
ByteSlice: Pushing the Envelop of Main Memory Data
Processing with a New Storage Layout

Ziqiang Feng† Eric Lo† Ben Kao§ Wenjian Xu†

† Department of Computing, The Hong Kong Polytechnic University
§ Department of Computer Science, The University of Hong Kong

† {cszqfeng, ericlo, cswxu}@comp.polyu.edu.hk
§kao@cs.hku.hk

ABSTRACT
Scan and lookup are two core operations in main memory column
stores. A scan operation scans a column and returns a result bit
vector that indicates which records satisfy a filter. Once a col-
umn scan is completed, the result bit vector is converted into a
list of record numbers, which is then used to look up values from
other columns of interest for a query. Recently there are several in-
memory data layout proposals that aim to improve the performance
of in-memory data processing. However, these solutions all stand
at either end of a trade-off — each is either good in lookup per-
formance or good in scan performance, but not both. In this paper
we present ByteSlice, a new main memory storage layout that sup-
ports both highly efficient scans and lookups. ByteSlice is a byte-
level columnar layout that fully leverages SIMD data-parallelism.
Micro-benchmark experiments show that ByteSlice achieves a data
scan speed at less than 0.5 processor cycle per column value — a
new limit of main memory data scan, without sacrificing lookup
performance. Our experiments on TPC-H data and real data show
that ByteSlice offers significant performance improvement over all
state-of-the-art approaches.

Categories and Subject Descriptors
H.2.4 [Information Systems]: Database Management — systems

Keywords
main memory; column store; storage layout; SIMD; OLAP

1. INTRODUCTION
In main-memory column stores like SAP HANA [15], MonetDB

[20], Vectorwise [43], and Oracle Exalytics [1], data is memory-
resident, queries are read-mostly, and the performance goal is to
support real-time analytic. When the performance is not disk-bound,
one key design goal of data processing algorithms is to process data
at (or near) the speed of CPU by judiciously utilizing all the avail-
able parallelisms in each processing unit.

Data-level parallelism is one strong level of parallelism sup-
ported by modern processors. Such parallelism is supported by
Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
SIGMOD’15, May 31–June 4, 2015, Melbourne, Victoria, Australia.
Copyright c© 2015 ACM 978-1-4503-2758-9/15/05 ...$15.00.
http://dx.doi.org/10.1145/2723372.2747642.

 0 0 0 0 0 … … 0 0 0 … … … … 0 0 0 … … 0 0 0
v254 v255 v256v196 v197 v198v1 v2 v3 v4 v5 v16 v17 v18

 0 1 1 0 1 … … 0 1 0 … … … … 1 1 0 … … 0 1 1

 1 1 0 0 1 … … 1 0 0 … … … … 0 1 1 … … 1 0 0

 1 0 0 1 1 … … 0 0 1 … … … … 1 0 0 … … 1 1 1

W1

W2

W3

W11

Wc1

Wc2

Wc3

Wc11

v=1024

1 1 1

...

...

...

...

...

...

...

... ...

... ...

... ...

... ...

... ...

... ...

... ...

... ...

... ...

... ...

...

...

...

...

...

...

...

...

...

0 0 0

0 0 0

0 0 0

Early
stop

Figure 1: 11-bit column values stored in memory using VBP

the SIMD (single instruction multiple data) instruction set, whose
instructions can process multiple data elements in parallel. SIMD
instruction set (e.g., SSE 128-bits, AVX2 256-bits) was originally
designed for accelerating multimedia applications (e.g., to increase
the video brightness when playing a video), but work including [42]
pioneered the use of SIMD instructions to accelerate core database
operations such as filter scans and joins. After about a decade of
research, SIMD parallelism has now become the basic requirement
of building many new data processing systems [24, 25, 15]; oper-
ations in Google’s Supersonic library [17], an open-source library
for building data processing system, are all SIMD enabled.

SIMD instructions can execute one multi-operand operation per
cycle, where each operand is b bits (b = {8, 16, 32, 64} in AVX2).
To enable SIMD parallel processing in column-oriented database,
(encoded) column values need to be aligned and loaded into SIMD
registers before processing. Early work in SIMD data processing
[42] was not fastidious about the storage layout in the main mem-
ory and simply stored columns values using standard data type
(e.g., 32-bit integer). So, in the context of today’s AVX2 whose
SIMD registers are 256 bits, a SIMD register is used as eight 32-
bit banks (i.e., b = 32) and eight 32-bit values are directly loaded
from memory into the register for processing. Subsequent propos-
als [40, 39] focused more on the memory bandwidth consumption
and proposed to store the column values in memory using a tightly
bit-packed layout, ignoring any byte boundaries. For example, to
store a column of 11 bits in memory, the first value is put in the 1-st
to 11-th bits whereas the second value is put in the 12-th to 22-nd
bits and so on. Such bit-packed layout incurs overhead to unpack
the data before processing. In the example above, several SIMD
instructions have to be spent to align eight 11-bit values with the
eight 32-bit banks of a register.1 After alignment, data processing
operations like filter scan can then be carried out using a series of
SIMD instructions. In the example above, although 8-way data-
level parallelism is achieved in data processing, many cycles are
actually wasted during unpacking and alignment. Furthermore, as
0’s are used to pad up with the SIMD soft boundaries, for the ex-

1As an 11-bit value may span across three bytes under the bit-
packed format, a bank width b = 32 is needed because b = 32 >
3× 8). More details will be given in Section 2.1.

31

0000 0

Padding 0s

11-bit value

Soft boundary

0

11-bit value

0

11-bit value

0

11-bit value

0

11-bit value

0000 0

11-bit value

0

11-bit value

0

11-bit value

0

11-bit value

0

11-bit value

0000 0

11-bit value

... ...

64 bits 64 bits

... ...

... ...

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

Figure 2: 11-bit column values stored in memory using HBP

ample above, any data processing operation is wasting (32-11) × 8
= 168 bits of computation power per cycle.

Recently, Li and Patel [31] observed that by changing the main
memory storage layout, higher parallelism and thus better scan per-
formance could be achieved. Inspired by bit-slice indexing [33],
their first layout, Vertical Bit-Parallel (VBP), is a bit-level colum-
nar that systematically packs values in chunks of memory called
words. Figure 1 shows an example of VBP for an 11-bit data col-
umn given that a SIMD register is 256 bits. Specifically, the i-th
bit of each k-bit value v is stored in the i-th 256-bit memory word.
In the example, 256 values are packed into k = 11 memory words:
W1, W2, . . ., W11. Under such layout, after a memory word is
brought into a SIMD register, predicate evaluation in a scan op-
eration is carried out as a series of logical computations on those
“words of bits”. SIMD scans on VBP formatted data can achieve
significant speedup because (1) a memory word and a register are
of the same length (256 bits) so register bits are fully utilized in pro-
cessing (no register bits are wasted to padding), and (2) scans can
early stop. To illustrate, consider the evaluation of the predicate
“v = 1024” (see Figure 1). Under VBP, the bits of the constant to
be compared against (i.e., 100000000002 = 102410) is first trans-
posed and vertically packed into k words (see words Wc1, Wc2,
. . .Wc11 in Figure 1). Then the scan carries out predicate evalua-
tion through k iterations. In the first iteration, it intersects wordW1

with wordWc1. The result of the intersection, which is a bit vector,
indicates the data values whose first bits match that of 102410. In
the example, after the first iteration, the scan concludes that none
of the 256 values v1 . . . v256 satisfies the predicate. In this case,
the scan stops early and skips the remaining words W2 to W11.
Reconstructing/looking-up a value under the VBP layout is expen-
sive though. That is because the bits of a value are spread across
k words. Retrieving all these bits incurs many CPU instructions
and possibly many cache misses. Poor lookup performance hurts
the performance of operations that require the values in their plain
form (e.g., joins and aggregations), resulting in poor query perfor-
mance.

The Horizontal Bit-Parallel (HBP) storage layout is the other
in-memory storage layout proposed in [31]. HBP supports value
lookups efficiently. In HBP, all bits of a column value are packed
into the same memory word, providing good lookup performance.
Figure 2 shows an example of a 256-bit memory word formatted
in HBP. In this example, we consider a SIMD register to operate
in banks of 64 bits (i.e., b = 64). Hence, under HBP, a 256-bit
memory word is partitioned into chunks of 64 bits with soft bound-
aries defined at every 64 bits of the word. That way, each 64-bit
chunk can hold five 11-bit values. During processing, each 64-
bit chunk (containing 5 values) is loaded into a 64-bit bank of a
SIMD register. Note that the whole 256-bit memory word contains
4 chunks and thus 20 11-bit values in total, which is much more
than just eight 11-bit values offered by the bit-packed format we
discussed earlier [42, 40, 39]. SIMD scans on HBP formatted data
can leverage two levels of parallelism: intra-bank parallelism and
inter-bank parallelism. Intra-bank parallelism manages evaluation
on values loaded within a bank of the register (e.g., evaluating a
predicate “v = 4” among v1 to v5 in Figure 2). Inter-bank par-

allelism is offered by the SIMD instructions that process values
in multiple banks in parallel. In our example, HBP brings 5-way
intra-bank parallelism and SIMD brings 4-way inter-bank paral-
lelism, achieving a 20-way parallelism in scans. Although efficient
in lookup, HBP offers no early stopping opportunity for scans be-
cause all bits of a column value are stored in the same word. Hence,
all bits of a value are always processed at the same time.

In summary, scans on VBP has excellent performance because
of early stopping but lookups are poor. In contrast, lookups on
HBP are excellent but scans are way poorer than on VBP. Scans
on HBP and VBP are generally faster than scans on bit-packed
formatted data. In this paper we present ByteSlice, a simple yet
powerful storage layout with which scans perform better than on
VBP and lookups perform as well as on HBP. ByteSlice has two
key properties: (1) bytes of a k-bit value are spread across dk/8e
words; (2) an S-bit memory word contains bytes from S/8 dif-
ferent values. Compared with VBP that distributes the bits of a
value to k words, ByteSlice distributes the bytes of a value to only
dk/8e words, thereby reducing the reconstruction/lookup efforts
by a factor of 8. Such reduction turns out to be significant enough
to make a lookup overlap with other operations in the instruction
pipeline, resulting in lookup performance that is as good as on
HBP. Compared with HBP that has no early stopping opportuni-
ties, ByteSlice enjoys early stopping like VBP. Recall that scans on
VBP involve examining values bit-by-bit and that lower-order bits
can be skipped when appropriate. Scans on ByteSlice examine val-
ues byte-by-byte, and so lower-order bytes can be skipped in a sim-
ilar fashion. As an interesting observation, our analysis shows that
ByteSlice provides even more effective early stopping than VBP.
In short, ByteSlice combines the advantages of both VBP and HBP
without inheriting their disadvantages. ByteSlice thus gives main
memory analytic databases a single best storage layout, which frees
the database administrators or the tuning advisors from choosing
between VBP and HBP.

The contribution of this paper is ByteSlice, a new in-memory
storage layout for column stores that supports both fast scans and
lookups. The corresponding framework to support scans and lookups
on ByteSlice formatted data is also included in this paper. Experi-
mental results show that running TPC-H queries on ByteSlice can
be up to 10X, 5.5X, and 3X faster than on bit-packed, VBP, and
HBP formatted data, respectively.

The remainder of this paper is organized as follows: Section 2
contains background information. Section 3 presents the ByteS-
lice storage layout along with the framework to support scans and
lookups. Section 4 gives our experimental results. Section 5 dis-
cusses related works. Section 6 concludes the paper with a future
work discussion.

2. BACKGROUND AND PRELIMINARY
SIMD instructions interact with S-bit SIMD registers as a vec-

tor of banks. A bank is a continuous section of b bits. In AVX2,
S = 256 and b is 8, 16, 32, or 64. We adopt these values in this
paper but remark that our techniques can be straightforwardly ex-
tended to other models (e.g., 512-bit AVX-512 [23] and Larrabee
[35]). The choice of b, the bank width, is on per instruction basis.

32

0C

000000000000000000000

SIMD 256-bit register with eight 32-bit banks

Padding 0s

Input

11-bit value

… …

32-bit bank

11-bit value

32-bit bank

11-bit value

32-bit bank

11-bit value

Soft
boundary … …

… …

v1

111111 … … … … 111111 … … … … 111111

True
[v1 > 129]

… …

… …_m
m

25
6

_c
m

p
gt

_e
p

i3
2

(W
1
, W

c) Word W1:

Word Wc:

Input

Output

32-bit bank

000000 … … … … 000000 … … … … 000000

False
[v2 <= 129]

000000 … … … … 000000 … … … … 000000

False
[v3 <= 129]

111111 … … … … 111111 … … … … 111111

True
[v4 > 129]

… …Memory v1

00 Byte # … …

Unpack: (0) Load. (1) Shuffle. (2) Shift. (3) Mask.

04 08
v2

000000000000000000000 v2 000000000000000000000 v3 000000000000000000000 v4

000000000000000000000

11-bit value

… …

11-bit value 11-bit value 11-bit value … …

129 000000000000000000000 129 000000000000000000000 129 000000000000000000000 129

(a)

(b)

SI
M

D

01 02 03 05 06 07 09 0A 0B 0D
v3 v4 v6 v8 v10v5 v7 v9

Figure 3: (a) 11-bit column values stored under bit-packed memory layout (b) Scans on bit-packed data with predicate v > 129

A SIMD instruction carries out the same operation on the vector of
banks simultaneously. For example, the _mm256_add_epi32()
instruction2 performs an 8-way addition between two SIMD regis-
ters, which adds eight pairs of 32-bit integers simultaneously. Sim-
ilarly, the _mm256_add_epi16() instruction performs 16-way
addition between two SIMD registers, which adds sixteen pairs of
16-bit short integer simultaneously. The degree of such data-level
parallelism is S/b.

In modern main memory analytic databases, data is often stored
in a compressed form [6, 14, 15, 28]. ByteSlice is applicable
to common compression schemes such as null suppression, pre-
fix suppression, frame of reference and dictionary encoding [6, 14,
15, 28]. In these schemes, native column values are compressed
as fixed-length order-preserving codes. All data types including
numeric and strings are encoded as unsigned integer codes. For
example, strings are encoded by building a sorted dictionary of all
strings in that column [7, 28]. Floating point numbers with limited
precision can be scaled to integers by multiplication with a certain
factor [14]. Consequently, range-based column scans can be di-
rectly evaluated on such codes. From now on, we use the terms
code and value interchangeably. For predicates involving arith-
metic or similarity search (e.g., LIKE predicates on strings), codes
have to be decoded before a scan is evaluated in the traditional way.

In this paper we focus on the scan and lookup operations in main-
memory column stores. A (column-scalar) scan takes as input a list
of n k-bit codes and a predicate with a range-based comparison,
e.g., =, 6=, <,>, ≤, ≥, BETWEEN, on a single column. Constants
in the predicate are in the same domain of the compressed codes. A
column-scalar scan finds all matching codes that satisfy a predicate,
and outputs an n-bit vector, called the result bit vector, to indicate
the matching codes. Conjunctions and disjunctions of predicates
can be implemented as logical AND and OR operations on these
result bit vectors. NULL values and three-valued boolean logic can
be handled using the techniques proposed in [33].

Once the column-scalar scans are completed, the result bit vec-
tor is converted to a list of record numbers, which is then used to
retrieve codes/values from other columns of interest for the query.
A lookup refers to retrieving a code in a column given a record
number. Depending on the storage layout, a code may have to be
reconstructed from multiple memory regions during a lookup. In
existing main-memory column store implementations, the results
(retrieved codes) of lookups are inserted into an array of a standard

2Technically, it is a C functions supported by SIMD instructions.
We use the C function name in place of the SIMD instructions for
simplicity.

data type (e.g,. int32[]) [26, 8, 9, 5, 4]. This array serves as an
intermediate result whose content is consumed by operations like
joins, aggregations and sorts. Since these operations are not di-
rectly processing data straight from the base columns, their perfor-
mances are independent of the storage layout of the base columns
[18]. For this reason, we focus on the basic operations scan and
lookup in this paper. Nonetheless, we envision that ByteSlice has
the potential of being a representation of intermediate query results
in addition to just being a storage format for the base column val-
ues. In that case, operations like joins and sorts could potentially
benefit from reading input formatted in ByteSlice. Section 6 elab-
orates this future work idea.

2.1 Bit-Packed (BP) Layout
The Bit-Packed layout [40, 39] aims to minimize the memory

bandwidth usage when processing data. Figure 3a shows an ex-
ample with 11-bit column codes. The codes are tightly packed to-
gether in the memory, ignoring any byte boundaries. In this layout,
a byte may contain bits from multiple codes (e.g., Byte# 02 con-
tains bits from both v2 and v3) and a code may span across multiple
bytes (e.g., v3 spans across Byte# 02 to Byte# 04).

Scan Scans on bit-packed data requires unpacking the tightly packed
data into SIMD registers. In Figure 3(a), as a code may initially
span 3 bytes (e.g., v3), a bank width of b = 32 has to be used.
Under b = 32, scans can be run in 8-way parallelism and thus
8 codes are loaded to a SIMD register each time. Under the bit-
packed layout, that means 8 × 11 bits of data (i.e., v1 ∼ v8) are
loaded from the memory to the register. To align the 8 values
into the eight 32-bit banks, three instructions are carried out: (1)
Shuffle: an SIMD byte-level shuffle instruction is used to copy the
bytes of each code to their destination bank. In Figure 3(a), Bytes#
00 ∼ 01 are shuffled to the first bank, as they contain bits from
v1, Bytes# 01 ∼ 02 are shuffled to the second bank, and Bytes#
02 ∼ 04 are shuffled to the third bank, so on. (2) Shift: a shift
instruction is used to align the codes to their (right) bank bound-
aries. (3) Mask: carry out a bitwise AND instruction with a mask
to clear the leading unwanted bits (of another code). After unpack-
ing, data in the SIMD register (e.g., W1 in Figure 3b) is ready to
be processed by any database operation. Figure 3b illustrates how
a scan with the predicate “v > 129” is evaluated against the un-
packed data using AVX2’s 8-way greater-than comparison instruc-
tion _mm256_cmpgt_epi32(). The result of the instruction is
a vector of eight boolean masks. After that, the scan starts another
iteration to unpack and compare the next 8 codes with Wc. From

33

0000 v10

SIMD 256-bit register with four 64-bit banks
Padding 0s

11-bit value

Soft boundary

v20

11-bit value

1290

11-bit value

v40

11-bit value

v50

11-bit value

0000 v60

11-bit value

1290

11-bit value

v80

11-bit value

v90

11-bit value

v100

11-bit value

0000 v110

11-bit value

... ...

64-bit bank 64-bit bank

... ...

... ...

0000 1290 1290 1290 1290 1290 0000 1290 1290 1290 1290 1290 0000 1290

0000 ---0 ---0 ---1 ---0 ---0 0000 ---0 ---1 ---0 ---0 ---0 0000 ---0

W1

Wc

R

(0) Load. (1) XOR. (2) ADD. (3) NOT. (4) AND

SI
M

D

v = 129 true v = 129 truev = 129 false

Figure 4: Evaluating v = 129 on 11-bit column values stored in HBP format.

the above, we see that the unpacking step consumes a number of
cycles, hurting the scan performance.

Lookup To look up a code vi in bit-packed data, one has to first
compute (1) at which byte vi starts and (2) the offset of vi’s starting
bit within that byte. For example, to look up v3 from memory in
Figure 3a, we compute bk(i−1)/8c = b(11×(3−1))/8c = 2 and
k(i− 1) mod 8 = (11× (3− 1)) mod 8 = 6 to obtain the byte
number and offset, respectively. Next, three bytes starting from
Byte# 02, i.e., Bytes# 02 ∼ 04, are fetched from memory. These
bytes are stitched together using shifting and bitwise OR opera-
tions. Finally, the stitched value is shifted by 6 bits (the offset) and
a mask is applied to retain the 11 bits of v3. As a code may span
multiple bytes under the bit-packed format, a lookup may incur
multiple cache misses, particularly when those bytes span across
multiple cache lines.

2.2 Vertical Bit-Parallel (VBP) Layout
The VBP storage layout vertically distributes the bits of a k-bit

code across k chunks of memory called words. Specifically, the
column of codes is broken down into fixed-length segments, each of
which contains S codes, where S is the width of a SIMD register.
The S k-bit codes in a segment are then transposed into k S-bit
words, denoted as W1, W2, . . . , Wk, such that the j-th bit in Wi

equals to the i-th bit in the original code vj .

Scan Scans on VBP formatted data are carried out segment by seg-
ment. Within a segment, a single predicate is evaluated through k
iterations. As VBP allows processing n k-bit codes in S-way paral-
lelism, its worst-case scan complexity is O(nk

S
) instructions. Prac-

tically, VBP scans seldom hit that bound because of early stopping,
which was illustrated in Figure 1. When early stopping occurs, the
scan will proceed to the next segment. To reduce the condition-
checking overhead as well as branch miss-prediction penalty, the
early stopping condition is tested for every τ iterations. It has been
empirically determined that τ should be set as 4 [31]. Scans on
VBP has no overflow problem because the predicate evaluations
only use bitwise operations AND, OR, NOT, and XOR but not ad-
dition or multiplication.

Let us illustrate VBP’s early stopping with a back-of-the-envelope
calculation. Consider the predicate “v = c”. Assume the S codes
of a segment are independent and that the codes and the comparison
constant c are random numbers uniformly distributed in the domain
of the codes. The probability of a code v matching the constant c at
any particular bit position is 1/2. Note that we can conclude that the
predicate evaluates to false after scanning the most significant t bits
of v if any one of those t bits of v does not match the correspond-
ing bit of c. The probability of this event is 1 − (1/2)t. To early
stop a segment of S codes after examining the codes’ most signif-
icant t bits, we need the above condition to hold for all S codes.

Hence, the probability of early stop processing a segment after t
bits is [31]:

PVBP (t) =
(
1− (

1

2
)t
)S (1)

From Equation 1, we derive that VBP needs to scan, on average,
10.79 bits of each code before the processing of a segment can be
early-stopped. As we will see later, we can significantly improve
the early-stop probability with ByteSlice and thus lower the num-
ber of bits per code read before early stop to 8.94. With registers
in future generations of SIMD architecture (e.g., 512-bit AVX-512
[23] and Larrabee [35]) having larger register width (larger S), the
early-stop probability will become smaller (see Equation 1) and
thus it will become harder for VBP to early stop. In this scenario,
we expect ByteSlice’s advantage over VBP to be even more pro-
nounced.

Lookup Lookups under VBP are expensive because retrieving a
value requires accessing k different memory words. For example,
in Figure 1, to look up v5, we have to extract the 5-th bit of each
word W1, ..., W11 with a mask, shift the bit to the correct position,
and merge it with the running output using a bitwise OR opera-
tion. The number of instructions involved increases linearly with
k. Moreover, since the memory words can be located in different
cache lines, the number of cache misses expected during a lookup
also increases with k.

2.3 Horizontal Bit-Parallel (HBP) Layout
The HBP storage layout horizontally packs codes from a column

into S-bit memory words. The layout is designed so that the bits
of a word can be loaded directly into an S-bit register without un-
packing. To maximize the number of codes that can be stored in a
memory word under the constraint of bank boundaries (Figure 2),
we always use the largest possible register bank width (b) e.g., in
AVX2, b is set to 64.

Each k-bit code vi is stored with an additional bit, which is a
delimiter between adjacent codes of the same bank. The delimiter
bit is prepended to the code and is dedicated for handling overflow
and producing the result bit vector. A bank can hold b b

k+1
c values.

If b is not a multiple of k + 1, 0’s are left padded up to the bank
boundary.

Scan Figure 4 shows an example of evaluating a predicate v = 129
on HBP formatted data W1. Before the scan, the constant in the
predicate (i.e., 129) is first repeatedly aligned and packed into a
SIMD register Wc in HBP format. Then, a sequence of arith-
metic and logic operations are carried out to evaluate the predicate.
That generates a result bit vector R, where the evaluation results
are stored in the delimiter bits. Scans on HBP formatted layout
have no early stopping because all bits of a code are in the same
word/register. The scan complexity is Θ(nb

Sbb/(k+1)c).

34

01000000 00001111

01100000 10000000

Padding 0s

...

...

00110000

11000000

v2

W1

W2

W3

W4

8 bit 3 bit

00001111 100

BS1

BS2

v1

8 bit 3 bit

01000000 011
v32

8 bit 3 bit

00110000 110...

00010000

10000000

Padding 0s

...

...

00001111

00100000

v33

8 bit 3 bit

v64

8 bit 3 bit

00001111 001...00010000 100

...

...

Segment 1 Segment 2

(a) Option 1

 0 1 1 1 0

v64

Last 3 bits of:
v1 v2 v32

 1 0 1 0 0

 1 0 0 0 1

Wr1

Wr2

Wr3

...

... ...

... ...

... ...

... ...

v33...

...

...

...

... v256

(b) Option 2
Figure 5: 11-bit column codes stored under ByteSlice memory
layout. (a) Option 1: Storing tailing bits as bytes (b) Option 2:
Storing tailing bits using VBP

Lookup Lookup in HBP formatted data is similar to that in bit-
packed formatted data. We have to compute (1) which bank in a
memory word a code vi is located and (2) the offset of vi in that
bank. For example, to look up v9 in Figure 2, we first determine
that v9 is located in the 2nd bank with a 12-bit offset from the right
boundary. Shifting and masking instructions are then executed to
retrieve the 11-bit value. As each code lies in one memory word, a
lookup under HBP incurs at most one cache miss only.

3. BYTESLICE (BS) LAYOUT
The ByteSlice storage layout regards S contiguous bits in mem-

ory as one word. It also views a word or a SIMD register as S/8
8-bit banks. ByteSlice vertically distributes the bytes of a k-bit code
across the same bank of dk/8e memory words. In other words, an
S-bit memory word contains bytes from S/8 different codes. These
S/8 codes form a segment. The magic number 8 comes from the
smallest bank width of SIMD multi-operand instructions. A bank
width of 8 bits implies the highest degree of SIMD parallelism, i.e.,
S/8-way (e.g., 256/8 = 32), is exploited. The choice also has the
advantage of simple implementation because bytes are directly ad-
dressable.3 Hence, bit shifting and masking operations are avoided.

Figure 5a illustrates how a segment of thirty-two 11-bit codes
(v1 ∼ v32) are formatted into two memory words W1 and W2

under the ByteSlice layout. In the example, the first bytes of v1 ∼
v32 are packed into the banks of W1. There are two options to deal
with the remaining 3 bits. Option 1 is to pad 0’s at the end and
pack them into the banks of W2 in a way similar to W1 (see Figure
5a). Option 2 is to pack those remaining bits in VBP format, i.e.,
use three memory words Wr1, Wr2, Wr3 to store the remaining
3 bits of each code, with the 1st remaining bit goes to Wr1, the
2nd remaining bit goes to Wr2, and the last remaining bit goes to
Wr3 (see Figure 5b)4. We choose Option 1 for reasons that will
become clear in Section 3.1.1. Continuing with our example, the
3In this regard, a bank width of 16 bits is also an option. Appendix
A explains our choice of 8 bits bank width in more detail.
4Using HBP to store those tailing bits is not an option because
scan algorithms on HBP cannot work on part of the codes. The two
options also apply to columns whose codes use less than 8 bits (i.e.,
k ≤ 7). In this case, ByteSlice is degenerated into VBP if Option
2 is used.

next segment of 32 values (v33 ∼ v64) are formatted in the same
way into words W3 and W4. Words that contain the i-th bytes of
values are stored in a contiguous memory region, which we name
as ByteSlice. In Figure 5a, W1 and W3 are stored in ByteSlice
BS1 whereas W2 and W4 are stored in ByteSlice BS2. As we
will explain shortly, ByteSlice supports early stopping. It is thus
likely that after word W1 (which stores the first bytes of values in
Segment 1) is processed, word W2 can be skipped and the scan
operation proceeds to processing W3. With a machine having a
cache line size of 512 bits (i.e., 2S), by putting W1 and W3 into
neighboring memory locations, the two words can be found in the
same cache line. This arrangement also avoids bringing W2/W4

into the cache when early stopping can happen.

3.1 Scan
We now describe how to evaluate comparison predicates (<,>

,≤,≥,=, 6=, BETWEEN) using SIMD instructions under ByteSlice.
The output of such filter scans is a result bit vector R, which indi-
cates which codes in the column satisfy the predicate. Each scan
operation processes one segment of codes at a time. Without loss of
generality, we assume the code width k is a multiple of full bytes.
If not, we pad 0’s at the end of both the codes and the compari-
son constant. The comparison result should remain the same, e.g.,
(10000)2 > (01000)2 ↔ (10000 000)2 > (01000 000)2. We use
the notation v[i] to denote the i-th byte of v. For example, in Figure
5, v[1]1 = (01000000)2, v

[2]
1 = (011 00000)2.

We begin with the discussion of evaluating the LESS-THAN
predicate (v < c) in ByteSlice. To illustrate, consider the follow-
ing two 11-bit values v1 and v2 and a comparison constant c (with
padding 0’s underlined):

v1 = (01000000 01100000)2

v2 = (00001111 10000000)2

c = (00010000 10000000)2

The evaluation is carried out in dk/8e iterations, with the j-th
iteration comparing the j-th most significant bytes of v’s and c.
For the example, after the j-th = 1st iteration, we know:

v
[1]
1 > c[1] and v

[1]
2 < c[1],

which allows us to conclude that (1) v1 > c and (2) v2 < c. So,
v1 does not satisfy the predicate but v2 does. In this case, we can
early stop and skip the next iteration. In general, when evaluating
the predicate “v op c” (op = {<,>,≤,≥,=, 6=}), we can early
stop after the j-th iteration if v[j]i 6= c[j] for all vi’s.

Algorithm 1 delineates the pseudo-code of evaluating the LESS-
THAN predicate under ByteSlice. The algorithm takes a predicate
“v < c” as input and outputs a result bit vector R whose i-th bit is
1 if vi satisfies the predicate or 0 otherwise. Initially, the bytes of
the constant c are broadcast to d k

8
e SIMD words (Lines 1–3). Then,

the algorithm scans the column codes segment-wise, with each seg-
ment containing S/8 (i.e., 32, when S = 256) codes (Lines 4–18).

35

For each segment, the algorithm first prepares two S-bit segment-
level result masksMeq andMlt. We interpret the bit-maskMlt

as a vector of S/8 banks, where all eight bits in the i-th bank are 1’s
if vi < c or all 0’s otherwise. The bit maskMeq is similarly inter-
preted for the condition vi = c. The algorithm then examines the
codes byte-by-byte through d k

8
e iterations (Lines 7–15). In the j-th

iteration, it first inspects the maskMeq to see if we can early stop
(Lines 8–9).5 If not, it loads the j-th bytes of all the codes in the
segment into a SIMD register. It then executes two S/8-way SIMD
instructions to determine the codes whose j-th bytes are either (1)
= c[j] or (2) < c[j] (Lines 10–12). The comparison results are put
into two local masksMeq andMlt, which are subsequently used to
update the segment-level masksMeq andMlt, respectively (Lines
13-14). After the iterations, the S-bit mask Mlt, which contains
the segment’s comparison results, is condensed to a S/8-bit mask
r. This is done by converting each bank of all 1’s (0’s) inMlt into
a single bit of 1 (0) in r using the SIMD movemask instruction
(Line 16). Finally, the segment result r is appended to the final re-
sult R (Line 17) before the processing of the next segment begins.
Algorithm 1 can be easily modified to handle other comparison op-
erators (e.g., ≤). The details are given in Appendix B.

Algorithm 1 ByteSlice Column Scan (<)
Input: predicate v < c
Output: result bit vector R
1: for j = 1 . . . d k

8
e do

2: Wcj = simd_broadcast(c[j]) . Word with c’s j-th byte
3: end for
4: for every segment of S/8 codes vi+1 . . . vi+S/8 do
5: Meq = 1S . a mask of S 1’s
6: Mlt = 0S . a mask of S 0’s
7: for j = 1 . . . d k

8
e do

8: if simd_test_zero(Meq) then
9: break . early stopping

10: Wj = simd_load(v
[j]
i+1 . . . v

[j]
i+S/8

) . load the j-th bytes
11: Mlt = simd_cmplt_epi8(Wj ,Wcj)
12: Meq = simd_cmpeq_epi8(Wj ,Wcj)
13: Mlt = simd_or(Mlt,simd_and(Meq ,Mlt))
14: Meq = simd_and(Meq ,Meq)
15: end for
16: r = simd_movemask_epi8(Mlt) . condense the mask
17: Append r to R . Append S/8 results to final R
18: end for
19: return R

3.1.1 Early Stopping
The early stopping condition (Line 8 in Algorithm 1) generally

holds for all comparison conditions. Consider a t that is a multiple
of 8. ByteSlice would have processed the t most significant bits
of the codes in a segment after the (t/8)-th iteration. With S/8
codes in a segment, ByteSlice can early stop at that point if none
of the codes in the segment matches the constant c in their t/8
most significant bytes. Assuming that any bit of a code matches
the corresponding bit of c with a probability of 1/2, the probability,
PBS(t), of ByteSlice early stopping after the tmost significant bits
are processed is given by:

PBS(t) =
(
1− (

1

2
)t
)S

8 (2)

Table 1 compares the early stopping probabilities of VBP and
ByteSlice. For VBP, early stopping is checked for every τ = 4 iter-

5The instruction simd_test_zero() (Line 8) is implemented
by the vptest instruction in Intel AVX2.

Bit examined (t) PVBP (t) PBS (t)

4 0.0000000668 -
8 0.3671597549 0.8822809129

12 0.9394058945 -
16 0.9961013398 0.9995118342
20 0.9997558891 -
24 0.9999847413 0.9999980927
28 0.9999990463 -
32 0.9999999404 0.9999999925

Expected Value scan 10.79 bits / code scan 8.94 bits / code

Table 1: Early stopping probability under S = 256

ations even though each iteration handles one bit per code (see Sec-
tion 2.2). So for VBP, only entries for t that are multiples of 4 are
shown. Similarly, ByteSlice processes 1 byte (8 bits) per iteration,
so only entries of t that are multiples of 8 are shown. First, from
the table, we see that ByteSlice’s early stopping probabilities are
all larger than 0.88. That is highly desirable because it implies that
the conditional branch given in Algorithm 1 Line 8 is highly pre-
dictable. Thus scans on ByteSlice incur low branch mis-prediction
penalty. Second, we see that the chance of VBP early stopping at
t = 4 is very slim (≈ 0). That means the one extra chance of
early stopping with VBP at t = 4 (compared with ByteSlice whose
first chance is at t = 8) is actually immaterial. Furthermore, we
see that probability of ByteSlice early stopping after the first bytes
(i.e., t = 8) is much higher than that of VBP (0.88 vs. 0.37). In
fact, when S = 256, the expected number of bits that needed to
be scanned by ByteSlice and VBP are respectively 8.94 and 10.79
per code. That is a difference of 1.85 bit per code. For the next
generation SIMD whose registers are double in width (S = 512),
the expected number bits that needed to be scanned by ByteSlice
and VBP are respectively 9.78 and 11.96 per code. That translates
into an even bigger difference of 2.18 bit per code.

Higher early stopping probability not only helps saving instruc-
tion executions (and thus running time), but also help reducing
memory bandwidth consumption. Consider a code width of k =
12, by referring to Table 1, the expected bandwidth usage of ByteS-
lice is 0.88× 8 + (1− 0.88)× 16 ≈ 8.94 bits per code. Similarly,
the expected bandwidth usage of VBP, which has two early stop-
ping chances at t = 4 and t = 8, is≈ 10.53 bits per code. HBP has
no early stopping. It packs b 64

k+1
c = b 64

13
c = 4 codes per 64-bit

bank, resulting in 4×4 = 16 codes per 256-bit memory word. That
means it consumes 16 bits bandwidth per code. Bit-packed layout
tightly packs the codes in memory. However, as scans on BP has
no early stopping either, its bandwidth usage is exactly k = 12 bits
per code.

We now come back to the discussion of how tailing bits are han-
dled: Option 1 (pad them up as a byte; Figure 5a) and Option 2
(using VBP; Figure 5b). First, from our discussion above, we see
that if a column is 9 < k < 16 bits wide, there is a very high chance
(>0.88) that a scan is early stopped after examining the first bytes
of codes. The choice between the two options therefore is insignif-
icant . In fact, we have tested the two options on TPC-H work-
loads and found that the overall performance difference between
the two options is very minimal. Since Option 2 requires branch-
ing (to switch between ByteSlice and VBP for the last byte)6 and
it incurs a higher reconstruction cost for lookup, we recommend
Option 1. Similar arguments also apply to columns whose width is
8 bits or less. In particular, scans and lookups on short codes gen-
erally consume very few cycles, rendering the choice between the

6That would still increase the number of instructions even the
branch can be eliminated using JIT query compiling [27].

36

v1
...

...

1
P1

...

...

v64v33

11 0... ... 01 0... ...

32 bits 32 bits

R1

Col1

u1
...

...

u32

P2

...

...

u64u33

10 1... ... 11 0... ...

32 bits 32 bits

R2

Col2

AND

... ... 01 0... ... 10 0R

(a
)

B
as

el
in

e
2 3 4

v1
...

...

1

...

...

v64v33

11 0... ... 01 0... ...

Col1

u1
...

...

u32
...

...

u64u33

10 0... ... 01 0... ...

Col2

2 4 5

v32

v32

v1
...

...

1
P1

...

...

v64v33

11111111 11111111 00000000

Col1

u1
...

...

u32
...

...

u64u33

10 0... ... 01 0... ...

Col2

4 3 6

v32

R1

R

R

(b
)

C
o

lu
m

n
-F

ir
st

(c
)

P
re

d
ic

at
e

-F
ir

st

P2P1 3

P1 P2
Meq

P2

00000000 11111111 00000000 11111111 00000000 00000000 00000000 11111111 00000000

Condense
2

5

5

pipeline R1

Segment Segment Segment Segment

pipeline Meq

pipeline Meq1
 Meq

2

1

2

Figure 6: Three approaches to handle conjunctions. The labels 1© 2© 3©, etc. denote the execution sequence.

two options insignificant. Moreover, our focus is actually more on
columns with k > 8 because scans and lookups on those columns
consume much more cycles than on columns with k ≤ 8. That
is, columns with k > 8 are the ones that throttle the overall query
performance and being able to significantly reduce the cycles for
them deserves more focus. Finally, Option 2 (VBP) still has the
drawback of higher lookup costs when comparing with Option 1
(ByteSlice) after all. As we strive to reduce the code complexity
for the various operations on top of ByteSlice data, we generally
recommend the use of ByteSlice for all column widths.

3.1.2 Evaluating Complex Predicates
We now discuss how complex predicates that involve multiple

columns are evaluated with ByteSlice. The baseline approach is to
evaluate each predicate separately and then combine their result bit
vectors. Figure 6a illustrates the baseline approach of evaluating
a complex predicate col1 < 5 AND col2 > 18. The final
result bit vector R is obtained by intersecting the result bit vector
R1 of evaluating predicate P1: col1 < 5 and the result bit vector
R2 of evaluating predicate P2: col2 > 18.

Another approach is to pipeline the result bit vector of one predi-
cate evaluation to another so as to increase the early stopping prob-
ability of the subsequent evaluations [31]. In our context, there are
two possible implementations of such pipelining approach. Figure
6b shows the column-first implementation for the example above.
After P1 evaluation is done on the whole column col1 (Steps 1©
and 2©), its result bit vector R1 is pipelined to the evaluation of
P2 on col2. This step can be implemented by modifying Al-
gorithm 1 to (i) accept a result bit vector Rprev and (ii) for each
S/8-bits rprev from Rprev , execute an instruction that inverses
“simd_movemask” to transform rprev into a 256-bit maskMeq

(See Line 16 of Algorithm 1). However, AVX2 does not provide
such an “inverse” movemask instruction, which has to be imple-
mented using other instructions. To illustrate, consider a 32-bit re-
sult vector r = 0100 . . . 000 whose bits except the 2nd one are all
0’s (false). To expand r into a 256-bit mask 00000000111111110 . . . 0,
three instructions: simd_shuffle_epi8, simd_and, and

01000000 01000000 01000000...

10000000 01000000 00000001...

00000000 01000000 00000000...

00000000 11111111 00000000...

01000000 00000000 00 00... ...

32 bits

... ...
...

... ...

256 bits

r =
si

m
d

_a
n

d

1

1
si

m
d

_c
m

p
eq

_e
p

i8

2

3

Bank 1 Bank 2 Bank 8...

Mask

simd_shuffle_epi8

Figure 7: Simulating “inverse” movemask instruction.

simd_cmpeq_epi8 are executed as illustrated in Figure 7. The
overhead of executing these additional instructions, however, nul-
lifies the benefit (e.g., efficiency obtained through early-stopping)
of ByteSlice. To eliminate this overhead, we perform the following
trick: Instead of “expanding” a pipelined 32-bit result vector rprev
into a 256-bit maskMeq , we “condense”Meq to a 32-bit vector
instead. Algorithm 2 gives the pseudo-code of this column-first im-
plementation for the < comparison. Algorithm 2 is modified from
Algorithm 1. Changes are made at Lines 7, 9, and 18.

Figure 6c shows an alternate implementation of the pipelining
approach. We call this implementation predicate-first because it
first processes all predicates for each segment of S/8 values before
moving on to the next segment. In Figure 6c, after P1 evaluation
is done on a segment of S/8 codes from column col1 (Step 1©),
the intermediate result M1

eq for those S/8 codes is pipelined to
the evaluation of P2 on col2 (Step 2©). Unlike the column-first
implementation, this predicate-first implementation does not need
to movemask back-and-forth between rprev and Meq but simply
pipeline Meq until all predicates are evaluated. The column-first
implementation cannot follow suit because it would have very large
memory footprint to hold theMeq’s of all segments until the next

37

predicate is evaluated. To reduce the memory footprint, the column-
first implementation must pipeline the condensed result bit vector
instead.

Algorithm 2 Column-First Scan (<) Pipelined
Input: predicate v < c
Input: result bit vector Rprev from a previous predicate
Output: result bit vector R
1: for j = 1 . . . d k

8
e do

2: Wcj = simd_broadcast(c[j]) . word with c’s j-th byte
3: end for
4: for every S/8 values vi+1 . . . vi+S/8 do
5: Meq = 1S . a mask of S 1’s
6: Mlt = 0S . a mask of S 0’s
7: rprev = Rprev [i+ 1 . . . i+ S/8] . extract from Rprev the S/8

result bits for this segment
8: for j = 1 . . . d k

8
e do

9: if (rprev & simd_movemask_epi8(Meq)) = 0 then
10: break . early stopping
11: Wj = simd_load(v

[j]
i+1 . . . v

[j]
i+S/8

) . load the j-th bytes
12: Mlt = simd_cmplt_epi8(Wj ,Wcj)
13: Meq = simd_cmpeq_epi8(Wj ,Wcj)
14: Mlt = simd_or(Mlt,simd_and(Meq ,Mlt))
15: Meq = simd_and(Meq ,Meq)
16: end for
17: r = simd_movemask_epi8(Mlt) . condense the mask
18: Append (r & rprev) to R . Append S/8 results to final R
19: end for
20: return R

The predicate-first implementation of the pipelining approach
has its own pros and cons. This implementation needs fewer movemask
instructions but it is more difficult for the compiler to optimize be-
cause the number of columns involved in a complex predicate is
unknown until run-time. Furthermore, it switches to accessing an-
other column for every S/8 values. As columns are located in dif-
ferent memory regions, it thus incurs more cache conflict misses
(i.e., a useful cache line is evicted because another cache line is
mapped to the same entry).

To evaluate disjunction, in Algorithm 2, we change rprev to
¬rprev in Line 9. That is, only tuples that do not satisfy the pre-
vious predicate are considered. Next, we change r & rprev to
r | rprev in Line 18.

3.2 Lookup
Lookup in ByteSlice formatted memory data is simple. As each

value is sliced into several bytes, we stitch the bytes back together
and remove the padding zeros at the end if needed (� and� are
left shift and right shift):

vj =
(d k

8
e∑

i=1

(
BSi[j]� 8(dk

8
e − i)

))
� (8dk

8
e − k)

For example, looking-up (reconstructing) v2 in Figure 5 needs:

v2 =
(
BS1[2]� 8 +BS2[2]

)
� 5

=
(
000011112 � 8 + 100000002

)
� 5

= (00001111 10000000)2 � 5

= (00001111100)2

The above example involves two shifts, one addition and two
memory reads. Roughly, for each byte involved, it requires a left
shift and an addition (or bitwise OR). A right shift is probably
needed at the end in order to remove padding bits. The possibly
incurred cache misses are bounded by d k

8
e. Since in TPC-H most

Bit-packed VBP HBP ByteSlice
Scan
Complexity Θ(nb

S
) O(nk

S
) Θ(nb

Sbb/(k+1)c) O(8ndk/8e
S

)

Early Stop No Good No Strong
Lookup Good Poor Good Good

Table 2: Summary of Comparison

 0

 400

 800

 1200

 1600

 2000

 0 4 8 12 16 20 24 28 32

C
y
cl

e
s/

co
d
e

Attribute Code Width (# of bits)

Bit-Packed
HBP
VBP

ByteSlice

(a) Cycles

 0

 100

 200

 300

 400

 500

 0 4 8 12 16 20 24 28 32
In

st
ru

ct
io

n
s/

co
d
e

Attribute Code Width (# of bits)

Bit-Packed
HBP
VBP

ByteSlice

(b) Instructions
Figure 8: Lookup Performance

attributes could be encoded using fewer than 24 bits, a lookup usu-
ally needs to handle no more than 3 bytes. Such a few instruc-
tions can be effectively overlapped in the processor’s instruction
pipeline, rendering its performance very close to that of Bit-Packed
and HBP layouts.

4. EXPERIMENTAL EVALUATION
We run our experiments on a personal computer with a 3.40GHz

Intel i7-4770 quad-core CPU, and 16GB DDR3 memory. Each
core has 32KB L1i cache, 32KB L1d cache and 256KB L2 uni-
fied cache. All cores share an 8MB L3 cache. The CPU is based on
Haswell microarchitecture which supports AVX2 instruction set. In
the experiments, we compare ByteSlice with Bit-packed, VBP, and
HBP. Table 2 summarizes their properties. Collectively, these com-
petitors represent the state-of-the-art main memory storage layouts
that support fast scans and lookups. We implement all methods in
C++. All implementations are optimized using standard techniques
such as prefetching. The programs are compiled using g++ 4.9 with
optimization flag -O3. We use Intel Performance Counter Monitor
[22] to collect the performance profiles. Unless stated otherwise,
all experiments are run in a single process with a single thread.

4.1 Micro-Benchmark Evaluation
For micro-benchmarking, we create a table T with one billion

tuples. Values in each column are by default uniformly distributed
integer values between [0, 2k), where k is the width of the column,
and is equal to 12 by default.

4.1.1 Lookup
In this experiment, we compare the lookup performance on all

layouts by varying the code width k. We perform one million ran-
dom lookups and report (1) the average processor cycles per code

38

 0

 1

 2

 3

 0 4 8 12 16 20 24 28 32

C
y
cl

e
s/

co
d

e

Code width (# of bits)

<
Bit-Packed

HBP
VBP

ByteSlice

 0

 1

 2

 3

 0 4 8 12 16 20 24 28 32

C
y
cl

e
s/

co
d

e

Code width (# of bits)

=
Bit-Packed

HBP
VBP

ByteSlice

 0

 1

 2

 3

 0 4 8 12 16 20 24 28 32

C
y
cl

e
s/

co
d

e

Code width (# of bits)

≠
Bit-Packed

HBP
VBP

ByteSlice

(a) Cycles

 0
 1
 2
 3
 4
 5

 0 4 8 12 16 20 24 28 32

In
st

ru
ct

io
n
s/

co
d

e

Code width (# of bits)

<
Bit-Packed

HBP
VBP

ByteSlice

 0
 1
 2
 3
 4
 5

 0 4 8 12 16 20 24 28 32
In

st
ru

ct
io

n
s/

co
d

e
Code width (# of bits)

=
Bit-Packed

HBP
VBP

ByteSlice

 0
 1
 2
 3
 4
 5

 0 4 8 12 16 20 24 28 32

In
st

ru
ct

io
n
s/

co
d

e

Code width (# of bits)

≠
Bit-Packed

HBP
VBP

ByteSlice

(b) Instructions

Figure 9: Scan Performance: (a) Execution Time and (b) Number of Instructions versus Code Width

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 0 4 8 12 16 20 24 28 32

C
y
cl

e
s/

co
d

e

Attribute Code Width (# of bits)

ByteSlice
VBP

ByteSlice w/o ES
VBP w/o ES

(a) Cycles

 0
 0.5

 1
 1.5

 2
 2.5

 3

 0 4 8 12 16 20 24 28 32

In
st

ru
ct

io
n
s/

co
d

e

Attribute Code Width (# of bits)

ByteSlice
VBP

ByteSlice w/o ES
VBP w/o ES

(b) Instructions

Figure 10: Effectiveness of Early Stopping (ES) on Scans:
VBP and ByteSlice (T.v < c)

and (2) the average number of instructions per code. The results
are shown in Figure 8. We can see that lookups on VBP are signifi-
cantly more expensive, in terms of both cycles and instruction, than
the other methods. The lookup cost of VBP increases linearly with
k, because every single bit of a VBP code is stored in a different
memory word. A single VBP lookup can cost up to 1800 cycles for
large k values.

Lookups on Bit-packed, HBP, and ByteSlice data have com-
parable performance. Although the cost of a lookup on ByteS-
lice data shall increase piecewise linearly with dk/8e, that is al-
most not noticeable in the experimental result because (1) the code-
reconstruction process under ByteSlice is so lightweight that over-
laps with other instructions in the instruction pipeline and (2) the
incurred cache misses are bounded by d k

8
e.

4.1.2 Scan
In this experiment, we evaluate column scan performance on all

layouts by varying the code width k. The benchmark query is in
the form of:

SELECT COUNT(*) FROM T WHERE T.v OP c

We present experimental results for OP as <, =, and 6=. Similar
results are obtained for >, ≤, ≥ and we put them in Appendix
C. The constant c in the WHERE clause is used to control the
selectivity. By default we set the selectivity as 10%, i.e., 10% of
the input tuples match the predicate. We put the results of other
selectivity values in Appendix D.

 0

 0.5

 1

 1.5

 2

0 1 2

C
y
cl

e
s/

co
d

e

Zipf

Bit-Packed
HBP
VBP

ByteSlice

(a) Varying Skewness

 0

 0.5

 1

 1.5

 2

20% 40% 60% 80%

C
y
cl

e
s/

co
d
e

Selectivity

Bit-Packed
HBP
VBP

ByteSlice

 0

 0.5

 1

 1.5

 2

20% 40% 60% 80%

C
y
cl

e
s/

co
d
e

Selectivity

Bit-Packed
HBP
VBP

ByteSlice

(b) Varying Selectivity (zipf = 1) (c) Varying Selectivity (uniform)

Figure 11: Scan Performance (T.v < c)

Figure 9a and Figure 9b report the scan cost in terms of processor
cycles per code and number of instructions spent per code respec-
tively, when varying the column code width k. As can be seen
in Figure 9b, scans on ByteSlice outperform all the other methods
across all code widths in terms of the number of instructions. This
translates into ByteSlice excellent performance in terms of cycles
per code in Figure 9a. Scans on ByteSlice and VBP outperform
scans on HBP and Bit-packed because of early stopping. For the
same reason, increasing the code width does not significantly in-
crease the scan costs on ByteSlice and VBP because scans are usu-
ally early stopped after examining early bytes for ByteSlice and
early bits for VBP. When the code width is 22 ≤ k ≤ 30, scans
on HBP have the worst performance because starting from there, a

39

 0

 0.5

 1

 1.5

 2

50% 10% 5% 1% 0.5% 0.1%

C
y
cl

e
s/

tu
p

le

Bit-Packed
HBP

VBP
BS(Baseline)

BS(Predicate-First)
BS(Column-First)

 0

 0.01

 0.02

 0.03

50% 10% 5% 1% 0.5% 0.1%L2
 C

a
ch

e
 M

is
se

s/
tu

p
le

(a) Cycles (b) L2 Cache Misses

Figure 12: Evaluation of Complex Predicate (Conjunction)

64-bit SIMD bank can hold only two codes. The benefit of 2-way
intra-bank parallelism turns out to be outweighed by the penalty of
executing instructions that are required by HBP’s scan algorithm.
When the code width k = 32, a 64-bit SIMD bank can hold only
one code (because HBP requires one extra delimiter bit per code).
Consequently, a scan on HBP gains no advantage but overhead, ex-
plaining its abrupt rise in running time.

Figure 10 shows the effectiveness of early stopping when per-
forming scans on VBP and ByteSlice. From Figure 10a, we see
that (1) early stopping indeed bring performance improvement to
both VBP and ByteSlice, and (2) without early stopping, scans on
ByteSlice still perform better than scans on VBP because the for-
mer consumes fewer instructions than the latter (Figure 10b).

As the example given in Section 3.1 illustrated, given a scan
query such as v < c, early stopping in ByteSlice (as well as in
VBP) is most effective if the data values of a given segment are
different from the query constant c in their more-significant bytes.
That is, when the data values are not close to the query constant.
Let us define data density at a value c to be the fraction of the col-
umn data values that are close to c. Skewness in data distribution
affects the effectiveness of early stopping in VBP and ByteSlice
scan because a skewed data distribution implies regions of high
data density and regions of low density. More specifically, given a
query constant c, if the data values are skewed towards c (i.e., the
data density at c is high), then early stopping will be less effective.
On the other hand, if data values are skewed away from c (i.e., the
data density at c is low), early stopping is most effective.

To illustrate, we generate data values following a Zipfian distri-
bution and change the skew factor from zipf = 0 (uniform dis-
tribution) to zipf = 2 (heavily skewed distribution). Figure 11a
shows the running time for the predicate T.v < c with c set as
0.1×2k by default. We see that ByteSlice consistently outperforms
all other methods under all skewness. Moreover, as the skew factor
increases, the running times by ByteSlice and VBP decrease. This
is because for the Zipf distribution, increasing the skew factor has
the effect of shifting the data density to the small values of the do-
main. With the fixed value of c (which is 10% of the value domain)
chosen in the experiment, increasing the skewness causes the data
density at c to become smaller, which makes early stopping more
effective. This explains why the running time of ByteSlice (and
VBP) improves when the data is getting more skewed. Figure 11b
shows that the running times of ByteSlice and VBP decrease when
we vary c under zipf = 1 skewed data. When c is small (e.g.,
when the selectivity of the query v < c is 20%), the query constant
lies in the dense region of the zipfian curve. Hence, early stopping
is less effective, resulting in higher running times of ByteSlice and
VBP. When c is large (e.g., when selectivity is 80%), the query
constant lies in the sparse region of the zipfian curve, resulting in
very effective early stopping and very low running times. Figure
11c shows that the running times of ByteSlice and VBP does not

 0

 1

 2

 3

 4

 1 2 3 4 8

T
h
ro

u
g
h
p
u
t

 (
C

o
d
e
s/

cy
cl

e
)

Number of threads

Bit-Packed
HBP
VBP

ByteSlice

Figure 13: Scaling Scan on Multi-core CPU

vary when we vary c under uniformly distributed data. This is be-
cause the data density is uniform across the domain and hence the
effectiveness of early stopping stays constant.

4.1.3 Complex Predicate Evaluation on ByteSlice
In this experiment, we study the performance of the two imple-

mentations of the pipeline approach (column-first and predicate-
first) and the baseline approach (i.e., no pipeline) when evaluating
complex predicates on ByteSlice data. The WHERE clause of the
benchmark query is in the form of:

WHERE T.col1 < c1 AND T.col2 > c2

For both implementations of the pipeline approach, the predi-
cate T.col1 < c1 is evaluated first and its result is pipelined to
the predicate T.col2 > c2. In the experiment, we fix the con-
stant c2 to a value so to let the predicate col2 > c2 to have a
selectivity of 50%. We then vary the value of c1 in order to con-
trol the selectivity of the predicate col1 < c1. Figure 12a shows
the results in terms cycles per tuple.7 We see that the column-first
pipeline implementation, BS(Column-First), is the most efficient
method of supporting conjunction evaluation, under all selectivi-
ties. When the predicate T.col1 < c1 becomes more selective
(i.e., from 50% to 0.1%), the running time of evaluating the whole
query decreases because the evaluation of predicate T.col2 >
c2 runs faster by a higher early stopping chance. As expected, the
predicate-first pipeline implementation, BS(Predicate-First), is not
fruitful because its code path involves more branches. Furthermore,
Figure 12b shows that the predicate-first pipeline implementation
has more cache misses, due to accessing different memory regions
more frequently than the column-first approach (Section 3.1.2). We
have got similar results when evaluating disjunctions (Appendix E).
We thus suggest the use of column-first pipeline implementation
when evaluating complex predicates under ByteSlice.
7The results of Bit-Packed, VBP, and HBP are also included in the
figure as a reference. Bit-Packed has the lowest cache miss (Figure
12a) merely because it is the slowest — as it processes the data
slowly, it leaves sufficient time for the memory subsystem to (pre)-
fetch the next item into the cache/instruction pipeline.

40

 0

 1

 2

 3

 4

 5

Q1 Q3 Q4 Q5 Q6 Q8 Q10 Q11 Q12 Q14 Q15 Q17 Q19

S
p

e
e
d

-u
p

 o
v
e
r

 B
it

-P
a
ck

e
d

 L
a
y
o
u
t

TPC-H queries

Bit-Packed HBP VBP ByteSlice 8 10

Figure 14: Speed-up over Bit-Packed on TPC-H Queries

4.1.4 Multi-Threading
In this experiment, we study the performance of using multiple

threads to carry out scans on all layouts. Parallelizing data scans
on multi-core is known to be straightforward. We simply partition
data into chunks and assign chunks to the threads. Our CPU is
quad-core, so we turn on simultaneous multi-threading (SMT) and
vary the number of threads from one to eight.

Figure 13 shows the average scan throughput (number of codes
processed per cycle) under the 4 memory layout schemes. The
numbers shown are obtained by averaging the throughputs mea-
sured when the code width k is varied from 1 to 32 bits. From
the figure, we can see the throughputs of all the schemes increase
when more threads are used. The four schemes allow efficient
data processing and thus they are utilizing the memory bandwidth
very effectively. Computations become memory-bound when four
threads are used. Among the four schemes, ByteSlice and VBP
are extremely effective in using the memory bandwidth. In our ex-
periment, we measured the bandwidth utilization under different
scenarios. For example, we found that HBP, VBP and ByteSlice
used more than 50% of the available memory bandwidth with a
single thread. When two threads are used, HBP and VBP used
more than 70% of the bandwidth and ByteSlice used more than
98% of the bandwidth. This explains the scale up behaviors of all
schemes as shown in the figure. As mentioned in [31], effective
bandwidth utilization is a key advantage of sophisticated storage
layout schemes because one can fully exploit the potentials of high-
end memory subsystems (which the in-memory appliances have)
effectively. From our results, we see that ByteSlice takes this ad-
vantage to the next level.

When data processing has reached a state of memory-bound (such
as when we are running many threads), ByteSlice still exhibits clear
advantage over other schemes in throughput. As we have analyzed
in Section 3.1.1, The early stopping properties of ByteSlice and
VBP allow them to process codes without processing all the bits.
This greatly improves their throughputs, especially for ByteSlice.
HBP and Bit-packed offer no early stops and so their bandwidth
usages increase with the code width k. Moreover, HBP uses de-
limiters and padding bits, it thus consumes even more bandwidth
than Bit-packed in general. Consequently HBP gives the lowest
throughput among the 4 schemes. When SMT threads are used,
HBP’s throughput further drops due to resource contention.

4.2 TPC-H and Real Data
We have also evaluated the overall performance of the methods

using TPC-H benchmark. The experiments are run on a TPC-H
dataset at scale factor 10. To focus only on scans and lookups,
we follow [32] to materialize the joins and execute the selection-
projection components of the queries. Queries that involve string
similarity comparison LIKE are discarded.

Figure 14 shows the experimental results. The results are pre-
sented as speed-up over the bit-packed layout. The time break-

down of all queries is presented in Appendix F. When queries are
not highly selective (e.g., Q1, Q14, Q15; whose selectivity ≥ 1%),
ByteSlice layout yields the best performance for all tested queries
because of its excellence on both scans and lookups. VBP per-
forms worst and even worse than bit-packed because the lookup
time dominates the query time, which unveils the poor lookup is-
sue of VBP.

We have also repeated the experiments by using skewed TPC-H
data (Appendix G) and real data (Appendix H). In those experi-
ments, ByteSlice still consistently outperforms the others. Overall,
this set of experiments shows the consistent high performance of
ByteSlice over all state-of-the-art in-memory storage layout.

5. RELATED WORK
The PAX (Partition Attributes Across) layout [2] was one of the

first studies on in-memory storage layout, which underlines the im-
portance of processor architecture (e.g., cache and memory band-
width utilization) in main memory processing. The motivation be-
hind PAX is to keep the attribute values of each record in the same
memory page as in traditional N-ary Storage Model (NSM), while
using a cache-friendly algorithm for placing the values inside the
page. PAX vertically partitions the records within each page, stor-
ing together the values of each attribute in “minipages”, combining
inter-record spatial locality and high data cache performance at no
extra storage overhead. The PAX idea has been generalized in Data
Morphing [19], which partitions the data based on the query load.

PAX and Data Morphing were storage layouts developed for
row-stores. In the past decade, the analytical market has been
dominated by pure column-store systems like Vertica [30], Mon-
etDB/X100 [10], and SAP HANA [15]. In current main-memory
column store implementations like Vectorwise [43] and SAP HANA,
base column data by default are stored in standard data array [10].
Recently, the Bit-Packed storage layout [40, 39] was proposed to
store the base column data in a tightly bit-packed manner in mem-
ory. By doing so, the memory bandwidth usage can be reduced
when scanning (filtering) the base data columns. Li and Patel [31]
proposed the Vertical Bit Packing (VBP) and Horizontal Bit Pack-
ing (HBP) layouts, which store the base column data in a way that
fully exploits the intra-cycle parallelism in modern processors to
accelerate scans. Later on, aggregations that leverage intra-cycle
parallelism on VBP and HBP are also developed [16].

In current main-memory column store implementations, when
an operator reads input produced from another operator, the in-
put is assumed to be formatted using standard data array [26, 8,
9, 5, 4, 36, 13, 41, 21, 12, 34]. Under that implementation, af-
ter a lookup operation has retrieved a code from the base column,
the code (together with its record number) is inserted into an ar-
ray of, say, struct {int32; int32;}. Subsequent opera-
tions like joins, aggregations and sorts would then take the array
as inputs. Since these operators are not directly processing data
straight from the base columns, their performances are independent

41

of the storage layout of the base columns. Take join as an exam-
ple. Existing hardware-conscious join algorithm [26, 8, 9, 5] all
assume that their input is an array of <RecordID, JoinKey>
pairs. Both RecordID and JoinKey are 32-bit integers. When
a join is carried out, their major concern is to avoid excessive TLB
misses and cache misses, and to reduce synchronization overheads
among multi-threads. To this end, many works have engineered
efficient partitioning algorithms. Kim et al. [26] proposed a lock-
free histogram-based partitioning scheme that aims to parallelize
on multi-core architectures. Moreover, they limit the partition-
ing’s fan-out to the number of TLB entries so as to avoid TLB
misses. They also exploit SIMD to accelerate hash computation.
[5, 34] increased the partitioning fan-out without sacrificing per-
formance by using an in-cache write buffer. Existing hardware-
conscious aggregation algorithms [36, 13, 41] also assume input
arrays of the form <GroupByKey, Value>. Since the the ag-
gregate value (e.g., min or sum) would be updated by multiple
threads concurrently, their major concern is to reduce the locking
and contention overheads. A variety of approaches are investigated
in [36, 13, 41]. For example, one can allocate a private aggregate
buffer to each thread and merge them in the end. Likewise, exist-
ing hardware-conscious sorting algorithms [21, 12] also assume an
array of <SortKey, RecordID> as input. When the sorting
is carried out, the main concern is to exploit on-chip parallelism
(e.g., SIMD) and to minimize cache misses and memory accesses.
All these works are orthogonal to ByteSlice because they mostly
read intermediate data (arrays) generated at runtime but not the
base column data in ByteSlice format. Nonetheless, we envision
that ByteSlice has the potential of being a representation of inter-
mediate data as well. In that case, operations like partitioning and
sorting could potentially benefit from ByteSlice. We will further
elaborate this idea in Section 6.

Finally, a latest trend of main memory column stores is to pre-
join tables upfront and materialize join results as one or more wide
tables [43, 32]. Queries on the original database, even complex
join queries, can then be handled as simple scans on wide tables.
Such a denormalization approach would not incur much storage
overhead in the context of column stores because of the various ef-
fective encoding schemes enabled by columnar storage. In [32], it
was shown that such a “Denormalization + Columnar + VBP/HBP
scans” combo can outperform MonetDB and Vectorwise on TPC-H
without using much extra storage. The idea of wide table (denor-
malization) can also be applied to us, resulting in a “Denormal-
ization + Columnar + ByteSlice scan/lookup” combo. We plan to
investigate the performance of this combo in our future work.

6. CONCLUSION AND FUTURE WORK
Recently, there is a resurgence of interest in main memory an-

alytic databases because of the large RAM capacity of modern
servers (e.g., Intel Xeon E7 v2 servers can support 6TB of RAM)
and the increasing demand for real-time analytic platforms. Exist-
ing in-memory storage layouts for columnar either accelerate scans
at the cost of slowing down lookups or preserving good lookup per-
formance with less efficient scans. This paper proposes ByteSlice,
a new in-memory storage layout that supports both fast scans and
fast lookups. Our experiments show that scans on ByteSlice can
achieve 0.5 process cycle per column value, a new limit of main
memory data scan, without sacrificing lookup performance. Exper-
iments on TPC-H workload shows that ByteSlice outperforms all
state-of-the-art approaches and can be up to 3X to 10X faster than
existing approaches.

The research of main memory column stores is still ongoing.
In current main memory column stores like Vectorwise and SAP

HANA, operations other than scan and lookup do not expect their
input data being formatted using any specialized layout other than
arrays. We envision that ByteSlice could be used as a layout for
intermediate result as well. That is, the lookup operations retrieve
codes from ByteSlice-formatted column and construct intermedi-
ate results in ByteSlice format. In that case, operations such as
partitioning, sorting and searching could potentially benefit from
ByteSlice. In the following, we briefly outline our idea:

Partitioning Partitioning data is an essential step of many oper-
ations in main memory database including joins and aggregations.
The state-of-the-art partitioning method is multi-pass hash radix
partitioning [26, 8, 5, 4, 34]. During each pass, it partitions a key
k based on R of the radix bits of k’s hash value and assigns k to
one of the 2R partitions. When partitioning a chunk of data D
in parallel (e.g., latching a partition and chaining), the partitioning
first scans the data once, computes the hash values of keys, and
builds a histogram of the partitions’ sizes. Based on the histogram
and the degree of parallelism, a write cursor over the buffer is des-
ignated for each partition. Next, the partitioning operation scans
the data the second time in parallel, computes the hash values of
keys again, and inserts the keys into corresponding positions of the
output buffer. In the process, hash values computation are done
twice. Hash values computation can be vectorized using SIMD. In
[26], keys are represented using standard data types (32-bit inte-
gers) and thus the hash value computation can be run in S/32 = 8-
way parallelism on AVX2. If the input data of a partition operation
are formatted using (8-bit) ByteSlice, the parallelism of hash value
computation can be improved to S/8 = 32-way on AVX2. To do
so, we simply need to devise hash functions that take as input the
bytes of a code and return a byte-wide hash value.

Sorting One powerful sorting algorithm for main-memory databases
is radix sort [38, 34]. For example, consider sorting 16-bits (2-
byte) codes. If the input data are formatted using ByteSlice, we
shall have two ByteSlices BS1 and BS2. In this case, we can em-
ploy a least-significant-byte radix sort. We sort on ByteSlice BS2

in the first iteration and sort on BS1 in the second iteration. By
having data stored in the ByteSlice format, after sorting a ByteSlice
in an iteration (e.g., sorting BS2 in the first iteration), that ByteS-
lice does not need to stay in the working set anymore. We can
therefore progressively reduce the memory footprint of radix sort
as we proceed through the iterations.

Searching Searching is to find all matches of a search key in a
list of values. It is a basic operation employed by many other op-
erations like nested loop joins and is used in the probe phase of
hash joins. Native SIMD-accelerated searching algorithms are in-
troduced in [42], where keys and values are stored using standard
data type (32-bit integers), resulting in a S/32 = 8-way SIMD
search in AVX2. If the input data are formatted using (8-bit) ByteS-
lice, search can enjoy S/8 = 32-way parallelism with early stop-
ping offered by ByteSlice.

Acknowledgements
This work is partly supported by the Research Grants Council of
Hong Kong (GRF PolyU 520413, 521012 and GRF HKU 712712E)
and a research gift from Microsoft Hong Kong.

We would like to thank Professor Jignesh Patel and Mr. Yinan Li
for their insightful advices. We would also thank the anonymous
reviewers for their comments and suggestions.

42

7. REFERENCES
[1] Oracle Exalytics In-memory Machine.

http://www.oracle.com/us/solutions/ent-performance-
bi/business-intelligence/exalytics-bi-
machine/overview/index.html.

[2] A. Ailamaki, D. J. DeWitt, M. D. Hill, and M. Skounakis.
Weaving relations for cache performance. In VLDB, 2001.

[3] K. Bache and M. Lichman. UCI machine learning repository,
2013. http://archive.ics.uci.edu/ml.

[4] C. Balkesen, G. Alonso, and M. Ozsu. Multi-core,
main-memory joins: Sort vs. hash revisited. PVLDB, 2013.

[5] C. Balkesen, J. Teubner, G. Alonso, and M. T. Özsu.
Main-memory hash joins on multi-core CPUs: Tuning to the
underlying hardware. In ICDE, 2013.

[6] R. Barber, P. Bendel, M. Czech, O. Draese, F. Ho, N. Hrle,
S. Idreos, M.-S. Kim, O. Koeth, J.-G. Lee, et al. Business
analytics in (a) blink. IEEE Data Eng. Bull., 2012.

[7] C. Binnig, S. Hildenbrand, and F. Färber. Dictionary-based
order-preserving string compression for main memory
column stores. In SIGMOD, 2009.

[8] S. Blanas, Y. Li, and J. M. Patel. Design and evaluation of
main memory hash join algorithms for multi-core cpus. In
SIGMOD, 2011.

[9] S. Blanas and J. M. Patel. Memory footprint matters:
efficient equi-join algorithms for main memory data
processing. In SoCC’13, 2013.

[10] P. A. Boncz, M. Zukowski, and N. Nes. MonetDB/X100:
Hyper-Pipelining Query Execution. In CIDR, 2005.

[11] S. Chaudhuri and V. Narasayya. Program for TPC-D data
generation with skew, 2012.

[12] J. Chhugani, A. D. Nguyen, V. W. Lee, W. Macy, M. Hagog,
Y.-K. Chen, A. Baransi, S. Kumar, and P. Dubey. Efficient
implementation of sorting on multi-core SIMD CPU
architecture. PVLDB, 2008.

[13] J. Cieslewicz and K. A. Ross. Adaptive aggregation on chip
multiprocessors. In PVLDB, 2007.

[14] W. Fang, B. He, and Q. Luo. Database compression on
graphics processors. PVLDB, 2010.

[15] F. Färber, N. May, W. Lehner, P. Große, I. Müller, H. Rauhe,
and J. Dees. The SAP HANA Database–An Architecture
Overview. IEEE Data Eng. Bull., 2012.

[16] Z. Feng and E. Lo. Acclerating Aggregation using
Intra-cycle Parallelism. In ICDE, 2015.

[17] Google. Supersonic library.
https://code.google.com/p/supersonic/.

[18] M. Grund, J. Krüger, H. Plattner, A. Zeier,
P. Cudre-Mauroux, and S. Madden. HYRISE: a main
memory hybrid storage engine. PVLDB, 2010.

[19] R. A. Hankins and J. M. Patel. Data morphing: an adaptive,
cache-conscious storage technique. In VLDB, 2003.

[20] S. Idreos, F. Groffen, N. Nes, S. Manegold, K. S. Mullender,
and M. Kersten. Monetdb: Two decades of research in
column-oriented database architectures. IEEE Data Eng.
Bull., 2012.

[21] H. Inoue, T. Moriyama, H. Komatsu, and T. Nakatani.
AA-sort: A new parallel sorting algorithm for multi-core
SIMD processors. In PACT, 2007.

[22] Intel. Intel Performance Counter Monitor.
https://software.intel.com/en-us/articles/intel-performance-
counter-monitor/.

[23] Intel. Intel architecture instruction set extentions
programming reference, 2013.

[24] M. Karpathiotakis, M. Branco, I. Alagiannis, and
A. Ailamaki. Adaptive query processing on RAW data.
PVLDB, 2014.

[25] A. Kemper and T. Neumann. HyPer: A hybrid OLTP&OLAP
main memory database system based on virtual memory
snapshots. In ICDE, 2011.

[26] C. Kim, T. Kaldewey, V. W. Lee, E. Sedlar, A. D. Nguyen,
N. Satish, J. Chhugani, A. Di Blas, and P. Dubey. Sort vs.

hash revisited: Fast join implementation on modern
multi-core cpus. PVLDB, 2009.

[27] I. Klonatos, C. Koch, T. Rompf, and H. Chafi. Building
efficient query engines in a high-level language. In VLDB,
2014.

[28] J. Krueger, C. Kim, M. Grund, N. Satish, D. Schwalb,
J. Chhugani, H. Plattner, P. Dubey, and A. Zeier. Fast updates
on read-optimized databases using multi-core cpus. PVLDB,
2011.

[29] S. Lahman. Baseball database.
http://www.seanlahman.com/baseball-archive/statistics/.

[30] A. Lamb, M. Fuller, R. Varadarajan, N. Tran, B. Vandiver,
L. Doshi, and C. Bear. The vertica analytic database: C-store
7 years later. PVLDB, 2012.

[31] Y. Li and J. M. Patel. Bitweaving: Fast scans for main
memory data processing. In SIGMOD, 2013.

[32] Y. Li and J. M. Patel. Widetable: An accelerator for
analytical data processing. PVLDB, 2014.

[33] P. O’Neil and D. Quass. Improved query performance with
variant indexes. In ACM SIGMOD Record, 1997.

[34] O. Polychroniou and K. A. Ross. A comprehensive study of
main-memory partitioning and its application to large-scale
comparison-and radix-sort. In SIGMOD. ACM, 2014.

[35] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash,
P. Dubey, S. Junkins, A. Lake, J. Sugerman, R. Cavin,
R. Espasa, E. Grochowski, T. Juan, and P. Hanrahan.
Larrabee: A many-core x86 architecture for visual
computing. In ACM SIGGRAPH, 2008.

[36] A. Shatdal and J. F. Naughton. Adaptive parallel aggregation
algorithms. In SIGMOD, 1995.

[37] Q. T. Tran, C.-Y. Chan, and S. Parthasarathy. Query reverse
engineering. The VLDB Journal, pages 1–26, 2013.

[38] J. Wassenberg and P. Sanders. Engineering a multi-core radix
sort. In Euro-Par 2011 Parallel Processing, pages 160–169.
Springer, 2011.

[39] T. Willhalm, I. Oukid, I. Müller, and F. Faerber. Vectorizing
database column scans with complex predicates. In ADMS
Workshop, 2013.

[40] T. Willhalm, N. Popovici, Y. Boshmaf, H. Plattner, A. Zeier,
and J. Schaffner. SIMD-scan: ultra fast in-memory table scan
using on-chip vector processing units. PVLDB, 2009.

[41] Y. Ye, K. A. Ross, and N. Vesdapunt. Scalable aggregation
on multicore processors. In DeMoN, 2011.

[42] J. Zhou and K. A. Ross. Implementing database operations
using SIMD instructions. In SIGMOD, 2002.

[43] M. Zukowski, M. van de Wiel, and P. Boncz. Vectorwise: A
vectorized analytical DBMS. In ICDE, 2012.

APPENDIX
A. (8-BIT) BYTESLICE VS. 16-BIT-SLICE

We select 8 instead of 16 as the bank width because attributes in
real-world workloads are usually encoded using 24 bits or fewer.
For example, we found that 90% columns in TPC-H are shorter
than 24 bits after encoding. All columns in the two real datasets that
we used in the experiments are shorter than 20 bits after encoding.
When column widths fall into that range:

1. Using 16-bit bank width could consume more storage space
than 8-bit bank. For example, a 20-bit attribute consumes
3 × 8 = 24 bits/code under ByteSlice but 2 × 16 = 32
bits/code if 16-bit banks are used.

2. Using 16-bit bank width could only leverage 16-way (if S =
256) parallelism while using 8-bit bank width could leverage
32-way (if S = 256) parallelism.

3. Using 16-bit bank would not reduce lookup overhead much
comparing with using 8-bit bank. For example, looking up a

43

20-bit attribute under 16-bit bank requires accessing 2 mem-
ory words whereas looking up a 20-bit attribute under 8-bit
bank requires accessing 3 memory words. That difference
could easily be overlapped in the instruction pipeline.

Moreover, using 32 as the bank width is meaningless because it
simply degrades to the naive SIMD approach.

We have verified our claims by implementing 16-bit-slice and
compared its scan and lookup performance with (8-bit) ByteSlice
and VBP. Figure 15 shows that (8-bit) ByteSlice always outper-
forms 16-bit-slice in scans and have very close performance in
lookup. Based on our empirical evaluation we use 8 as the bank
width in this paper.

 0

 400

 800

 1200

 1600

 2000

 0 4 8 12 16 20 24 28 32

C
y
cl

e
s/

co
d

e

Attribute Code Width (# of bits)

VBP
ByteSlice

16-Bit-Slice

(a) Lookup

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 4 8 12 16 20 24 28 32

C
y
cl

e
s/

co
d

e

Attribute Code Width (# of bits)

VBP
ByteSlice

16-Bit-Slice

(b) Scan
Figure 15: Lookup (a) and Scan (b) performance of using 16
bits as the bank width.

B. EVALUATING OTHER COMPARISON OP-
ERATORS

In the following, we present how to extend Algorithm 1 to handle
other comparison operators:

GREATER-THAN (>) Replace the instruction simd_cmplt_epi8()
by simd_cmpgt_epi8() and rename the variableMlt toMgt.

EQUAL (=) Remove Line 11 (Mlt) and Line 13 (Mlt) from Al-
gorithm 1. Use the maskMeq instead ofMlt in Line 16.

NOT-EQUAL (6=) To evaluate NOT-EQUAL (6=), further negate
r before appending it to R in Line 17.

LESS-THAN-OR-EQUAL-TO (≤) and GREATER-THAN-OR-
EQUAL-TO (≥) Change Line 16 to

r = simd_movemask_epi8(simd_or(Mlt,Meq)).

Ditto for GREATER-THAN-OR-EQUAL-TO (≥).

BETWEEN The BETWEEN predicate “c1 ≤ v ≤ c2” is evaluated
by the conjunction of two predicates: c1 ≤ v and v ≤ c2.

C. SCAN PERFORMANCE OF OTHER PRED-
ICATES

We report the scan performance of ByteSlice with other predi-
cate types: GREATER-THAN(>), GREATER-THAN-OR-EQUAL-
TO (≥) and LESS-THAN-OR-EQUAL-TO (≤), in Figure 16. As
we can see, the results are similar to the previous predicates we
reported in Figure 9.

D. SCAN PERFORMANCE OF OTHER SE-
LECTIVITY

We also run experiments with other selectivity. Figure 17 shows
the results of the benchmark query with selectivity 90%. Figure
18 shows the results of the benchmark query with selectivity 1%.
They show that the scan cost is not affected by the selectivity of the
query under uniform data.

E. EVALUATION OF DISJUNCTION PRED-
ICATES

We study the performance of the two implementations of the
pipeline approach and the baseline approach with a disjunction
predicate in the form of:

WHERE T.col1 < c1 OR T.col2 > c2

Similarly to Section 4.1.3, we fix the selectivity of col2 and
vary the selectivity of col1. Slightly unlike conjunction, in dis-
junction, a predicate only considers those tuples that did not pass
the previous predicate. Therefore, a high selectivity of col1 helps
to increase the early stopping probability of col2, and thus re-
ducing execution time. This is confirmed by the results reported
in Figure 19. Again, we observe that the column-first pipeline im-
plementation outperforms the other alternates. We conclude that
it is the consistently best choice of complex predicate evaluation
approach. Experimental results for Bit-Packed, HBP and VBP in
Figure 19 are also similar to conjunction results in Figure 12.

F. TIME BREAKDOWN OF TPC-H EXPER-
IMENTS

We report the execution time breakdown of TPC-H queries in
Figure 20. The run time of each query is dissected into scan cost
and lookup cost. The reported numbers have been normalized on a
per tuple basis.

We could see that TPC-H benchmark has both scan-dominant
(e.g., Q4 and Q19) and lookup-dominant (e.g., Q1) queries. A cou-
ple of queries sit in the middle with different weights on the two
operations. The results show that ByteSlice strikes an excellent
balance between scan and lookup across industrial-strength TPC-H
workload.

G. EVALUATION USING TPC-H SKEW DATA
We use the data generator from [11] to generate Zipfian skewed

TPC-H data. We generate skewed data with skew factor zipf = 1
and 2. Both skewed data sets are of scale factor 10GB.

The results are shown in Figure 21. The experimental results are
still consistent — TPC-H queries on ByteSlice data outperform the
other methods across the whole workload under different degrees
of skewness.

H. EVALUATION USING REAL DATA
We also carry out experiments using two real data sets, ADULT

and BASEBALL. ADULT [3] is a single-relation demographic data
set extracted from the 1994 Census database. BASEBALL [29] is
a multi-relation data set that contains statistics for Major League
Baseball from 1871 to 2013. The queries on that two real datasets
are extracted from [37]. We discard queries that have no selection
clauses.

Figure 22 shows the experimental results on that two datasets.
Again, we see that ByteSlice outperforms all competitors.

44

 0

 1

 2

 3

 0 4 8 12 16 20 24 28 32

C
yc
le
s/

co
d

e

Code width (# of bits)

>
Bit-Packed

HBP
VBP

ByteSlice

 0

 1

 2

 3

 0 4 8 12 16 20 24 28 32

C
yc
le
s/

co
d

e

Code width (# of bits)

≥
Bit-Packed

HBP
VBP

ByteSlice

 0

 1

 2

 3

 0 4 8 12 16 20 24 28 32

C
yc
le
s/

co
d

e

Code width (# of bits)

≤
Bit-Packed

HBP
VBP

ByteSlice

 0
 1
 2
 3
 4
 5
 6

 0 4 8 12 16 20 24 28 32In
st

ru
ct

io
n
s/

co
d

e

Code width (# of bits)

>
Bit-Packed

HBP
VBP

ByteSlice

 0
 1
 2
 3
 4
 5
 6

 0 4 8 12 16 20 24 28 32In
st

ru
ct

io
n
s/

co
d

e

Code width (# of bits)

≥
Bit-Packed

HBP
VBP

ByteSlice

 0
 1
 2
 3
 4
 5
 6

 0 4 8 12 16 20 24 28 32In
st

ru
ct

io
n
s/

co
d

e

Code width (# of bits)

≤
Bit-Packed

HBP
VBP

ByteSlice

Figure 16: Scan Performance: Other Predicates

 0

 1

 2

 3

 0 4 8 12 16 20 24 28 32

C
y
cl

e
s/

co
d

e

Code width (# of bits)

<
Bit-Packed

HBP
VBP

ByteSlice

 0

 1

 2

 3

 0 4 8 12 16 20 24 28 32

C
y
cl

e
s/

co
d

e

Code width (# of bits)

=
Bit-Packed

HBP
VBP

ByteSlice

 0

 1

 2

 3

 0 4 8 12 16 20 24 28 32

C
y
cl

e
s/

co
d

e

Code width (# of bits)

≠
Bit-Packed

HBP
VBP

ByteSlice

 0
 1
 2
 3
 4
 5
 6

 0 4 8 12 16 20 24 28 32In
st

ru
ct

io
n
s/

co
d

e

Code width (# of bits)

<
Bit-Packed

HBP
VBP

ByteSlice

 0
 1
 2
 3
 4
 5
 6

 0 4 8 12 16 20 24 28 32In
st

ru
ct

io
n
s/

co
d

e

Code width (# of bits)

=
Bit-Packed

HBP
VBP

ByteSlice

 0
 1
 2
 3
 4
 5
 6

 0 4 8 12 16 20 24 28 32In
st

ru
ct

io
n
s/

co
d

e

Code width (# of bits)

≠
Bit-Packed

HBP
VBP

ByteSlice

Figure 17: Scan Performance: Selectivity = 90%

 0

 1

 2

 3

 0 4 8 12 16 20 24 28 32

C
y
cl

e
s/

co
d

e

Code width (# of bits)

<
Bit-Packed

HBP
VBP

ByteSlice

 0

 1

 2

 3

 0 4 8 12 16 20 24 28 32

C
y
cl

e
s/

co
d

e

Code width (# of bits)

=
Bit-Packed

HBP
VBP

ByteSlice

 0

 1

 2

 3

 0 4 8 12 16 20 24 28 32

C
y
cl

e
s/

co
d

e

Code width (# of bits)

≠
Bit-Packed

HBP
VBP

ByteSlice

 0
 1
 2
 3
 4
 5
 6

 0 4 8 12 16 20 24 28 32In
st

ru
ct

io
n
s/

co
d

e

Code width (# of bits)

<
Bit-Packed

HBP
VBP

ByteSlice

 0
 1
 2
 3
 4
 5
 6

 0 4 8 12 16 20 24 28 32In
st

ru
ct

io
n
s/

co
d

e

Code width (# of bits)

=
Bit-Packed

HBP
VBP

ByteSlice

 0
 1
 2
 3
 4
 5
 6

 0 4 8 12 16 20 24 28 32In
st

ru
ct

io
n
s/

co
d

e

Code width (# of bits)

≠
Bit-Packed

HBP
VBP

ByteSlice

Figure 18: Scan Performance: Selectivity = 1%

 0

 0.5

 1

 1.5

 2

99% 99% 95% 90% 50% 10%

C
y
cl

e
s/

tu
p

le

Bit-Packed
HBP

VBP
BS(Baseline)

BS(Predicate-First)
BS(Column-First)

 0

 0.01

 0.02

 0.03

99% 99% 95% 90% 50% 10%L2
 C

a
ch

e
 M

is
se

s/
tu

p
le

(a) Cycles (b) L2 Cache Misses

Figure 19: Evaluation of Complex Predicate (Disjunction)

45

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

BP HBP
VBP

BS

Q1
Scan Lookup

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

BP HBP
VBP

BS

Q3

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

BP HBP
VBP

BS

Q4

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

BP HBP
VBP

BS

Q5

 0
 1
 2
 3
 4
 5
 6

BP HBP
VBP

BS

Q6

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

BP HBP
VBP

BS

Q8

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

BP HBP
VBP

BS

Q10

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

BP HBP
VBP

BS

Q11

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

BP HBP
VBP

BS

Q12

 0
 0.5

 1
 1.5

 2
 2.5

 3

BP HBP
VBP

BS

Q14

 0
 1
 2
 3
 4
 5
 6

BP HBP
VBP

BS

Q15

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

BP HBP
VBP

BS

Q17

 0
 1
 2
 3
 4
 5
 6
 7
 8

BP HBP
VBP

BS

Q19

Figure 20: Execution Time Breakdown for TPC-H Queries. Y-axis reports cycles per tuple.

 0

 1

 2

 3

 4

 5

Q1 Q3 Q4 Q5 Q6 Q8 Q10 Q11 Q12 Q14 Q15 Q17 Q19

S
p
e
e
d
-u

p
 o

v
e
r

 B
it

-P
a
ck

e
d
 L

a
y
o
u
t

TPC-H queries

Bit-Packed HBP VBP ByteSlice 97 11

(a) zipf = 1

 0
 1
 2
 3
 4
 5
 6

Q1 Q3 Q4 Q5 Q6 Q8 Q10 Q11 Q12 Q14 Q15 Q17 Q19

S
p
e
e
d
-u

p
 o

v
e
r

 B
it

-P
a
ck

e
d
 L

a
y
o
u
t

TPC-H queries

Bit-Packed HBP VBP ByteSlice 117 13

(b) zipf = 2

Figure 21: Speed-up over Bit-Packed on TPC-H Queries with Zipfian Data.

 0
 1
 2
 3
 4
 5
 6
 7
 8

A1 A2 A3 A5 B1 B4 B5

S
p
e
e
d
-u

p
 o

v
e
r

 B
it

-P
a
ck

e
d
 L

a
y
o
u
t

ADULT and BASEBALL Queries

Bit-Packed HBP VBP ByteSlice
14

(a) Speed-up over Bit-Packed

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

BP HBP
VBP

BS

A1
Scan Lookup

 0
 1
 2
 3
 4
 5
 6

BP HBP
VBP

BS

A2

 0
 5

 10
 15
 20
 25
 30
 35

BP HBP
VBP

BS

A3

 0
 10
 20
 30
 40
 50
 60
 70

BP HBP
VBP

BS

A5

 0
 0.5

 1
 1.5

 2
 2.5

 3

BP HBP
VBP

BS

B1

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

BP HBP
VBP

BS

B4

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

BP HBP
VBP

BS

B5

(b) Execution Time Breakdown (Y-axis reports cycles per tuple)

Figure 22: Performance of Different Layouts on Two Real Data Sets: ADULT (Queries A*) and BASEBALL (Queries B*).

46

