Lecture #13: Checkpoint Protocols

15-721 Advanced Database Systems (Spring 2018)
http://15721.courses.cs.cmu.edu/spring2018/
Carnegie Mellon University
Prof. Andy Pavlo

1 In-Memory Checkpoints

There are different approaches for how the DBMS can create a new checkpoint for an in-memory database.
The choice of approach in a DBMS is tightly coupled with its concurrency control scheme. The checkpoint
thread(s) scans each table and writes out data asynchronously to disk.

Ideal Checkpoint Properties: [5]

* Do not slow down regular transaction processing.
* Do not introduce unacceptable latency spikes.
* Do not require excessive memory overhead.

1.1 Checkpoint Types
Approach #1 — Consistent Checkpoints:

* Represents a consistent snapshot of the database at some point in time.

* No uncommitted changes.

* No additional processing during recovery. Still have to replay the log if not a complete shutdown of
the system.

Approach #2 — Fuzzy Checkpoints:

* The snapshot could contain records updated from transactions that have not finished yet.
* Must do additional processing to remove those changes in the log.
* Write a BEGIN and END record to the log to know when the checkpoint was active.

1.2 Checkpoint Contents
Approach #1 — Complete Checkpoint:

* Write out every tuple in every table regardless of whether were modified since the last checkpoint.
* Nearly every system does this approach.

Approach #2 — Delta Checkpoint:

* Write out only the tuples that were modified since the last checkpoint.
* Can merge checkpoints together in the background.

1.3 Checkpoint Frequency
Taking a checkpoint too often causes the runtime performance to degrade However, waiting a long time
between checkpoints is just as bad.

Approach #1 — Time-based
* Periodically take a new snapshot after some amount of time.

Approach #2 — Log-File Size Threshold

http://15721.courses.cs.cmu.edu/spring2018/
http://15721.courses.cs.cmu.edu/spring2018/
http://www.cs.cmu.edu/~pavlo/

Spring 2018 — Lecture #13 Checkpoint Protocols

» Take a new snapshot after the DBMS has written a certain amount of data to the log file.
Approach #3 — On Shutdown

* Take a snapshot whenever the administrator tells the system to shutdown.

2 Checkpoint Algorithms

There are several approaches for implementing a checkpoint algorithm for an in-memory DBMS [1].
Checkpoint implementation primitives:

* Bulk State Copying: Pause transaction execution to take a snapshot.

* Locking/Latching: Use latches to isolate the checkpoint thread from the worker threads if they op-
erate on shared regions.

* Bulk BitMap Reset: If DBMS uses BitMap to track dirty region, it must perform a bulk reset at the
start of a new checkpoint.

* Memory Usage: To avoid asynchronous writes, the method may need to allocate additional memory
for data copies

2.1 Naive Snapshots
Block all transactions, and create a consistent copy of the entire database in a new location in memory and
write the contents to disk.

Two approaches for copying

* Do it yourself (tuple data only).
* Let the OS do it for your (everything).

The HyPer DBMS originally used OS fork snapshots [3]:

* Create a snapshot of the database by forking the DBMS process.

* Child process contains a consistent checkpoint if there are no active transactions.

* Otherwise, use the in-memory undo log to roll back transactions in the child process.
» Continue processing transactions in the parent process.

2.2 Copy-on-Update Snapshots
During the checkpoint, transactions create new copies of data instead of overwriting it. Copies can be at

different granularities (block, tuple). The checkpoint thread then skips anything that was created after it
started. Old data is pruned after it has been written to disk.

This is trivial to do in an multi-versioning DBMS with snapshot isolation.
Although VoltDB is not a multi-versioned DBMS, it still supports consistent checkpoints [4]:

* A special transaction starts a checkpoint and switches the DBMS into copy-on-update mode.

* Changes are no long made in-place to tables. The DBMS tracks whether a tuple has been inserted,
deleted, or modified since the checkpoint started.

* A separate thread scans the tables and writes tuples out to the snapshot on disk. It also ignores
anything changed after the checkpoint and cleans up old versions.

2.3 Wait-Free ZigZag

The DBMS maintains two copies of the entire database. Each write only updates one copy. This requires
two BitMaps to keep track of what copy a transaction should read/write from per tuple.

Avoids the overhead of having to create copies on the fly as in the copy-on-update approach.

15-721 Advanced Database Systems
Page 2 of 4

http://15721.courses.cs.cmu.edu/spring2018/

Spring 2018 — Lecture #13 Checkpoint Protocols

2.4 Wait-Free PingPong

Trade extra memory + CPU to avoid pauses at the end of the checkpoint. The DBMS maintains two copies
of the entire database at all times plus a third “base” copy. Pointer indicates which copy is the current master.
At the end of the checkpoint, swap these pointers.

3 Shared Memory Restarts

Not all DBMS restarts are due to crashes:

» Updating OS libraries
* Hardware upgrades/fixes
* Updating DBMS software

Thus, we need a way to be able to quickly restart the DBMS without having to re-read the entire database
from disk again.

Facebook’s Scuba DBMS is in-memory DBMS for time-series event analysis and anomaly detection. They
want to be able to restart the DBMS to upgrade it to a new version without having to load the last checkpoint
from disk back into memory [2].

The main idea is to decouple the in-memory database lifetime from the process lifetime using shared mem-
ory (SHM). By storing the database shared memory, the DBMS process can restart and the memory contents
will survive.

Approach #1 — Shared Memory Heaps:

* All data is allocated in SHM during normal operations.
* Have to write a custom allocator to subdivide memory segments for thread safety and scalability.
Cannot use lazy allocation of backing pages with SHM.

Approach #2 — Copy on Shutdown:

 All data is allocated in local memory during normal operations.

* When the admin initiates a restart command, the node halts ingesting updates and the DBMS copies
data from heap to SHM. Once snapshot finishes, the DBMS restarts.

* On start up, the DBMS checks to see whether there is a valid database in SHM to copy into its heap.
Otherwise, the DBMS restarts from disk.

15-721 Advanced Database Systems
Page 3 of 4

http://15721.courses.cs.cmu.edu/spring2018/

Spring 2018 — Lecture #13 Checkpoint Protocols

References

[1]

(2]

[3]

[4]

[5]

T. Cao, M. V. Salles, B. Sowell, Y. Yue, A. Demers, J. Gehrke, and W. White. Fast checkpoint re-
covery algorithms for frequently consistent applications. In SIGMOD ’11 Proceedings of the 2011
ACM SIGMOD International Conference on Management of data, pages 265-276, June 2011. URL
https://dl.acm.org/citation.cfm?id=1989352.

A. Goel, B. Chopra, C. Gerea, D. Matani, J. Mezler, F. U. Haq, and J. Wiener. Fast database restarts
at facebook. In SIGMOD ’14 Proceedings of the 2014 ACM SIGMOD International Conference on
Management of data, pages 541-549, June 2014. URL https://dl.acm.org/citation.cfm?id=
2595642.

A. Kemper and T. Neumann. Hyper: A hybrid oltp&olap main memory database system based on virtual
memory snapshots. In ICDE ’11 Proceedings of the 2011 IEEE 27th International Conference on Data
Engineering, pages 195-206, April 2011. URL https://dl.acm.org/citation.cfm?1d=2005619.

N. Malviya, A. Weisberg, S. Madden, and M. Stonebraker. Rethinking main memory oltp recovery.
In 2014 IEEE 30th International Conference on Data Engineering, pages 604—615, March 2014. doi:
10.1109/ICDE.2014.6816685.

K. Ren, T. Diamond, D. J. Abadi, and A. Thomson. Low-overhead asynchronous checkpointing in
main-memory database systems. In SIGMOD ’16 Proceedings of the 2016 International Conference on
Management of Data, pages 1539—1551, June 2016. URL https://dl.acm.org/citation.cfm?id=
2915966.

15-721 Advanced Database Systems
Page 4 of 4

https://dl.acm.org/citation.cfm?id=1989352
https://dl.acm.org/citation.cfm?id=2595642
https://dl.acm.org/citation.cfm?id=2595642
https://dl.acm.org/citation.cfm?id=2005619
https://dl.acm.org/citation.cfm?id=2915966
https://dl.acm.org/citation.cfm?id=2915966
http://15721.courses.cs.cmu.edu/spring2018/

	In-Memory Checkpoints
	Checkpoint Types
	Checkpoint Contents
	Checkpoint Frequency

	Checkpoint Algorithms
	Naive Snapshots
	Copy-on-Update Snapshots
	Wait-Free ZigZag
	Wait-Free PingPong

	Shared Memory Restarts

