
Andy Pavlo // Carnegie Mellon University // Spring 2016

ADVANCED
DATABASE
SYSTEMS

Lecture #12 – Logging Protocols

15-721

@Andy_Pavlo // Carnegie Mellon University // Spring 2017

http://15721.courses.cs.cmu.edu/spring2017/
https://twitter.com/andy_pavlo

CMU 15-721 (Spring 2017)

TODAY’S AGENDA

Logging Schemes
Crash Course on ARIES
Physical Logging
Command Logging

2

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

LOGGING & RECOVERY

Recovery algorithms are techniques to ensure
database consistency, txn atomicity and
durability despite failures.

Recovery algorithms have two parts:
→ Actions during normal txn processing to ensure that the

DBMS can recover from a failure.
→ Actions after a failure to recover the database to a state

that ensures atomicity, consistency, and durability.

3

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

LOGGING SCHEMES

Physical Logging

→ Record the changes made to a specific record in the
database.

→ Example: Store the original value and after value for an
attribute that is changed by a query.

Logical Logging

→ Record the high-level operations executed by txns.
→ Example: The UPDATE, DELETE, and INSERT queries

invoked by a txn.

4

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

PHYSICAL VS. LOGICAL LOGGING

Logical logging writes less data in each log record
than physical logging.

Difficult to implement recovery with logical
logging if you have concurrent txns.
→ Hard to determine which parts of the database may have

been modified by a query before crash.
→ Also takes longer to recover because you must re-execute

every txn all over again.

5

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

Logical Log

LOGICAL LOGGING EXAMPLE

6

UPDATE employees
 SET salary = salary * 1.10

UPDATE employees
 SET salary = 900
 WHERE name = ‘Andy’

NAME SALARY

O.D.B. $100

El-P $666

Andy $888

UPDATE employees SET
salary = salary * 1.10

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

Logical Log

LOGICAL LOGGING EXAMPLE

6

UPDATE employees
 SET salary = salary * 1.10

UPDATE employees
 SET salary = 900
 WHERE name = ‘Andy’

NAME SALARY

O.D.B. $100

El-P $666

Andy $888

UPDATE employees SET
salary = salary * 1.10

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

Logical Log

LOGICAL LOGGING EXAMPLE

6

UPDATE employees
 SET salary = salary * 1.10

UPDATE employees
 SET salary = 900
 WHERE name = ‘Andy’

NAME SALARY

O.D.B. $100

El-P $666

Andy $888

UPDATE employees SET
salary = salary * 1.10

$110

$732

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

Logical Log

LOGICAL LOGGING EXAMPLE

6

UPDATE employees
 SET salary = salary * 1.10

UPDATE employees
 SET salary = 900
 WHERE name = ‘Andy’

NAME SALARY

O.D.B. $100

El-P $666

Andy $888

UPDATE employees SET
salary = 900 WHERE
name = ‘Andy’

UPDATE employees SET
salary = salary * 1.10

$110

$732

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

Logical Log

LOGICAL LOGGING EXAMPLE

6

UPDATE employees
 SET salary = salary * 1.10

UPDATE employees
 SET salary = 900
 WHERE name = ‘Andy’

NAME SALARY

O.D.B. $100

El-P $666

Andy $888

UPDATE employees SET
salary = 900 WHERE
name = ‘Andy’

UPDATE employees SET
salary = salary * 1.10

$110

$732

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

Logical Log

LOGICAL LOGGING EXAMPLE

6

UPDATE employees
 SET salary = salary * 1.10

UPDATE employees
 SET salary = 900
 WHERE name = ‘Andy’

NAME SALARY

O.D.B. $100

El-P $666

Andy $888 $900

UPDATE employees SET
salary = 900 WHERE
name = ‘Andy’

UPDATE employees SET
salary = salary * 1.10

$110

$732

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

Logical Log

LOGICAL LOGGING EXAMPLE

6

UPDATE employees
 SET salary = salary * 1.10

UPDATE employees
 SET salary = 900
 WHERE name = ‘Andy’

NAME SALARY

O.D.B. $100

El-P $666

Andy $888 $900

UPDATE employees SET
salary = 900 WHERE
name = ‘Andy’

UPDATE employees SET
salary = salary * 1.10

$110

$732

$990

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

Logical Log

LOGICAL LOGGING EXAMPLE

6

UPDATE employees
 SET salary = salary * 1.10

UPDATE employees
 SET salary = 900
 WHERE name = ‘Andy’

NAME SALARY

O.D.B. $100

El-P $666

Andy $888 $900

UPDATE employees SET
salary = 900 WHERE
name = ‘Andy’

UPDATE employees SET
salary = salary * 1.10

$110

$732

$990 X

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

Logical Log

LOGICAL LOGGING EXAMPLE

6

UPDATE employees
 SET salary = salary * 1.10

UPDATE employees
 SET salary = 900
 WHERE name = ‘Andy’

NAME SALARY

O.D.B. $100

El-P $666

Andy $888 $900

UPDATE employees SET
salary = 900 WHERE
name = ‘Andy’

UPDATE employees SET
salary = salary * 1.10

$110

$732

SALARY

$110

$732

$900 $990 X

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

DISK-ORIENTED LOGGING & RECOVERY

The “gold standard” for physical logging &
recovery in a disk-oriented DBMS is ARIES.
→ Algorithms for Recovery and Isolation Exploiting

Semantics
→ Invented by IBM Research in the early 1990s.

Relies on STEAL and NO-FORCE buffer pool
management policies.

7

ARIES: A TRANSACTION RECOVERY METHOD
SUPPORTING FINE-GRANULARITY LOCKING AND
PARTIAL ROLLBACKS USING WRITE-AHEAD LOGGING
ACM Transactions on Database Systems 1992

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://dl.acm.org/citation.cfm?id=128770
http://dl.acm.org/citation.cfm?id=128770

CMU 15-721 (Spring 2017)

ARIES – MAIN IDEAS

Write-Ahead Logging:

→ Any change is recorded in log on stable storage before the
database change is written to disk.

Repeating History During Redo:

→ On restart, retrace actions and restore database to exact
state before crash.

Logging Changes During Undo:

→ Record undo actions to log to ensure action is not
repeated in the event of repeated failures.

8

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

ARIES – RUNTIME LOGGING

For each modification to the database, the DBMS
appends a record to the tail of the log.

When a txn commits, its log records are flushed to
durable storage.

9

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

ARIES – RUNTIME CHECKPOINTS

Use fuzzy checkpoints to allow txns to keep on
running while writing checkpoint.
→ The checkpoint may contain updates from txns that have

not committed and may abort later on.

The DBMS records internal system state as of the
beginning of the checkpoint.
→ Active Transaction Table (ATT)
→ Dirty Page Table (DPT)

10

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

LOG SEQUENCE NUMBERS

Every log record has a globally unique log sequence

number (LSN) that is used to determine the serial
order of those records.

The DBMS keeps track of various LSNs in both
volatile and non-volatile storage to determine the
order of almost everything in the system…

11

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

LOG SEQUENCE NUMBERS

Each page contains a pageLSN that represents the
LSN of the most recent update to that page.

The DBMS keeps track of the max log record
written to disk (flushedLSN).

For a page i to be written, the DBMS must flush
log at least to the point where pageLSN

i
 ≤

flushedLSN

12

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

Non-Volatile Storage

Buffer Pool

WAL (Tail)

LOG SEQUENCE NUMBERS

13

015:<T5 begin>
016:<T5, A, 99, 88>
017:<T5, B, 5, 10>
018:<T5 commit>
 ⋮

pageLSN

A=99 B=5 C=12

pageLSN

A=99 B=5 C=12

001:<T1 begin>
002:<T1, A, 1, 2>
003:<T1 commit>
004:<T2 begin>
005:<T2, A, 2, 3>
006:<T3 begin>
007:<CHECKPOINT>
008:<T2 commit>
009:<T4 begin>
010:<T4, X, 5, 6>
011:<T3, B, 4, 2>
012:<T3 commit>
013:<T4, B, 2, 3>
014:<T4, C, 1, 2>

flushedLSN Master Record

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

Non-Volatile Storage

Buffer Pool

WAL (Tail)

LOG SEQUENCE NUMBERS

13

015:<T5 begin>
016:<T5, A, 99, 88>
017:<T5, B, 5, 10>
018:<T5 commit>
 ⋮

pageLSN

A=99 B=5 C=12

pageLSN

A=99 B=5 C=12

001:<T1 begin>
002:<T1, A, 1, 2>
003:<T1 commit>
004:<T2 begin>
005:<T2, A, 2, 3>
006:<T3 begin>
007:<CHECKPOINT>
008:<T2 commit>
009:<T4 begin>
010:<T4, X, 5, 6>
011:<T3, B, 4, 2>
012:<T3 commit>
013:<T4, B, 2, 3>
014:<T4, C, 1, 2>

flushedLSN Master Record

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

Non-Volatile Storage

Buffer Pool

WAL (Tail)

LOG SEQUENCE NUMBERS

13

015:<T5 begin>
016:<T5, A, 99, 88>
017:<T5, B, 5, 10>
018:<T5 commit>
 ⋮

pageLSN

A=99 B=5 C=12

pageLSN

A=99 B=5 C=12

001:<T1 begin>
002:<T1, A, 1, 2>
003:<T1 commit>
004:<T2 begin>
005:<T2, A, 2, 3>
006:<T3 begin>
007:<CHECKPOINT>
008:<T2 commit>
009:<T4 begin>
010:<T4, X, 5, 6>
011:<T3, B, 4, 2>
012:<T3 commit>
013:<T4, B, 2, 3>
014:<T4, C, 1, 2>

flushedLSN Master Record

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

Non-Volatile Storage

Buffer Pool

WAL (Tail)

LOG SEQUENCE NUMBERS

13

015:<T5 begin>
016:<T5, A, 99, 88>
017:<T5, B, 5, 10>
018:<T5 commit>
 ⋮

pageLSN

A=99 B=5 C=12

pageLSN

A=99 B=5 C=12

001:<T1 begin>
002:<T1, A, 1, 2>
003:<T1 commit>
004:<T2 begin>
005:<T2, A, 2, 3>
006:<T3 begin>
007:<CHECKPOINT>
008:<T2 commit>
009:<T4 begin>
010:<T4, X, 5, 6>
011:<T3, B, 4, 2>
012:<T3 commit>
013:<T4, B, 2, 3>
014:<T4, C, 1, 2>

flushedLSN Master Record

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

Non-Volatile Storage

Buffer Pool

WAL (Tail)

LOG SEQUENCE NUMBERS

13

015:<T5 begin>
016:<T5, A, 99, 88>
017:<T5, B, 5, 10>
018:<T5 commit>
 ⋮

pageLSN

A=99 B=5 C=12

pageLSN

A=99 B=5 C=12

001:<T1 begin>
002:<T1, A, 1, 2>
003:<T1 commit>
004:<T2 begin>
005:<T2, A, 2, 3>
006:<T3 begin>
007:<CHECKPOINT>
008:<T2 commit>
009:<T4 begin>
010:<T4, X, 5, 6>
011:<T3, B, 4, 2>
012:<T3 commit>
013:<T4, B, 2, 3>
014:<T4, C, 1, 2>

flushedLSN Master Record

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

Non-Volatile Storage

Buffer Pool

WAL (Tail)

LOG SEQUENCE NUMBERS

13

015:<T5 begin>
016:<T5, A, 99, 88>
017:<T5, B, 5, 10>
018:<T5 commit>
 ⋮

pageLSN

A=99 B=5 C=12

pageLSN

A=99 B=5 C=12

001:<T1 begin>
002:<T1, A, 1, 2>
003:<T1 commit>
004:<T2 begin>
005:<T2, A, 2, 3>
006:<T3 begin>
007:<CHECKPOINT>
008:<T2 commit>
009:<T4 begin>
010:<T4, X, 5, 6>
011:<T3, B, 4, 2>
012:<T3 commit>
013:<T4, B, 2, 3>
014:<T4, C, 1, 2>

flushedLSN Master Record

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

Non-Volatile Storage

Buffer Pool

WAL (Tail)

LOG SEQUENCE NUMBERS

13

015:<T5 begin>
016:<T5, A, 99, 88>
017:<T5, B, 5, 10>
018:<T5 commit>
 ⋮

pageLSN

A=99 B=5 C=12

pageLSN

A=99 B=5 C=12

001:<T1 begin>
002:<T1, A, 1, 2>
003:<T1 commit>
004:<T2 begin>
005:<T2, A, 2, 3>
006:<T3 begin>
007:<CHECKPOINT>
008:<T2 commit>
009:<T4 begin>
010:<T4, X, 5, 6>
011:<T3, B, 4, 2>
012:<T3 commit>
013:<T4, B, 2, 3>
014:<T4, C, 1, 2>

flushedLSN Master Record
X

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

DISK-ORIENTED DBMS OVERHEAD

14

BUFFER POOL

LOCKING

RECOVERY

REAL WORK

28%
30%

30%
12%

Measured CPU Cycles

OLTP THROUGH THE LOOKING GLASS,
AND WHAT WE FOUND THERE
SIGMOD, pp. 981-992, 2008.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://hstore.cs.brown.edu/papers/hstore-lookingglass.pdf

CMU 15-721 (Spring 2017)

OBSERVATION

Often the slowest part of the txn is waiting for the
DBMS to flush the log records to disk.

Have to wait until the records are safely written
before the DBMS can return the
acknowledgement to the client.

15

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

GROUP COMMIT

Batch together log records from multiple txns and
flush them together with a single fsync.
→ Logs are flushed either after a timeout or when the buffer

gets full.
→ Originally developed in IBM IMS FastPath in the 1980s

This amortizes the cost of I/O over several txns.

16

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
https://en.wikipedia.org/wiki/IBM_Information_Management_System

CMU 15-721 (Spring 2017)

EARLY LOCK RELEASE

A txn’s locks can be released before its commit
record is written to disk as long as it does not
return results to the client before becoming
durable.

Other txns that read data updated by a pre-

committed txn become dependent on it and also
have to wait for their predecessor’s log records to
reach disk.

17

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

IN-MEMORY DATABASE RECOVERY

Recovery is slightly easier because the DBMS does
not have to worry about tracking dirty pages in
case of a crash during recovery.
An in-memory DBMS also does not need to store
undo records.

But the DBMS is still stymied by the slow sync
time of non-volatile storage

18

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

OBSERVATION

The early papers (1980s) on recovery for in-
memory DBMSs assume that there is non-volatile
memory.

This hardware is still not widely available so we
want to use existing SSD/HDDs.

19

A RECOVERY ALGORITHM FOR A HIGH-PERFORMANCE
MEMORY-RESIDENT DATABASE SYSTEM
SIGMOD 1987

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://15721.courses.cs.cmu.edu/spring2017/papers/12-logging/p104-lehman.pdf
http://15721.courses.cs.cmu.edu/spring2017/papers/12-logging/p104-lehman.pdf

CMU 15-721 (Spring 2017)

SILO – LOGGING AND RECOVERY

SiloR uses the epoch-based OCC that we discussed
previously.
It achieves high performance by parallelizing all
aspects of logging, checkpointing, and recovery.

Again, Eddie Kohler is unstoppable.

20

FAST DATABASES WITH FAST DURABILITY AND
RECOVERY THROUGH MULTICORE PARALLELISM
OSDI 2014

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
https://en.wikipedia.org/wiki/File:EddieKohlerHarvard-MaleTears-August2014.jpg
http://15721.courses.cs.cmu.edu/spring2017/papers/12-logging/zheng-osdi14.pdf
http://15721.courses.cs.cmu.edu/spring2017/papers/12-logging/zheng-osdi14.pdf

CMU 15-721 (Spring 2017)

SILOR – LOGGING PROTOCOL

The DBMS assumes that there is one storage
device per CPU socket.
→ Assigns one logger thread per device.
→ Worker threads are grouped per CPU socket.

As the worker executes a txn, it creates new log
records that contain the values that were written
to the database (i.e., REDO).

21

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

SILOR – LOGGING PROTOCOL

Each logger thread maintains a pool of log buffers
that are given to its worker threads.

When a worker’s buffer is full, it gives it back to
the logger thread to flush to disk and attempts to
acquire a new one.
→ If there are no available buffers, then it stalls.

22

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

SILOR – LOG FILES

The logger threads write buffers out to files
→ After 100 epochs, it creates a new file.
→ The old file is renamed with a marker indicating the max

epoch of records that it contains.

Log record format:
→ Id of the txn that modified the record (TID).
→ A set of value log triplets (Table, Key, Value).
→ The value can be a list of attribute + value pairs.

23

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

SILOR – LOG FILES

The logger threads write buffers out to files
→ After 100 epochs, it creates a new file.
→ The old file is renamed with a marker indicating the max

epoch of records that it contains.

Log record format:
→ Id of the txn that modified the record (TID).
→ A set of value log triplets (Table, Key, Value).
→ The value can be a list of attribute + value pairs.

23

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

SILOR – LOG FILES

The logger threads write buffers out to files
→ After 100 epochs, it creates a new file.
→ The old file is renamed with a marker indicating the max

epoch of records that it contains.

Log record format:
→ Id of the txn that modified the record (TID).
→ A set of value log triplets (Table, Key, Value).
→ The value can be a list of attribute + value pairs.

23

UPDATE people
 SET isLame = true
 WHERE name IN (‘Dana’,‘Andy’)

Txn#1001
[people, 888, (isLame→true)]
[people, 999, (isLame→true)]

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

Storage

SILOR – ARCHITECTURE

24

Epoch

Thread

Worker Logger

Free

Buffers

Flushing

Buffers

Log Files

epoch=100

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

Storage

SILOR – ARCHITECTURE

24

Epoch

Thread

Worker Logger

Free

Buffers

Flushing

Buffers

Log Files

epoch=100

Log Records

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

Storage

SILOR – ARCHITECTURE

24

Epoch

Thread

Worker Logger

Free

Buffers

Flushing

Buffers

Log Files

epoch=100

Log Records

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

Storage

SILOR – ARCHITECTURE

24

Epoch

Thread

Worker Logger

Free

Buffers

Flushing

Buffers

Log Files

epoch=100

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

Storage

SILOR – ARCHITECTURE

24

Epoch

Thread

Worker Logger

Free

Buffers

Flushing

Buffers

Log Files

epoch=100

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

Storage

SILOR – ARCHITECTURE

24

Epoch

Thread

Worker Logger

Free

Buffers

Flushing

Buffers

Log Files

epoch=200

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

Storage

SILOR – ARCHITECTURE

24

Epoch

Thread

Worker Logger

Free

Buffers

Flushing

Buffers

Log Files

epoch=200

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

Storage

SILOR – ARCHITECTURE

24

Epoch

Thread

Worker Logger

Free

Buffers

Flushing

Buffers

Log Files

epoch=200

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

Storage

SILOR – ARCHITECTURE

24

Epoch

Thread

Worker Logger

Free

Buffers

Flushing

Buffers

Log Files

epoch=200

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

Storage

SILOR – ARCHITECTURE

24

Epoch

Thread

Worker Logger

Free

Buffers

Flushing

Buffers

Log Files

epoch=200

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

Storage

SILOR – ARCHITECTURE

24

Epoch

Thread

Worker Logger

Free

Buffers

Flushing

Buffers

Log Files

epoch=200

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

Storage

SILOR – ARCHITECTURE

24

Epoch

Thread

Worker Logger

Free

Buffers

Flushing

Buffers

Log Files

epoch=200

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

Storage

SILOR – ARCHITECTURE

24

Epoch

Thread

Worker Logger

Free

Buffers

Flushing

Buffers

Log Files

epoch=200

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

SILOR – PERSISTENT EPOCH

A special logger thread keeps track of the current
persistent epoch (pepoch)
→ Special log file that maintains the highest epoch that is

durable across all loggers.

Txns that executed in epoch e can only release
their results when the pepoch is durable to non-
volatile storage.

25

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

SILOR – ARCHITECTURE

26

Epoch

Thread

epoch=100

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

SILOR – ARCHITECTURE

26

Epoch

Thread

epoch=100

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

SILOR – ARCHITECTURE

26

Epoch

Thread

epoch=100

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

SILOR – ARCHITECTURE

26

Epoch

Thread

P epoch=200

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

SILOR – ARCHITECTURE

26

Epoch

Thread

P

epoch=200

epoch=200

epoch=200

pepoch=200

epoch=200

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

SILOR – RECOVERY PROTOCOL

Phase #1: Load Last Checkpoint

→ Install the contents of the last checkpoint that was saved
into the database.

→ All indexes have to be rebuilt.

Phase #2: Replay Log

→ Process logs in reverse order to reconcile the latest
version of each tuple.

27

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

LOG RECOVERY

First check the pepoch file to determine the most
recent persistent epoch.
→ Any log record from after the pepoch is ignored.

Log files are processed from newest to oldest.
→ Value logging is able to be replayed in any order.
→ For each log record, the thread checks to see whether the

tuple already exists.
→ If it does not, then it is created with the value.
→ If it does, then the tuple’s value is overwritten only if the

log TID is newer than tuple’s TID.

28

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

SILOR – RECOVERY PROTOCOL

29

P

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

SILOR – RECOVERY PROTOCOL

29

P

pepoch=200

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

SILOR – RECOVERY PROTOCOL

29

P

pepoch=200

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

SILOR – RECOVERY PROTOCOL

29

P

pepoch=200

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

SILOR – RECOVERY PROTOCOL

29

P

pepoch=200

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

OBSERVATION

The txn ids generated at runtime are enough to
determine the serial order on recovery.

This is why SiloR does not need to maintain
separate log sequence numbers for each entry.

30

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

EVALUATION

Comparing Silo performance with and without
logging and checkpoints
YCSB + TPC-C Benchmarks

Hardware:
→ Four Intel Xeon E7-4830 CPUs (8 cores per socket)
→ 256 GB of DRAM
→ Three Fusion ioDrive2
→ RAID-5 Disk Array

31

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

YCSB-A

32

70% Reads / 30% Writes

Average Throughput
 SiloR: 8.76M txns/s
 LogSilo: 9.01M txns/s
 MemSilo: 10.83M txns/s

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

TPC-C

33

 28 workers, 4 loggers, 4 checkpoint threads

Logging+Checkpoints Logging Only No Recovery

Average Throughput
 SiloR: 548K txns/s
 LogSilo: 575K txns/s
 MemSilo: 592 txns/s

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

RECOVERY TIMES

34

Recovered

Database Checkpoint Log Total

Y
C

S
B

Size 43.2 GB 36 GB 64 GB 100 GB

Recovery - 33 sec 73 sec 106 sec

T
P

C
-
C

Size 72.2 GB 16.7 GB 180 GB 195.7 GB

Recovery - 17 sec 194 sec 211 sec

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

OBSERVATION

Node failures in OLTP databases are rare.
→ OLTP databases are not that big.
→ They don’t need to run on hundreds of machines.

It’s better to optimize the system for runtime
operations rather than failure cases.

35

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

COMMAND LOGGING

Logical logging scheme where the DBMS only
records the stored procedure invocation
→ Stored Procedure Name
→ Input Parameters
→ Additional safety checks

Command Logging = Transaction Logging

36

RETHINKING MAIN MEMORY OLTP RECOVERY
ICDE 2014

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016
http://15721.courses.cs.cmu.edu/spring2017/papers/12-logging/malviya-icde14.pdf
http://15721.courses.cs.cmu.edu/spring2017/papers/12-logging/malviya-icde14.pdf

CMU 15-721 (Spring 2017)

DETERMINISTIC CONCURRENCY CONTROL

For a given state of the database, the execution of a
serial schedule will always put the database in the
same new state if:
→ The order of txns (or their queries) is defined before they

start executing.
→ The txn logic is deterministic.

37

A=100

A = A + 1 Txn #1

A = A × 3 Txn #2

A = A - 5 Txn #3

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

DETERMINISTIC CONCURRENCY CONTROL

For a given state of the database, the execution of a
serial schedule will always put the database in the
same new state if:
→ The order of txns (or their queries) is defined before they

start executing.
→ The txn logic is deterministic.

37

A=100

A = A + 1 Txn #1

A = A × 3 Txn #2

A = A - 5 Txn #3

A=298

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

DETERMINISTIC CONCURRENCY CONTROL

For a given state of the database, the execution of a
serial schedule will always put the database in the
same new state if:
→ The order of txns (or their queries) is defined before they

start executing.
→ The txn logic is deterministic.

37

A=100

A = A + 1 Txn #1

A = A × 3 Txn #2

A = A - 5 Txn #3

A = A × NOW()

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

DETERMINISTIC CONCURRENCY CONTROL

For a given state of the database, the execution of a
serial schedule will always put the database in the
same new state if:
→ The order of txns (or their queries) is defined before they

start executing.
→ The txn logic is deterministic.

37

A=100

A = A + 1 Txn #1

A = A × 3 Txn #2

A = A - 5 Txn #3

A = A × NOW() X

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

VOLTDB – ARCHITECTURE

38

Partitions

Single-threaded

Execution Engines

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

VOLTDB – ARCHITECTURE

38

Procedure Name

Input Params

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

VOLTDB – ARCHITECTURE

38

Procedure Name

Input Params run(phoneNum, contestantId, currentTime) {
 result = execute(VoteCount, phoneNum);
 if (result > MAX_VOTES) {
 return (ERROR);
 }
 execute(InsertVote, phoneNum,
 contestantId,
 currentTime);
 return (SUCCESS);
}

VoteCount:

SELECT COUNT(*)
 FROM votes
 WHERE phone_num = ?;

InsertVote:

INSERT INTO votes
 VALUES (?, ?, ?);

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

VOLTDB – ARCHITECTURE

38

Procedure Name

Input Params run(phoneNum, contestantId, currentTime) {
 result = execute(VoteCount, phoneNum);
 if (result > MAX_VOTES) {
 return (ERROR);
 }
 execute(InsertVote, phoneNum,
 contestantId,
 currentTime);
 return (SUCCESS);
}

VoteCount:

SELECT COUNT(*)
 FROM votes
 WHERE phone_num = ?;

InsertVote:

INSERT INTO votes
 VALUES (?, ?, ?);

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

VOLTDB – ARCHITECTURE

38

Procedure Name

Input Params run(phoneNum, contestantId, currentTime) {
 result = execute(VoteCount, phoneNum);
 if (result > MAX_VOTES) {
 return (ERROR);
 }
 execute(InsertVote, phoneNum,
 contestantId,
 currentTime);
 return (SUCCESS);
}

VoteCount:

SELECT COUNT(*)
 FROM votes
 WHERE phone_num = ?;

InsertVote:

INSERT INTO votes
 VALUES (?, ?, ?);

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

VOLTDB – ARCHITECTURE

38

Command Log

TxnId

Procedure Name

Input Params

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

VOLTDB – ARCHITECTURE

38

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

VOLTDB – ARCHITECTURE

38

Snapshots

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

VOLTDB – LOGGING PROTOCOL

The DBMS logs the txn command before it starts
executing once a txn has been assigned its serial
order.

The node with the txn’s “base partition” is
responsible for writing the log record.
→ Remote partitions do not log anything.
→ Replica nodes have to log just like their master.

39

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

VOLTDB – RECOVERY PROTOCOL

The DBMS loads in the last complete checkpoint
from disk.

Nodes then re-execute all of the txns in the log
that arrived after the checkpoint started.
→ The amount of time elapsed since the last checkpoint in

the log determines how long recovery will take.
→ Txns that are aborted the first still have to be executed.

40

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

VOLTDB – REPLICATION

Executing a deterministic txn on the multiple
copies of the same database in the same order
provides strongly consistent replicas.
→ DBMS does not need to use Two-Phase Commit

41

Master Replica

Procedure Name

Input Params

TxnId

Procedure Name

Input Params

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

VOLTDB – REPLICATION

Executing a deterministic txn on the multiple
copies of the same database in the same order
provides strongly consistent replicas.
→ DBMS does not need to use Two-Phase Commit

41

Master Replica

Procedure Name

Input Params
OK

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

PROBLEMS WITH COMMAND LOGGING

If the log contains multi-node txns, then if one
node goes down and there are no more replicas,
then the entire DBMS has to restart.

42

Partition #1 Partition #2

X ← SELECT X FROM P2
if (X == true) {
 Y ← UPDATE P2 SET Y = Y+1
} else {
 Y ← UPDATE P3 SET Y = Y+1
}
return (Y)

Partition #3

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

PROBLEMS WITH COMMAND LOGGING

If the log contains multi-node txns, then if one
node goes down and there are no more replicas,
then the entire DBMS has to restart.

42

Partition #1 Partition #2

X ← SELECT X FROM P2
if (X == true) {
 Y ← UPDATE P2 SET Y = Y+1
} else {
 Y ← UPDATE P3 SET Y = Y+1
}
return (Y)

Partition #3

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

PROBLEMS WITH COMMAND LOGGING

If the log contains multi-node txns, then if one
node goes down and there are no more replicas,
then the entire DBMS has to restart.

42

Partition #1 Partition #2

X ← SELECT X FROM P2
if (X == true) {
 Y ← UPDATE P2 SET Y = Y+1
} else {
 Y ← UPDATE P3 SET Y = Y+1
}
return (Y)

Partition #3

??? ???

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

PARTING THOUGHTS

Physical logging is a general purpose approach that
supports all concurrency control schemes.

Logical logging is faster but not universal.

43

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

CMU 15-721 (Spring 2017)

NEXT CL ASS

Checkpoint Schemes
Facebook’s Fast Restarts

44

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2016

	ADVANCED�DATABASE SYSTEMS
	TODAY’S AGENDA
	LOGGING & RECOVERY
	LOGGING SCHEMES
	PHYSICAL VS. LOGICAL LOGGING
	LOGICAL LOGGING EXAMPLE
	LOGICAL LOGGING EXAMPLE
	LOGICAL LOGGING EXAMPLE
	LOGICAL LOGGING EXAMPLE
	LOGICAL LOGGING EXAMPLE
	LOGICAL LOGGING EXAMPLE
	LOGICAL LOGGING EXAMPLE
	LOGICAL LOGGING EXAMPLE
	LOGICAL LOGGING EXAMPLE
	DISK-ORIENTED LOGGING & RECOVERY
	ARIES – MAIN IDEAS
	ARIES – RUNTIME LOGGING
	ARIES – RUNTIME CHECKPOINTS
	LOG SEQUENCE NUMBERS
	LOG SEQUENCE NUMBERS
	LOG SEQUENCE NUMBERS
	LOG SEQUENCE NUMBERS
	LOG SEQUENCE NUMBERS
	LOG SEQUENCE NUMBERS
	LOG SEQUENCE NUMBERS
	LOG SEQUENCE NUMBERS
	LOG SEQUENCE NUMBERS
	DISK-ORIENTED DBMS OVERHEAD
	OBSERVATION
	GROUP COMMIT
	EARLY LOCK RELEASE
	IN-MEMORY DATABASE RECOVERY
	OBSERVATION
	SILO – LOGGING AND RECOVERY
	SILOR – LOGGING PROTOCOL
	SILOR – LOGGING PROTOCOL
	SILOR – LOG FILES
	SILOR – LOG FILES
	SILOR – LOG FILES
	SILOR – ARCHITECTURE
	SILOR – ARCHITECTURE
	SILOR – ARCHITECTURE
	SILOR – ARCHITECTURE
	SILOR – ARCHITECTURE
	SILOR – ARCHITECTURE
	SILOR – ARCHITECTURE
	SILOR – ARCHITECTURE
	SILOR – ARCHITECTURE
	SILOR – ARCHITECTURE
	SILOR – ARCHITECTURE
	SILOR – ARCHITECTURE
	SILOR – ARCHITECTURE
	SILOR – PERSISTENT EPOCH
	SILOR – ARCHITECTURE
	SILOR – ARCHITECTURE
	SILOR – ARCHITECTURE
	SILOR – ARCHITECTURE
	SILOR – ARCHITECTURE
	SILOR – RECOVERY PROTOCOL
	LOG RECOVERY
	SILOR – RECOVERY PROTOCOL
	SILOR – RECOVERY PROTOCOL
	SILOR – RECOVERY PROTOCOL
	SILOR – RECOVERY PROTOCOL
	SILOR – RECOVERY PROTOCOL
	OBSERVATION
	EVALUATION
	YCSB-A
	TPC-C
	RECOVERY TIMES
	OBSERVATION
	COMMAND LOGGING
	DETERMINISTIC CONCURRENCY CONTROL
	DETERMINISTIC CONCURRENCY CONTROL
	DETERMINISTIC CONCURRENCY CONTROL
	DETERMINISTIC CONCURRENCY CONTROL
	VOLTDB – ARCHITECTURE
	VOLTDB – ARCHITECTURE
	VOLTDB – ARCHITECTURE
	VOLTDB – ARCHITECTURE
	VOLTDB – ARCHITECTURE
	VOLTDB – ARCHITECTURE
	VOLTDB – ARCHITECTURE
	VOLTDB – ARCHITECTURE
	VOLTDB – LOGGING PROTOCOL
	VOLTDB – RECOVERY PROTOCOL
	VOLTDB – REPLICATION
	VOLTDB – REPLICATION
	PROBLEMS WITH COMMAND LOGGING
	PROBLEMS WITH COMMAND LOGGING
	PROBLEMS WITH COMMAND LOGGING
	PARTING THOUGHTS
	NEXT CLASS

