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TODAY’S  AGENDA 

Cost Models 
Cost Estimation 
Extra Credit 
Working with a large code base 
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COST-BASED QUERY PL ANNING 

Generate an estimate of the cost of executing a 
particular query plan for the current state of the 
database. 
→ Estimates are only meaningful internally. 
 

This is independent of the search strategies that 
we talked about last class. 
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COST MODEL COMPONENTS 

Choice #1: Physical Costs 

→ Predict CPU cycles, I/O, cache misses, RAM 
consumption,  pre-fetching, etc… 

→ Depends heavily on hardware. 

Choice #2: Logical Costs 

→ Estimate result sizes per operator. 
→ Independent of the operator algorithm. 
→ Need estimations for operator result sizes. 

Choice #3: Algorithmic Costs 

→ Complexity of the operator algorithm implementation. 
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DISK-BASED DBMS COST MODEL 

The number of disk accesses will always dominate 
the execution time of a query. 
→ CPU costs are negligible. 
→ Can easily measure the cost per I/O. 
 

This is easier to model if the DBMS has full 
control over buffer management. 
→ We will know the replacement strategy, pinning, and 

assume exclusive access to disk. 
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POSTGRES COST MODEL 

Uses a combination of CPU and I/O costs that are 
weighted by “magic” constant factors. 
 

Default settings are obviously for a disk-resident 
database without a lot of memory: 
→ Processing a tuple in memory is 400x faster than reading 

a tuple from disk. 
→ Sequential I/O is 4x faster than random I/O. 
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IBM DB2 COST MODEL 

Database characteristics in system catalogs 
Hardware environment (microbenchmarks) 
Storage device characteristics (microbenchmarks) 
Communications bandwidth (distributed only) 
Memory resources (buffer pools, sort heaps) 
Concurrency Environment 
→ Average number of users 
→ Isolation level / blocking 
→ Number of available locks 
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IN-MEMORY DBMS COST MODEL 

No I/O costs, but now we have to account for 
CPU and memory access costs. 
 

Memory cost is more difficult because the DBMS 
has no control cache management. 
→ Unknown replacement strategy, no pinning, shared 

caches, non-uniform memory access. 
 

The number of tuples processed per operator is a 
reasonable estimate for the CPU cost. 
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SMALLBASE COST MODEL 

Two-phase model that automatically generates 
hardware costs from a logical model. 
Phase #1: Identify Execution Primitives 

→ List of ops that the DBMS does when executing a query 
→ Example: evaluating predicate, index probe, sorting. 

Phase #2: Microbenchmark 

→ On start-up, profile ops to compute CPU/memory costs 
→ These measurements are used in formulas that compute 

operator cost based on table size. 
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COST MODELS IN CASCADES 

A top-down optimizer doesn’t know the number 
of tuples passed as input to an operator without 
knowing the physical operators for its children. 
 

Logical estimates are the “worst case” scenario for 
that operator. 
 

Maintain two costs per operator group: 
→ Upper-bound: Logical operator cost 
→ Lower-bound: Physical operator cost 
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OBSERVATION 

The number of tuples processed per operator 
depends on three factors: 
→ The access methods available per table 
→ The distribution of values in the database’s attributes 
→ The predicates used in the query 
 

Simple queries are easy to estimate. 
More complex queries are not. 
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SELECTIVIT Y 

The selectivity of an operator is the percentage 
of data accessed for a predicate. 
→ Modeled as probability of whether a predicate on any 

given tuple will be satisfied. 
 

The DBMS estimates selectivities using: 
→ Domain Constraints 
→ Precomputed Statistics (Zone Maps) 
→ Histograms / Approximations 
→ Sampling 
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IBM DB2 – LEARNING OPTIMIZER 

Update table statistics as the DBMS scans a table 
during normal query processing. 
 

Check whether the optimizer’s estimates match 
what it encounters in the real data and 
incrementally updates them. 
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APPROXIMATIONS 

Maintaining exact statistics about the database is 
expensive and slow. 
Use approximate data structures called sketches 
to generate error-bounded estimates. 
→ Count Distinct 
→ Quantiles 
→ Frequent Items 
→ Tuple Sketch 
 

See Yahoo! Sketching Library 
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SAMPLING 

Execute a predicate on a random sample of the 
target data set. 
 

The # of tuples to examine depends on the size of 
the table. 
 

The DBMS can perform this sampling with READ 
UNCOMMITTED isolation. 
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RESULT CARDINALIT Y 

The number of tuples that will be generated per 
operator is computed from its selectivity 
multiplied by the number of tuples in its input. 
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RESULT CARDINALIT Y 

Assumption #1: Uniform Data 

→ The distribution of values (except for the heavy hitters) is 
the same. 

 

Assumption #2: Independent Predicates 

→ The predicates on attributes are independent 
 

Assumption #3: Inclusion Principle 

→ The domain of join keys overlap such that each key in the 
inner relation will also exist in the outer table. 
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CORREL ATED AT TRIBUTES 

Consider a database of automobiles: 
→ # of Makes = 10, # of Models = 100 

 And the following query: 
→  (make=“Honda” AND model=“Accord”) 
With the independence and uniformity 
assumptions,  the selectivity is: 
→ 1/10 × 1/100 = 0.001 

But since only Honda makes Accords the real 
selectivity is 1/100 = 0.01 
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COLUMN GROUP STATISTICS 

The DBMS can track statistics for groups of 
attributes together rather than just treating them 
all as independent variables. 
→ Only supported in commercial systems. 
→ Requires the DBA to declare manually. 
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ESTIMATION PROBLEM 

20 

SELECT A.id 
  FROM A, B, C 
 WHERE A.id = B.id 
   AND A.id = C.id 
   AND B.id > 100 

A 
⨝ A.id=B.id 

B 
B.id>100 

C 

A.id=C.id 

A.id 

⨝ 
π 
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Compute the cardinality of base tables 

A → |A| 
B.id>100 → |B|
 

sel(B.id>100) 
C → |C| 
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⨝ A.id=B.id 

B 
B.id>100 
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A.id=C.id 

A.id 

⨝ 
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Compute the cardinality of base tables 

Compute the cardinality of join results 

A → |A| 
B.id>100 → |B|
 

sel(B.id>100) 
C → |C| 

A⨝B = (|A|
 

|B|) /  
              max(sel(A.id=B.id), sel(B.id>100)) 
 

(A⨝B)⨝C = (|A|
 

|B|
 

|C|) / 
                        max(sel(A.id=B.id), sel(B.id>100), 
                                 sel(A.id=C.id)) 
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ESTIMATOR QUALIT Y 

Evaluate the correctness of cardinality estimates 
generated by DBMS optimizers as the number of 
joins increases. 
→ Let each DBMS perform its stats collection. 
→ Extract measurements from query plan 

 

Compared five DBMSs using 100k queries. 
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ESTIMATOR QUALIT Y 
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ESTIMATOR QUALIT Y 
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EXECUTION SLOWDOWN 
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LESSONS FROM THE GERMANS 

Query opt is more important than a fast engine 
→ Cost-based join ordering is necessary 
 

Cardinality estimates are routinely wrong 
→ Try to use operators that do not rely on estimates 
 

Hash joins + seq scans are a robust exec model 
→ The more indexes that are available, the more brittle the 

plans become (but also faster on average) 
 

Working on accurate models is a waste of time 
→ Better to improve cardinality estimation instead 
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PARTING THOUGHTS 

Using number of tuples processed is a reasonable 
cost model for in-memory DBMSs. 
→ But computing this is non-trivial. 
 

If you are building a new DBMS, then using 
Volcano/Cascade planning + # of tuples cost 
model is the way to go. 
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EXTRA CREDIT 

Each student can earn extra credit if they write a 
encyclopedia article about a DBMS. 
→ Can be academic/commercial, active/historical. 
 

Each article will use a standard taxonomy. 
→ For each feature category, you select pre-defined options 

for your DBMS. 
→ You will then need to provide a summary paragraph with 

citations for that category. 
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DBDB.IO 

All the articles will be hosted on our new website 
(currently under development). 
→ I will post the user/pass on Piazza. 
 

I will post a sign-up sheet for you to pick what 
DBMS you want to write about. 
→ If you choose a widely known DBMS, then the article will 

need to be comprehensive. 
→ If you choose an obscure DBMS, then you will have do 

the best you can to find information. 
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PL AGIARISM WARNING 

This article must be your own writing with your 
own images. You may not copy text/images 
directly from papers or other sources that you find 
on the web. 
 

Plagiarism will not be tolerated. 
See CMU's Policy on Academic Integrity for 
additional information.  
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DISCL AIMER 

I have worked on a few large projects in my 
lifetime (2 DBMSs, 1 distributed system). 
I have also read a large amount of “enterprise” code 
for legal stuff over multiple years. 
 

But I’m not claiming to be all knowledgeable in 
modern software engineering practices. 
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OBSERVATION 

Most software development is never from scratch. 
You will be expected to be able to work with a 
large amount of code that you did not write. 
 

Being able to independently work on a large code 
base is the #1 skill that companies tell me they are 
looking for in students they hire. 
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PASSIVE READING 

Reading the code for the sake of reading code is 
(usually) a waste of time. 
→ It’s hard to internalize functionality if you don’t have 

direction. 
 

It’s important to start working with the code right 
away to understand how it works. 
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TEST CASES 

Adding or improving tests allows you to improve 
the reliability of the code base without the risk of 
breaking production code. 
→ It forces you to understand code in a way that is not 

possible when just reading it. 
 

Nobody will complain (hopefully) about adding 
new tests to the system. 
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REFACTORING 

Find the general location of code that you want to 
work on and start cleaning it up. 
→ Add/edit comments 
→ Clean up messy code 
→ Break out repeated logic into separate functions. 

 

Tread lightly though because you are changing 
code that you are not familiar with yet. 
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TOOLCHAINS & PROCESSES 

Beyond working on the code, there will also be an 
established protocol for software development. 
 

More established projects will have either training 
or comprehensive documentation. 
→ If the documentation isn’t available, then you can take the 

initiative and try to write it. 
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NEXT CL ASS 

Project #3 Proposals 
 

Please email me if you want to talk about your 
potential topic. 
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