inspired by functional programming concepts 
[BACK 78]. A major difference is that our "functions" (STARs) 
can be multi-valued, i.e. a set of alternative objects (plans). The 
other major inspiration, a production of a grammar, does not permit 
a condition upon alternative expansions of a non-terminal: it either 
matches or it doesn’t (and the alternatives must be exclusive). 
Hoping to use a standard compiler generator to compile our STARs, 
we investigated the use of partially context-sensitive W-grammars 
[CLEA 77] for enforcing the "context" of required properties, 
but were discouraged by the same combinatorial explosion of pro­
ductions described above when many properties are possible. Koster 
[KOST 71] has solved this using a technique similar to ours, in 
which a predicate called an "affix" (comparable to our condition 
of applicability) may be associated with each alternative definition. 
He has shown affix grammars to be Turing complete. In addition, 
grammars are typically used in a parser to find just one expansion 
to terminals, whereas our goal is to construct all such expansions. 
Although a grammar can be used to construct all legal sequences, 
this set may be infinite [ULLM 85].
The transformational approach of the EXODUS optimizer [GRAE 
87a, GRAE 87b] uses C functions for the IF conditions and 
expresses the alternatives in rules, as do we, but then compiles 
those rules and conditions using an "optimizer generator" into 
executable code. Given one initial plan, this code generates all 
legal variations of that plan using two kinds of rules: transformation 
rules to define alternative transformations of a plan, and imple­
mentation rules to define alternative methods for implementing an 
operator (e.g., nested-loop and sort-merge algorithms for imple­
menting the JOIN operator). Our approach does not require an 
initial plan, and has only one type of rule, which permits us to 
express interactions between transformations and methods. Our 
property functions are indistinguishable from Graefe’s property and
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cost functions, although we have identified more properties than 
any other author to date. Graefe does not deal with the need of 
some rules (e.g. merge join) to require certain properties, as dis­
cussed in Section 3.2 and illustrated in Sections 4.2 - 4.4, 4.5.2, 
and 4.5.3. Although Graefe re-uses common subplans in alternative 
plans, transformational rules may subsequently generate alternatives 
and pick a new optimal plan for the subplan, forcing re-estimation 
of the cost of every plan that has already incorporated that subplan. 
Our building blocks approach avoids this problem by generating all 
plans for the subplan before incorporating that subplan in other 
plans, although Glue may generate some new plans having different 
properties and/or parameters. And while the structure Of our 
STARs does not preclude compilation by an optimizer generator, 
it also permits interpreting the STARs by a simple yet efficient 
interpreter during optimization, as was done in our prototype. 
Interpretation saves re-compiling the optimizer component every 
time a strategy is added or changed, and also allows greater control 
of the order of evaluation. For example, depending upon the value 
of a STAR’S parameter, we may never have to construct entire 
subtrees within the decision tree, but a compiled optimizer must 
contain a completely general decision tree for all queries.
Freytag [FREY 87] proposes a more LISP-like set of transforma­
tional rules that starts from a non-procedural set of parameters 
from the query, as do we, and transforms them into all alternative 
plans. He points to the EXODUS optimizer generator as a possible 
implementation, but does not address several key implementation 
issues such as his ellipsis ("...") operator, which denotes any number 
of expressions, e.g.:

((JOIN t , ( . . .t 2 ...)) (join t 1 (...)r2))

And the ORDER and SITE properties (only) are expressed as 
functions, which presumably would have to be re-derived each time 
they were referenced in the conditions. Freytag does not exploit 
the structure of query optimization to limit what rules are applicable 
at any time and to prevent re-application of the same rules to 
common subplans shared by two alternative plans, although he 
suggests the need to do so.
Rosenthal and Helman [ROSE 87] suggest specifications for "well- 
formed" plans, so that transformational rules can be verified as 
valid if they transform well-formed plans to well-formed plans. 
Like Graefe, they associate properties with plans, viewed as pred­
icates that are true about the plan. Alternative plans producing the 
same intermediate result with the same properties converge on 
"data nodes", on which "transformations that insert unary 
operators...are more naturally applied". An operator is then well- 
formed if any input plan satisfying the required input properties 
produces an output plan that satisfies the output properties. The 
paper emphasizes representations for verifiability and search issues, 
rather than detailing mechanisms (1) to construct well-formed trans­
formations, (2) to match input data nodes to output data nodes 
(corresponding to our Glue), and (3) to recalculate the cost of all 
plans that share (through a common data node) a common subplan 
that is altered by a transformation.
Probably the closest work to ours is Batory’s "synthetic" architecture 
for the entire GENESIS extensible database system (not just the 
query optimizer [BATO 87b]), in which "atoms" of "primitive 
algorithms" are composed by functions into "molecules", in layers 
that successively add implementation details [BATO 87a]. Devel­
oped concurrently and independently, Batory’s functional notation 
closely resembles STARs, but is presented and implemented as 
rewrite (transformational) rules that are used to construct and 
compile the complete set of alternatives a priori for a given opti­
mizer, after first selecting from a catalog of available algorithms 
those desired to implement operators for each layer. At the highest 
layer, for example, the DBC chooses from many optimization al­
gorithms (e.g., depth-first vs. breadth-first), while the choices at 
the lowest layers correspond to our flavors of LOLEPOPs or 
Graefe’s methods. The functions that compose these operations do

not explicitly permit conditions on the alternative definitions, as do 
we; Batory considers them unnecessary when rules are constructed 
properly, but alludes to them in comments next to some alternatives 
and in a footnote. Inclusive alternatives automatically become 
arguments of a CHOOSE__CHEAPEST function during the com­
position process. The rewrite rules include rules to match properties 
(which he calls characteristics) even if they are unneeded, e.g. a 
SORT may be applied to a stream that is already ordered appro­
priately by an index, as well as rules to simplify the resulting 
compositions and eliminate any such unnecessary operations. By 
treating the stored vs. in-memory distinction as a property of 
streams, and by having a general-purpose Glue mechanism, we 
manage to factor out most of these redundancies in our STARs. 
Although clearly relevant to query optimization, Batory’s larger 
goal was to incorporate an encyclopedic array of known query 
processing algorithms within his framework, including operators for 
splitting, processing in parallel, and assembling horizontal partitions 
of tables.

7. Conclusions

We have presented a grammar for specifying the set of legal strat­
egies that can be executed by the query evaluator. The grammar 
composes low-level database operators (LOLEPOPs) into higher- 
level constructs using rules (STARs) that resemble the definition 
of functions: they may have alternative definitions that have IF 
conditions, and these alternative definitions may, in turn, reference 
other functions that have already been defined. The functions are 
parametrized objects that produce one or more alternative plans. 
Each plan has a vector of properties, including the cost to produce 
that plan, which may be altered only by LOLEPOPs. When an 
alternative definition requires certain properties of an input, "Glue" 
can be referenced to do "impedance matching" between the plans 
created thus far and the required properties by injecting a veneer 
of Glue operators.

We have shown the power of STARs by specifying some of the 
strategies considered by the R* system and several additional ones, 
and believe that any desired extension can be represented using 
STARs. We find our constructive, "building-blocks" grammar to 
be a more natural paradigm for specifying the "language" of legal 
sequences of database operators than plan transformational rules, 
because they allow the DBC to build higher levels of abstraction 
from lower-level constructs, without having to be aware of how 
those lower-level constructs are defined. And unlike plan trans­
formational rules, which consider all rules applicable at every iter­
ation and which must do complicated unification to determine 
applicability, referencing a STAR triggers in an obvious way only 
those STARs referenced in its definition, just like a macro expander. 
This limited fanout of STARs should make it possible to achieve 
our goal of expressing alternative optimizer strategies as data and 
still use these rules to generate and evaluate the cost of a large 
number of plans within a reasonable amount of time.
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