
Add/Drop I ndex
(Concu r ren t l y) i n Pe lo ton

Rong Huang rhuang@and rew.cmu.edu
X ingyu J i n x i ngyu j1@and rew.cmu.edu
Z iheng L i ao z i heng l@and rew.cmu.edu

Advanced Database Systems
15-721 F ina l Presenta t ion

Recap: what have we done?
• Motivation
• Goal
• 75%: Lock everything
• 100%: Concurrency pain
• 125%: Multithreading? For real?

Testing: from unit to SQL
Code quality: of course we are good
Future: more index, more fun

2

CMU 15-721(Spring 2018)

It’s Broken.

3

CMU 15-721(Spring 2018)

75%: Support add/drop index correctly in Peloton,
using locking mechanisms.

For drop index: Implementations already exists, yet
buggy in some ways. We fixed those bugs.

For add index: Implemented lock-based version, based
on our centralized lock-manager.

4

CMU 15-721(Spring 2018)

Centralized: get a static copy of it just like you get the
instance of catalog

Per-table lock: lock the tables based on their oid

Two modes: you can use it as a scope lock, which will
unlocks when the scope ends. You can also lock the
table until current transaction ends.

Currently supports only read_write lock, but can be
extended.

5

CMU 15-721(Spring 2018)

6

CMU 15-721(Spring 2018)

BEGIN
...
...
INSERT INTO A
...
...

COMMIT

TXN 1

Shared

BEGIN
...
...
INSERT INTO A
...
...

COMMIT

TXN 3
BEGIN

...

...
CREATE INDEX
...
...

COMMIT

TXN 2

Lock Manager (table A’s slot)
Exclusive Shared

100%: Support add index correctly in Peloton, by
doing it concurrently

We managed to come up with a solution that deals with possible
race conditions. No lock is used in our implementation. Also, we
added support for parsing the query “CREATE INDEX
CONCURRENTLY”.

Notice that concurrent create index will not block other txns, but
itself still blocks (same behavior as Postgres).

7

CMU 15-721(Spring 2018)

8

CMU 15-721(Spring 2018)

BEGIN
...
INSERT INTO A
...

COMMIT

TXN 1

BEGIN
INSERT INTO A

COMMIT

TXN 3
BEGIN

...
CREATE INDEX
...
...

COMMIT

TXN 2

9

CMU 15-721(Spring 2018)

BEGIN
...
INSERT INTO A
...

COMMIT

TXN 1

BEGIN
INSERT INTO A

COMMIT

TXN 3
BEGIN

...
CREATE INDEX
...
...

COMMIT

TXN 2

Concurrent txns list Index: insertion record

TXN 1 TXN 2 INSERT INTO A

125%: Support add index correctly in Peloton, by
doing it concurrently, and in parallel

Parallel add index depends largely on multi-threaded
sequential scan, and Prashanth is still working on it.

10

CMU 15-721(Spring 2018)

Unit tests: tests for lock manager, tests for add/drop
index

SQL tests with junit: launch parallel transactions,
testing concurrent operations with or without
enforced ordering of events.

11

CMU 15-721(Spring 2018)

12

CMU 15-721(Spring 2018)

Utilizing object lifecycle to unlock scoped locks automatically

Utilizing shared ptr to avoid other transactions holding
deleted locks

Utilizing concurrent data structure (tbb’s
concurrent_unordered_set) to avoid race conditions

Strength: put new functionalities in proper places; design with
minimum impact to existing code

Weakness: didn’t comment code as we develop, but rather
add them later on

13

CMU 15-721(Spring 2018)

Some known bugs that has been fixed by our team:

• DropIndex won’t actually drop index in table_catalog (function
call typo)

• PopulateIndex will add entries to already existed indexes

• PopulateIndex will cause transaction abort if the index is empty

14

CMU 15-721(Spring 2018)

Some still existing bugs:

• Insert/Delete/Update actions in transaction -> goes through codegen
modules, like codegen::Inserter, codegen::Deleter, etc.

• Insert/Delete/Update action not in transaction -> goes through executors
(marked as deprecated)

• Weird behavior that Peloton kept switching between executor and their
corresponding codegen version. When it uses executor, bugs caused
segmentation fault when accessing bw_tree index in certain ways. This bug
originated from cmu-db/peloton, and as we were told that those executors
are going to be deprecated, we didn’t take effort in fixing them.

15

CMU 15-721(Spring 2018)

Populate index is currently an executor and marked as
deprecated. Should add it as one of the codegen
modules

Support create index in parallel, after parallel
sequential scan is sorted out

More on indexing: add indexes to tables, just like
Cicada

Fix related bugs that has not been resolved

16

CMU 15-721(Spring 2018)

17

CMU 15-721(Spring 2018)

Thank you!

