
Lecture #08: OLTP Indexes – Part 1
15-721 Advanced Database Systems (Spring 2018)
http://15721.courses.cs.cmu.edu/spring2018/

Carnegie Mellon University
Prof. Andy Pavlo

1 T-Trees

Order-preserving index Based on AVL Trees that is designed specifically for in-memory databases. Instead
of storing keys in nodes, store pointers to their original values. Threads perform breath-first search ordering
of keys.

Proposed in 1986 from database researchers at University of Wisconsin–Madison [1]. Used in TimesTen
and other early in-memory DBMSs developed 1990s. T-Trees are not used in any new in-memory DBMS
because they are not cache friendly.

Advantages:

• Uses less memory because it does not store keys inside of each node.
• Inner nodes contain key/value pairs (like B-Tree).

Disadvantages:

• Difficult to re-balance.
• Difficult to implement safe concurrent access.
• Have to chase pointers when scanning range or performing binary search inside of a node.

2 Skip List

Multiple levels of linked lists with extra pointers that skip over intermediate nodes. Proposed by researchers
at the University of Maryland–College Park in the 1990s [4]. The index maintains keys in sorted order
without requiring global re-balancing.

A collection of lists at different levels:

• Lowest level is a sorted, singly linked-list of all keys.
• 2nd level links every other key.
• 3rd level links every fourth key.
• In general, a level has half the keys of one below it.

The key idea of a skip list is that it is a probabilistic data structure. To insert a new key, flip a coin to
decide how many levels to add the new key into. Provides approximate O(log n) search times.

Advantages:

• Uses less memory than a B+Tree (only if you do not include reverse pointers).
• Insertions and deletions do not require re-balancing.

Disadvantages:

http://15721.courses.cs.cmu.edu/spring2018/
http://15721.courses.cs.cmu.edu/spring2018/
http://www.cs.cmu.edu/~pavlo/


Spring 2018 – Lecture #08 OLTP Indexes – Part 1

• Lots of random memory access (i.e., not cache friendly) because threads have to follow pointers when
moving from one node to the next.

• Does not support reverse range scans (i.e., backwards) because the linked-lists only point in one
direction. Require extra effort to do this.

Concurrent Skip List
It is possible to implement a concurrent skip list using only CaS instructions [3]. The data structure only
support links in one direction because CaS can only swap one location in memory (i.e., one pointer) atomi-
cally. If the DBMS invokes operation on the index, it can never “fail”. A transaction can only abort due to
higher-level conflicts.

Insert:

• For insert, CaS should happen bottom up.
• If a CaS fails, then the index will retry until it succeeds.

Delete:

• First logically remove a key from the index by setting a flag to tell threads to ignore.
• Then physically remove the key once we know that no other thread is holding the reference.
• Deletion should start from the top down to bottom.

Optimizations
The skip list as described in most textbooks is inefficient [5].

Potential Optimizations:

• Reducing RAND() invocations.
• Reduce the number of random memory look-ups by packing multiple keys into a single node:

– Insert Key: Find the node where it should go and look for a free slot. Perform CaS to store new
key. If no slot is available, insert new node.

– Search Key: Perform linear search on keys in each node.
• Reverse iteration with a stack.

– Perform a regular range query, but add the keys into a stack.
– In the end, pop they keys from the stack, and they will pop in reverse order.

• Reusing nodes with memory pools.

3 Bw-Tree

Latch-free index designed by Microsoft Research for the Hekaton project [2].

Since CaS only updates a single address at a time, this limits the design of a data structure. Threads never
need to set latches or block.

Key Idea #1 – Deltas:

• No updates in place. This reduces cache invalidation.
• Each update to a page produces a new delta.
• Delta physically points to base page.
• Install delta dress in physical address slot of mapping table using CaS.

Key Idea #2 – Mapping Table:

• Maps (logical) page IDs to their physical address locations in memory.

15-721 Advanced Database Systems
Page 2 of 4

http://15721.courses.cs.cmu.edu/spring2018/


Spring 2018 – Lecture #08 OLTP Indexes – Part 1

• Nodes only store page IDs. Threads check the mapping table to find out where in memory they need
to go to when traversing the tree.

• Allows for CaS of physical locations of pages.

Operations
Update:

• Each update to a new page produces a new delta.
• Delta physically points to base page.
• Install delta address in physical address slot of mapping table using CaS.
• Threads may try to install updates to same state of the page. Winner thread succeeds, any loser thread

must retry their operation.

Search:

• Traverse tree like regular B+tree.
• If mapping table points to delta chain, stop at first occurrence of search key.
• Otherwise, perform binary search on base page.

Delta Records
• Record Update Deltas: Insert/update/deletes
• Structure Modification Deltas: Split/Merge information
• Consolidation:

– Consolidate updates by creating new page with deltas applied.
– CaS-ing the mapping table address ensures no deltas are missed.

Garbage Collection
The Bw-Tree uses an epoch-based garbage collection scheme. Also called RCU in Linux.

• All operations are tagged with an epoch.
• Each epoch tracks the threads that are part of it and the objects that can be reclaimed.
• Thread joins an epoch prior to each operation and post objects that can be reclaimed for the current

epoch (not necessarily the one it joined).
• Garbage for an epoch is reclaimed only when all threads have exited the epoch.

15-721 Advanced Database Systems
Page 3 of 4

http://15721.courses.cs.cmu.edu/spring2018/


Spring 2018 – Lecture #08 OLTP Indexes – Part 1

References

[1] T. J. Lehman and M. J. Carey. A study of index structures for main memory database management
systems. In VLDB ’86: Proceedings of the 12th international conference on Very large data bases,
pages 294–303, August 1986. URL http://www.vldb.org/conf/1986/P294.PDF.

[2] J. J. Levandoski, D. B. Lomet, and S. Sengupta. The bw-tree: A b-tree for new hardware platforms. In
ICDE ’13 Proceedings of the 2013 IEEE International Conference on Data Engineering (ICDE 2013),
pages 302–313, April 2013. doi: https://dl.acm.org/citation.cfm?id=2510649.2511251.

[3] W. Pugh. Concurrent maintenance of skip lists. Technical report, 1990. URL https://dl.acm.org/
citation.cfm?id=93717.

[4] W. Pugh. Skip lists: a probabilistic alternative to balanced trees. Communications of the ACM, 33(6):
668–676, June 1990. URL https://dl.acm.org/citation.cfm?id=78977.

[5] Ticki. Skip lists: Done right. Sept 2016. URL http://15721.courses.cs.cmu.edu/spring2018/
papers/08-oltpindexes1/skiplists-done-right2016.pdf.

15-721 Advanced Database Systems
Page 4 of 4

http://www.vldb.org/conf/1986/P294.PDF
https://dl.acm.org/citation.cfm?id=93717
https://dl.acm.org/citation.cfm?id=93717
https://dl.acm.org/citation.cfm?id=78977
http://15721.courses.cs.cmu.edu/spring2018/papers/08-oltpindexes1/skiplists-done-right2016.pdf
http://15721.courses.cs.cmu.edu/spring2018/papers/08-oltpindexes1/skiplists-done-right2016.pdf
http://15721.courses.cs.cmu.edu/spring2018/

	T-Trees
	Skip List
	Bw-Tree

