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Microsoft Hekaton

Incubator project started in 2008 to create new in-memory OLTP engine for Microsoft SQL Server. Led
by top database experts Paul Larson and Mike Zwilling. It was important that the new engine integrated
with MSSQL ecosystem. It was also necessary that the engine support all possible OLTP workloads with
predictable performance.

Key lessons:

• Use only lock-free data structures. This means no latches, spin locks, or critical sections for indexes,
transaction map, memory allocator, garbage collector.

• Only one single serialization point in the DBMS to get the transaction’s begin and commit timestamp
using an atomic addition (CAS).

The Hekaton concurrency control relies on compare-and-swap to install new versions [2].

• Each transaction is assigned a timestamp when they begin (BeginTS) and when they commit (EndTS).
• Each tuple contains two timestamps that represents their visibility and current state.

– BEGIN: The BeginTS of the active transaction or the EndTS of the committed transaction that
created it.

– END: The BeginTS of the active transaction that created the next version or infinity or the EndTS
of the committed transaction that created it.

• Speculative Reads: Hekaton allows transactions to read versions of transactions of uncommitted trans-
actions. Then checks in validations if the transactions that it read uncommitted data committed. The
DBMS does not allow speculative write; first transaction to write a new version succeeds, second gets
aborted.

Transaction State Map
Global map of all transactions states in the system. Transactions have to consult this map to determine the
state of a transaction.

• ACTIVE: The transaction is executing read/write operations.
• VALIDATING: The transaction has invoked commit and the DBMS is checking whether it is valid.
• COMMITTED: The transaction is finished, but may not have updated its version’s TS.
• TERMINATED: The transaction has updated the TS for all of the versions that it created.

Transaction Meta-Data
• Read Set: Pointers to every version that the transaction read.
• Write Set: Pointers to the versions that the transaction updated (old and new), deleted (old), and

inserted (new).
• Scan Set: Stores enough information needed to perform each scan operation.
• Commit Dependencies: List of transactions that are waiting for this transaction to finish.
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Transaction Validation
• Read Stability: Check that each version read is still visible as of the end of the transaction.
• Phantom Avoidance: Repeat each scan to check whether new versions have become visible since

the transaction began.
• Extend of validation depends on isolation level:

– SERIALIZABLE: Read Stability + Phantom Avoidance.
– REPEATABLE READS: Read Stability.
– SNAPSHOT ISOLATION: None
– READ COMMITTED: None

HyPer

Read/scan set validations are expensive if transactions access a lot of data. Appending new versions hurts
the performance of OLAP scans due to pointer chasing and branching. Record level conflict checks may be
too coarse-grained and incur false positives.

HyPer uses a MVCC implementation that is designed for HTAP workloads [4]. It is a column-store with
delta record versioning. Avoids write-write conflicts by aborting transactions that try to update an uncom-
mitted object.

• In-Place updates for non-indexed attributes
• Delete/Insert updates for indexed attributes
• N2O version chains
• No Predicate Locks and No Scan Checks

Transaction Validation
• First-Writer Wins: The version vector always points to the last committed version. Do not need to

check whether write-sets overlap.
• Check the undo buffers (i.e., delta records) of transactions that committed after the validation trans-

action started.
• Compare the committed transaction’s write set for phantoms using Precision Locks [1].
• Only need to store the transaction’s read predicates and not its entire read set.

Version Synopsis
• Store a separate column that tracks the position of the first and last versioned tuple in a block of tuples.
• When scanning tuples, the DBMS can check for strides of tuples without older versions and execute

more efficiently.

CMU Cicada

In-memory OLTP engine based on optimistic MVCC with append-only storage (N2O) [3]. Designed to be
scalable for both low and high contention workloads.

• Best-effort in-lining
• Loosely Synchronized Clocks
• Contention Aware validation
• Index Nodes Stored in Tables
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Best-Effort In-lining
• Record meta-data is stored in a fixed location.
• Threads will attempt to inline read-mostly version within this meta-data to reduce version chain traver-

sals.

Fast Validation
• Contention-aware Validation: Validate access to recently modified (high contention) records first.
• Early Consistency Check: Pre-validated access set before making global writes.
• If the DBMS knows that most of the recently executed transactions committed successfully, then it

can skip Contention-Aware Validation and Early Consistency check
• Incremental Version Search: Resume from last search location in version list.
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