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1 Background

After switching to an in-memory DBMS, the only ways to increase throughput is to reduce the number of
instructions executed [4]:

• To go 10× faster, the DBMS must execute 90% fewer instructions.
• To go 100× faster, the DBMS must execute 99% fewer instructions.

One way to achieve such a reduction is through code specialization. This means generating code that is
specific to a particular task in the DBMS (e.g., a specific query).

2 Query Processing

There are three ways for a DBMS to execute a query plan:

• Tuple-at-a-time: Each operator calls next on their child to get the next tuple to process. Also known
as the Volcano [5] iterator model.
Example: This is the approach used by most DBMSs.

• Operator-at-a-time: Each operator materializes their entire output for their parent operator. This
approach is ideal for in-memory OLTP engines because it reduces the number of function calls and
the number of tuples emitted per operator is small.
Example: H-Store/VoltDB, MonetDB.

• Vector-at-a-time: Each operator calls next on their child to get the next batch of data to process.
Example: VectorWise [2], Peloton [10].

Predicate Interpretation:

• DBMS evaluates predicates using an expression tree.
• Expression trees are expensive to interpret when a query accesses a lot of tuples.

3 Code Specialization

Any CPU intensive entity of database can be natively compiled if they have a similar execution pattern on
different inputs.

• Access methods
• Stored procedure
• Operator execution
• Predicate evaluation
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• Logging operations

Benefits of Code Specialization:

• Attribute types are known a priori; data access function calls can be converted to in-line pointer
casting.

• Predicates are known a priori; the DBMS can evaluate them using primitive data comparisons.
• No function calls in loops; this allows the compiler to efficiently distribute data to registers and in-

crease cache reuse.

4 Code Generation

Approach #1 – Transpilation (Source-to-Source Compilation)
Write code that converts a relational query plan into C/C++ and then run it through a conventional compiler
to generate native code [8]:

• For a given query plan, generate a C/C++ program that implements that query’s execution.
• Use an off-shelf compiler (e.g., gcc) to convert the code into a shared object, link it to the DBMS

process, and invoke the exec function to execute the query.
• The generated query code can invoke any other function in the DBMS.
• This allows it to use all the same components as interpreted queries (e.g. concurrency control, log-

ging/checkpoints).
• The evaluation of the HIQUE [8] system shows that the DBMS incurs fewer memory stalls when

executing the query but the compilation time is long (i.e., greater than 100-600 ms).

Approach #2 - JIT Compilation
Generate an intermediate representation (IR) of the query that can be quickly compiled into native code [11].

• Organizes query processing in a way to keep a tuple in CPU registers for as long as possible. The
query plan is divided into pipelines (i.e., how far up the query tree the DBMS can continue processing
a tuple before needing the next tuple becomes necessary).

– Push-based vs. Pull-based
– Data-Centric vs. Operator-Centric

• The DBMS can compile queries into native code using the LLVM toolkit [9]:
– Collection of modular and reusable compiler and tool chain technologies.
– Core component is a low-level programming language (IR) that is similar to assembly.
– Not all of the DBMS components need to be written in LLVM IR. The LLVM code can make

calls to C++ code.
• Query Compilation Cost:

– LLVM compilation time grows super-linearly relative to the query size (# of joins, predicates,
and aggregations).

– Not a big issues with OLTP applications. Major problem with OLAP workloads.

One solution to mask the compilation time is HyPer’s Adaptive Execution model [6]:

1. First generate the LLVM IR for the query.
2. Execute the IR in an interpreter while compiling the query in a background thread.
3. When the compiled query is ready, seamlessly replace the interpretive execution.
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5 Real World Implementations

• IBM System R [3]
– A primitive form of code generation and query compilation was used by IBM in 1970s.
– Compiled SQL statements into assembly code by selecting code templates for each operator.
– Technique was abandoned when IBM built DB2 in the 1980s.

• Oracle
– Convert PL/SQL stored procedures into Pro*C code and then compiled into native C/C++ code.
– They also put Oracle-specific operations directly in the SPARC chips as co-processors.

• Microsoft Hekaton [4]
– Can compile both procedures and SQL.
– Non-Hekaton queries can access Hekaton tables through compiled inter-operators.
– Generates C code from an imperative syntax tree, compiles it into DDL, and links at runtime.

• Cloudera Impala [7]
– LLVM JIT compilation for predicate evaluation and record parsing.
– Optimized record parsing is important for Impala because they need to handle multiple data

formats stored on HDFS.
• Actian Vector (formerly VectorWise) [13]

– Pre-compile thousands of “primitives” that perform basic operations on typed data.
– The DBMS then executes a query plan that invokes these primitives at runtime.

• MemSQL (pre-2016)
– Performs the same C/C++ code generation as HIQUE [8] and then invokes gcc.
– Converts all queries into a parameterized form and caches the compiled query plan.

• MemSQL (Since 2016) [12]
– A query plan is converted into an imperative plan expressed in a high-level imperative DSL

called the MemSQL Programming Language (MLP).
– The DSL then gets executed into a second language of opcodes
– Finally the DBMS compiles the opcodes into LLVM IR and then to native code.

• VitesseDB
– Query accelerator for Postgres/Greenplum that uses LLVM + intra-query parallelism.

• Apache Spark [1]
– Introduced in the new Tungsten engine in 2015 that included code generation.
– The system converts a query’s WHERE clause expression trees into an AST.
– It then compiles these ASTs to generate JVM byte code that it executes natively.

• Peloton [10]
– Full compilation of the entire query plan
– Relax the pipeline breakers of HyPer to create mini-batches for operators that can be vectorized.
– Use software pre-fetching to hide memory stalls.
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