
TG Freeing & Compaction
+ Garbage Collection Fixes

Matt Butrovich
David Gershuni



Objectives

75%: TG Freeing
● Free empty tile groups
● Track tile group utilization

100%: TG Compaction
● Compact TileGroups: moving data using no-op update which maintains the 

version chain. Prune now-empty TileGroup
125%: 
● Expose Compaction settings to the Brain
● Garbage Collection Fixes



Garbage Collection Fixes

● Modified TOTransactionManager to pass tombstones created by deletes to the 
GCManager.

● GCManager::RecycleTupleSlot allows unused ItemPointers to be returned 
without going through the entire Unlink and Reclaim process.

● Modified DataTable's Insert to return the ItemPointer to the GCManager in the 
case of a failed insert.

● Modified DataTable's InsertIntoIndexes to iterate through indexes and remove 
inserted keys in the event of a failure.

● Modified GCManager to clean indexes from garbage created by 
COMMIT_DELETE, COMMIT_UPDATE, and ABORT_UPDATE.



TileGroup Freeing

● Enhanced the Garbage Collector to free empty TileGroups when all of their 
tuple slots have been recycled. 

● RecycleStack replaces the Garbage Collector’s recycle queues. 
● Scanned the codebase for all points (outside of codegen) that fetch tile groups 

from the catalog without checking for a nullptr. TileGroups can no longer be 
assumed to live forever, so these checks must be done. 



TileGroup Compaction

● Created TileGroupCompactor that performs compaction of tile groups. 
● Compaction is triggered by the GarbageCollector, which submits a 

CompactTileGroup() task to the MonoQueuePool when the majority of a 
TileGroup is recycled garbage. 

● The fraction of garbage required to trigger compaction is determined by a 
global setting, settings::SettingId::compaction_threshold. 

● Compaction can also be enabled/disabled via another setting, global setting 
settings::SettingId::compaction_enabled. 



Performance Results



Testing & Code Quality

● Code was designed to reflect separation of responsibilities between 
GCManager, RecycleStack, and TileGroupCompactor

● We expanded the existing garbage collection test suite, adding 14 new tests to 
identify leaked ItemPointers and index entries

● We added tests to verify TileGroup freeing functionality, and maintain 
compatibility with current tests

● We added tests to verify TileGroupCompactor functionality, including correct 
behavior on aborts/conflicts with other transactions

● High emphasis on readability via clear comments and naming



Future Work

● Brain integration
○ Use hot/cold metrics instead of fixed thresholds
○ Be less eager to compact and free tile groups

● Evaluation of multi-threaded garbage collection
● Codegen nullptr checks



Thanks!


