
Differential Logging: A Commutative and Associative Logging Scheme 
for Highly Parallel Main Memory Database 

Juchang Lee Kihong Kim Sang K. Cha 

Graduate School of Electrical Engineering and Computer Science 
Seoul National University 

fjuch, next, chask)@kdb.snu.ac.kr 

Abstract 

With a gigabyte of memory priced at less than $2,000, the 
main-memory DBMS (MMDBMS) is emerging as an eco- 
nomically viable alternative to the disk-resident DBMS 
(DRDBMS) in many problem domains. The MMDBMS can 
show significantly higher performance than the DRDBMS 
by reducing disk accesses to the sequential form of log writ- 
ing and the occasional checkpointing. Upon the system 
crash, the recovery process begins by accessing the disk- 
resident log and checkpoint data to restore a consistent 
state. With the increasing CPU speed, however, such disk 
access is still the dominant bottleneck in the MMDBMS. To 
overcome this bottleneck, this paper explores altematives of 
parallel logging and recoveiy. 

The major contribution of this paper is the so-called d$- 
ferential logging scheme that permits unrestricted parallel- 
ism in logging and recovery. Using the bit-wise X O R  op- 
eration both to compute the differential log between the be- 
fore and after images and to recover the consistent data- 
base state, this scheme offers the mom for significant per- 
formance improvement in the MMDBMS. First, with log- 
ging done on the difference, the log volume is reduced to 
almost half compared with the conventional physical log- 
ging. Second, the commutativiq and associativity of XOR 
enables processing of log records in an arbitrary order: 
This means that we can freely distribute log records to mul- 
tiple disks to improve the logging pelforniance. During the 
recovery time, we can do parallel restart independently f o r  
each log disk. This paper shows the superior performance 
of the differential logging comparatively with the physical 
logging in the shared-memory multiprocessor environment. 

1. Introduction 

Emerging data-intensive applications such as e-commerce 
and mobile value-added information services require grace- 
ful processing of highly concentrated user transaction pro- 
files. The traditional DRDBMS cannot effectively deal with 
such a requirement because of the overhead associated with 

processing the disk-resident data indirectly through the 
main-memory buffer. With a gigabyte of memory priced at 
less than $2,000 these days, the MMDBMS emerges as an 
economically viable alternative to the DRDBMS with the 
data structures and algorithms optimized for the in-memory 
access. 

The MMDBMS can show higher performance than the 
DRDBMS not only for read transactions but also for update 
transactions by orders of magnitude. This is because the 
disk access in the MMDBMS is reduced to the sequential 
form of log writing and the occasional checkpointing [4]. 
Upon the system crash, the recovery begins by accessing 
the disk-resident log and checkpoint data to restore a con- 
sistent state. However, in the MMDBMS, such disk access 
is still the dominant bottleneck, especially, for update- 
intensive applications. To overcome this bottleneck, this 
paper explores the alternatives of parallel MMDB logging 
and recovery. The availability of low-cost but high-speed 
multiprocessor platforms with many commodity disks justi- 
fies this direction of research. 

The novel contribution of this paper is the so-called dif- 
ferential logging scheme that permits unrestricted parallel- 
ism in logging and recovery. Based on the nice properties of 
the bit-wise XOR operation, this scheme uses this single 
operation both to computes the differential log between the 
before image and the after image, and to recover a consis- 
tent database state from the checkpoint data and a collection 
of log records. Compared with the well-known DRDBMS- 
oriented recovery schemes such as ARIES [9], the differen- 
tial logging offers the room for significant performance im- 
provement in MMDBMS. First, since logging is done on 
the difference, the log volume is reduced to almost half 
compared with the physical logging, which writes both the 
before and after images. Second, since the recovery process 
involves a single XOR operation, there is no need to distin- 
guish the redo and undo phases as in the typical DRDBMS. 
In addition, since the XOR operation is both commutative 
and associative, the log records can be processed in an arbi- 
trary order, independent of the serialization order. This 
means that we can freely distribute log records in parallel to 
an arbitrary number of disks to improve the logging per- 
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Figure 1. Logical structure of MMDB 

formance. During recovery, we can do parallel restart inde- 
pendently for each of log disks. Even intermixing the log 
replay and the backup DB replay is allowed to pursue the 
maximum degree of parallelism. 

To verify the benefit of using the differential logging, we 
have implemented the parallel recovery schemes based on 
the differential logging and compared them with those 
based on the physical logging. Both types of schemes use 
the transaction-based log partitioning to distribute log re- 
cords to multiple log disks for parallel logging and parallel 
restart. In a series of experiments conducted in a CCPU 
multiprocessor environment with multiple log disks, the dif- 
ferential logging outperforms the best physical logging im- 
plementation by about twice in the transaction processing 
performance and by about six times in the log processing 
time for the recovery. 

This paper is organized as follows. Section 2 presents an 
overview of MMDB recovery and discusses the problems 
associated with parallelizing it. Section 3 presents the defi- 
nition and properties of differential logging and the parallel 
MMDB logging and recovery algorithms based on it. Sec- 
tion 4 presents a framework for parallel logging and recov- 
ery based on the transaction-based log partitioning, and ex- 
plores the levels of parallelism achievable in the multiproc- 
essor environment with multiple disks. Section 5 presents 
the result of the experiment conducted to compare the dif- 
ferential logging with the physical logging. Section 6 
briefly compares the differential logging with the previous 
MMDB recovery schemes, and section 7 finally concludes 
this paper. 

2. Parallelism in MMDBMS 

2.1. MMDB Structure 

Figure 1 shows the usual MMDB structure. The primary 
DB keeps the up-tedate data in memory. The log manager 
maintains the in-memory log buffer and the disk-resident 
log volume. The checkpoint manager creates backup data- 
base copies from time to time to avoid replaying the entire 

log during the recovery time. Typically, the two most recent 
backup copies are kept. The recovery manager recovers a 
consistent in-memory DB from the log and the most recent 
backup DB copy in the case of the system failure. 

This paper assumes that the primary DB consists of a set 
of fixed-length in-memory pages, and each page consists of 
a fixed number of slots. The slot length is identical in a sin- 
gle page but may differ among pages. This is to say that the 
slot is the basic unit of logging as well as storage manage- 
ment. In this slotted page scheme, variable-length records 
are handled by linking multiple slots [ 131. We assume the 
slotted page scheme just for simplicity, but our discussion 
in this paper is also valid for the heap scheme, which alle 
cates an arbitrary size of memory [7]. 

2.2. Logging, Checkpointing, and Restart 

To guarantee the durability of the committed transactions, 
all of the redo log information (the “after image” in the 
physical logging) is flushed to the disk before writing the 
commit record. The undo log information (the “before im- 
age” in the physical logging) is also created before every 
update to prepare for aborting the transaction. On the trans- 
action abort, the compensation log record (CLR) is gener- 
ated to facilitate the undo of the aborted transaction during 
post-crash restart [9]. 

To allow normal transactions to run simultaneously dur- 
ing the checkpoint, we focus on the fuzzy checkpoint policy 
[5]. Since an inconsistent backup copy can be made with 
this policy, the undo log is required to be flushed to the disk. 
However, the WAL (Write Ahead Log) protocol of DRDB, 
which requires flushing the undo log information to the disk 
before writing a data page on disk, is not necessary for the 
MMDB. Instead, the undo log is flushed in bulk just before 
finishing the checkpoint. If the system crashes during 
checkpointing to a backup copy, the database can be recov- 
ered from the other backup copy. 

With the physical logging scheme, the above discussion 
translates to forcing both the before and after images to be 
flushed to the log before the commit, abort, or checkpoint 
[9]. In addition, during post-crash restart, the log records for 
the same resource have to be applied by the serialization 
order. The well-known ARIES-based recovery algorithm 
proceeds in the following order: 
1. Read the most recent backup copy into the primary DB. 
2. Redo by scanning the log forward from the beginning of 

the most recent checkpoint. 
3. Undo by scanning the log backward for the loser 

transactions that were active at the time of crash. 

2.3. Parallel Logging and Restart 

Since the log write and read is the dominant bottleneck in 
MMDBMS, it has been suggested to use multiple log disks 
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123. However, using multiple log disks in parallel has sev- 
eral problems to be solved, which will be discussed in this 
section. To the best of our knowledge, these problems have 
not been studied. 

We first list two desirable restart properties for parallel 
logging schemes. First, if possible, it is desirable to avoid 
the cost of merging logs by the serialization order during 
the post-crash restart. When the physical or the logical log- 
ging scheme is used, log records for the same resource have 
to be replayed by the serialization order [9][3]. Otherwise, 
the consistent state of the database cannot be recovered. 
Second, i t  is desirable to distribute the processing of log re- 
cords in parallel to multiple CPUs. This is because the log 

' transfer rate may exceed the processing rate of a single 
CPU when multiple log disks are used. 

These two properties, desirable to reduce the restart time, 
can be achieved by partitioning log records by the resource. 
For example, consider partitioning the database into several 
segments and storing the log records for each segment to a 
different disk [3]. Then, each log can be replayed in parallel. 
However, this resource-based partitioning scheme has the 
following three problems. 
1. When updates are skewed to certain segments, the disks 

for other segments are not fully utilized. 
2. Suppose that the system crashes in the middle of com- 

mitting a transaction that updated multiple segments. 
Since the log records are written to multiple disks simul- 
taneously, the records for a certain segment might not be 
written although the commit record has been already 
written to a disk. In this case, it is impossible to recover 
the consistent database. To avoid this problem, the 
commit record can be written to all the disks. However, 
this complicates the task of determining whether a trans- 
action committed or not during restart. 

3. Suppose that there are many transactions that update 
multiple segments. Since log records are flushed to the 
disk before committing a transaction, such a transaction 
incurs multiple disk I/Os, one for each segment. This 
leads to a significant decrease of transaction throughput, 
compared with the case where each transaction incurs 
only one disk I/O. 
Our proposal in this paper is to use the differential log- 

ging scheme. Since the redo and undo operations of the dif- 
ferential logging scheme are commutative and associative, 
those two desirable restart properties are automatically 
achieved. Therefore, we can freely distribute log records to 
multiple disks such that the above problems with the re- 
source-based partitioning scheme do not occur. One such a 
distribution scheme is the transaction-based partitioning, 
which will be described in section 4. 

In addition to the logging, checkpointing can be also per- 
formed in parallel using multiple disks [5]. This paper as- 
sumes that the backup database is partitioned into several 
disks. 

3. The Differential Logging 

3.1. Definitions and Properties 

Definition 1 (Differential Log) Assume that a transaction 
changes the value p of a slot to q. Then, the corresponding 
differential log A@, q) is defined a s p  @ q, where @ denotes 
the bit-wise XOR operation. 

Definition 2 (Redo and Undo) 
Using the differential logging, the redo and undo operations 
are defined as p @ A@, q) and q 0 A@, q), respectively, 
where p is the before image and q is the after image. 

For example, consider that p is 0010 and q is 1100. Then, 
the corresponding differential log is 1110 (= 0010@1100). 
The redo 001O@lllO(i.e. @A) recovers q correctly, and the 
undo 1100@1110 (i.e. q 0 A )  recovers p correctly. To ease 
the discussion of the differential logging, we first list the 
properties of bit-wise XOR operator. 

1.Existence of identity: p @ 0 = p 
2.Existence of inverse: p @ p = 0 
3.Comutative: p @ q = q @ p 
4.Associative: (p @ q) @ r = p @ ( q  @ r) 

Theorem 1 (Recoverability) Assume that the value of a 
slot has changed from bo to b, by m updates and each u p  
date U; (i = 1 ,  . .., m) has generated the differential log A(b;.], 
bJ. Then, the final value b,can be recovered from the ini- 
tial value bo and the differential log, and the initial value 
can be recovered from the final value and the differential 

Proof: 
i) Recovery of b, from bo : 

log. 

bo 0 A ( ~ o  3 6,) 0 A(bl ,  b ~ )  0 *.. 0 A ( b m - 1 ,  b m )  
= bo 0 (b,@b/) 0 (b/@b2) 0 ... @ (b,./@b,) 
= (bo0bo) 0 (bleb,) 0 ... Obm = 0 @... @ 0 @ b, = b, 

ii) Recovery of bo from b,,, : 
b, 0 (b,./@b,) 0 ... 0 (bo061) 

= b, @ (bmObm./) @ ... @ (bl0bo) = ... = bo 

Theorem 2 (Order-Independence of Redo and Undo) 
Given the initial value bo of a slot and differential logs A;, i 
= 1, ..., m, where some of Ai may be undo logs, , the final 
value b, can be recovered applying the differential logs in 
an arbitrary order. 
Proof: 
Assume that differential logs are applied in the order of Ak(,), 
Ak(z), ..., Ak,,) , where k( i )  E { 1, 2, ..., m) and k(i)  != k( j )  iff 
i ! = j  for all i andj. Then, the final value of the slot is 

bo @ AMI) 0 0 ... @ &(m) 
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Size of Differential Log 

Compared with the physical logging scheme, the differ- 
ential logging has the following nice properties that offer 
room for significant improvement of the logging and the re- 
start performance in the MMDBMS. 

The log records can be processed in an arbitrary order. 
This means that we can freely distribute log records to 
multiple disks to improve the logging and the restart per- 
formance. The restart techniques to get unrestricted par- 
allelism will be given in section 4. 
Redo and undo operations can be mixed in an arbitrary 
order. This means that two separate passes of redo and 
undo during restart is not necessary. We develop a one- 
pass restart algorithm in section 3.4. 
Compared with the physical logging, the log volume is 
reduced to almost half since the redo log and the undo 
log are same. Thus, both the time to write the log during 
the normal operation and the time to read the log during 
the restart decrease. 

LSN PrevLSN TID 

3.2. Logging 

Figure 2 shows the structure of a differential log record. 
The LSN (log sequence number) represents the order of log 
record creation. In our implementation, we use the physical 
location of a log record on disk as its LSN. The PrevLSN is 
used to chain the log records of a transaction for fast back- 
ward traversal. The TID represents the transaction identifier 
that created the log record. There are six record types: begin, 
abort, commit, DL, begin-checkpoint, end-checkpoint. The 
first three are used to record the beginning and the end of a 
transaction. Only log records of the DL type have the re- 
maining five fields, whose meaning is self-evident except 
BackupID, which indicates the more recent one of the two 
backup DBs. We will explain its usage in section 3.3 and 
section 3.4. 

When updating a slot, the transaction generates a log re- 
cord of the DL type by applying the bit-wise XOR opera- 
tion to the before and the after images. Then, the record is 
appended to the log buffer, which is flushed to the log disk 
when the buffer overflows or the transaction commits. 

PagelD Differential Log 

3.3. Checkpointing 

The differential logging can be used with any of the fuzzy 

chronization problems. 
During checkpointing, a dirty page should not be copied 
into a backup DB while a transaction is updating a slot in 
the page. Otherwise, a mixture of the before and the after 
images may be copied, and then the page cannot be 
recovered from a crash. 
Since the XOR operation used for redo and undo is not 
idempotent, we have to know whether the update re- 
corded in a certain log record has been reflected to a 
backup. If so, the record should not be replayed when 
rolling the corresponding transaction forward. 
To handle the first problem, we use the simplest locking 

primitive, the so-called mutex, so that the checkpointer and 
update transactions may have to acquire the mutex for a 
page before copying or updating. And, to deal with the sec- 
ond problem, we use a flag named BackupID. Each page 
has a BackupID field in its header, and this field is copied 
into each differential log record. This field of a page is tog- 
gled after flushing the page to the appropriate backup DB 
during checkpointing. 

The corresponding update and fuzzy checkpointing algo- 
rithms are presented in Algorithms 1 and 2. Algorithm 1 is 
used by a transaction when updating a slot. After check- 
pointing, Algorithm 2 records the LSN of end-checkpoint 
record in the log anchor, which keeps the active status of 
log, so that the end-checkpoint record can be located 
quickly for restart. 

Algorithm 1. Update 
1. Generate the corresponding differential log 

record. 
2. If the global checkpoint flag is set, ac- 

quire the mutex for the page. 
3. Copy the BackupID flag stored in the page's 

header into the BackupID field of the log 
record. 

4. Update the page. 
5. Release the mutex if it was acquired previ- 

6. Append the log record to the log buffer. 
ous ly . 

Algorithm 2. FuzzyCheckpoint 
1. Begin with the following. 

A .  Set the global checkpoint flag. 
B. Create a begin-checkpoint record and ap- 
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pend it to the log buffer. 

recently checkpointed as the current 
backup DB. 

C. Choose the backup DB that was the least 

2 .  Scanning the database page by page, do the 
following for each page. 

A. Acquire the mutex for the page. 
B. Toggle the BackupID flag in the page's 

header. 
C. If the dirty bit in the page header that 

corresponds to the current backup DB is 
set, copy the page asynchronously into 
the current backup DB. 

D. Release the mutex 
3 .  Finish by doing the following. 

A. Reset the global checkpoint flag. 
B. Wait until all the asynchronous I/Os com- 

plete. 
C. Create an end-checkpoint record contain- 

ing active transaction IDS, and append 
it to the log buffer. 

D. Flush the log buffer. 

3.4. Restart 

When the differential logging is used, the forward scan of 
log is not mandatory since the redo operation is commuta- 
tive and associative. If we scan the log backward, we en- 
counter a commit or an abort record of a transaction before 
other records of the transaction. Thus, we can skip the re- 
cords of aborted transactions and loser transactions. On the 
other hand, when scanning forward, all the log records are 
usually replayed presuming the commit because the abort 
ratio is usually low. This strategy needs the separate undo 
pass to roll back loser transactions. The undo pass scans the 
log backward from the end of the log, and it may incur UOs 
if some of the log data of loser transactions have been 
flushed out of memory. Although the differential logging 
can also be used with the two-pass restart strategy, we pre- 
sent only the backward one-pass restart algorithm due to the 
space limitation. 

When scanning backward, two special cases need to be 
handled. One is the transaction that was active at the time of 
crash, and the other is the transaction that aborted after 
checkpointing. Since there is no commit or abort record for 
the first type of transactions, we should skip the log records 
that appear without a corresponding commit or abort record. 
Since the pages updated by the second type of transactions 
might have been copied into a backup DB in an inconsistent 
state, we need to roll back the reflected updates by those 
transactions. To identify these two types of transactions, 
two tables CTT(committed transaction table) and A l T  
(aborted transaction table) are maintained. The detailed al- 
gorithm is given in Algorithm 3. 

Algorithm 3. One-Pass Restart 
1. Read the current backup DB ID from the log 

anchor. 

2 .  Read the current backup DB, and reconstruct 
the primary DB as of the checkpointing. 

3 .  Initialize CTT as empty. 
4 .  Scanning the log backward from the end of 

log until the end-checkpoint record is en- 
countered, do the following depending on 
the record type. 

A. Begin record: remove the corresponding 

B. Commit record: create a corresponding en- 

C. Abort record: ignore 
D. DL record: if TID is in CTT, redo. Other- 

entry from CTT 

try in CTT 

wise, ignore it 
5.  Initialize ATT with TIDs in the 

end-checkpoint record. Then, let ATT be 

6. Continue scanning the log backward to the 
begin-checkpoint record doing the follow- 
ing depending on the log record type. 

A. Begin record: remove the corresponding 

B. Commit record: create a corresponding en- 

C. Abort record: create a corresponding en- 

D. DL record 

ATT - CTT 

entry in either of CTT o r  ATT 

try in CTT 

try in ATT 

i. If TID is in CTT and the BackupIDs in 
the log record and the correspond- 
ing page header are same, redo. 

upIDs in the log record and the 
corresponding page header are d i f -  
f erent , undo. 

cord. 

ii. If TID is not in CTT and the Back- 

iii. Otherwise, ignore the current log re- 

7. Undo for all the transactions remained in 
ATT scanning the log backward. 

Since the one-pass restart algorithm just ignores the log 
records of aborted transactions, not only compensation log 
records don't have to be made when a transaction aborts but 
also log records don't have to be flushed before aborting. 
To facilitate the backward scan by the one-pass restart algo- 
rithm, we store the log header after the log body. An alter- 
native is to append the size of log body at the end of each 
record. 

4. Parallel Logging and Restart 

4.1. Parallel Logging 

For parallel logging, this paper proposes to partition log re- 
cords based on the transaction ID. Figure 3 shows the log- 
ging system architecture with multiple instantiations of the 
log manager. When a transaction begins, the transaction 
manager inserts a record in the transaction table. Its 
LogMgrlD field is filled with the identifier of the idlest log 

177 



Transaction Table 

Active Transactions 

Figure 3. Transaction-partitioned parallel logging 

manager, which has the smallest number of log pages to 
flush. Then, subsequent log records of the transaction are 
directed to that log manager. The LastLSN is initialized 
with 0. Each log manager has its own log buffer and log 
disk. 

4.2. Parallel Restart 

Figure 4 shows the parallel restart architecture. The restart 
process is performed by two kinds of agents, BL (backup 
DB loader) and LL (log loader), which are instantiated and 
coordinated by the recovery manager. The recovery 
manager instantiates as many BLs and LLs as the number 
of backup DB partitions and log partitions, respectively. 
The BL does two jobs, BR (backup DB read) and BP 
(backup DB play), and the LL does LR and LP. The BR and 
the LR are VO jobs while the BP and the LP are CPU jobs. 

Basically, these four jobs are performed sequentially, 
BR + BP + LR + LP, but they also can be performed in 
parallel. This section presents four levels of parallel restart 
schemes. 

Parallel Restart Level 1 In this base level of parallelism, 
multiple BLs run simultaneously, and multiple LLs run si- 
multaneously, but LLs can start only after all the BLs fin- 
ished their jobs. 

Since each BL updates a different part of the primary DB, 
no synchronization is needed among BLs. However, LLs 
need to be synchronized so that they should not apply log 
records for the same resource simultaneously. Such syn- 
chronization can be done inexpensively by acquiring the 
mutex for a page as described in section 3.3. Furthermore, 
since log records are partitioned by the transaction, the 
transactions tables used in Algorithms 3 don’t have to be 
shared among LLs. 

Parallel Restart Level 2 A simple additional parallelism is 
to use the pipeline. When the asynchronous YO is supported, 
each of BLs and LLs can do their YO and the CPU jobs si- 
multaneously using a pipeline. 

Parallel Restart Level 3 When the backup database and 
log records are stored in different disks, it is possible to do 

BL: Backup DB Loader 
B R  Backup DB Read 
BP: Backup DB Play 
LL: Log Loader 
LR: Log Read 
L P  Log Play 

U--.& b... fg 

Backup DB Backup DB 
Partition 1 Partition m Partition I Partition n 

Figure 4. Parallel restart 

the BR and the LR simultaneously if the YO bandwidth of 
the system allows. However, since the read log records 
cannot be applied until BLs finish the BR and BP, log re- 
cords are just piled up in memory. Thus, this level of paral- 
lelism is useful when there is enough memory to keep a 
large number of log records. 

Parallel Restart Level 4 The final level of parallelism is to 
do the BP and the LP simultaneously, i.e., applying log re- 
cords while copying a backup DB into the primary DB. Al- 
though it seems impossible, the differential logging allows 
it with the following two modifications. 

The BL applies the bit-wise XOR operator to two pages: 
one in the primary database and the other read from the 
backup database. Therefore, both the BP and the LP are 
done using the XOR operator. Of course, the BL has to ac- 
quire the mutex before updating a page. 

Before the recovery manager instantiates BLs and LLs, it 
clears the primary database such that all pages have Os. 

Theorem 3. The restart scheme using the Level 4 parallel- 
ism recovers the primary database correctly from the crash. 

Proof: Due to the space limitation, we omit the rigorous 
proof, and give a sketch of it. Since a page in the primary 
database is initially filled with Os, applying the XOR to the 
page and the corresponding page read from the backup DB 
is equivalent to copying from the backup DB to the primary 
DB. Since the XOR operator is commutative, BP and LP 

Table 1. Four levels of parallelism in restart 
({ }: multiple instantiation, I: pipelined parallel execution, 

“II”: parallel execution) 
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can be done in an arbitrary order. 0 

Logging Exploited parallel- Number of passes 
scheme ism during restart in restart 

Two 

log replaying One 

PL2P 
DL2P Log reading and - DLIP Differential - 

Table I compares these four levels of parallelism. We as- 
sume that the higher level of parallelism includes all the 
lower levels of parallelism. For example, all the four levels 
of parallelism are used in the level 4. 

Number of Checkpointing 
log disks scheme 

1 - 8  Fuzzy 

5. Experimental Evaluation 

5.1. Experimental Setup 

To show the practical impact of the differential logging, we 
implemented the proposed recovery schemes in our main- 
memory DBMS kernel called P*TIME [I]. Like its prede- 
cessor XMAS [12][13], this system is implemented in C++ 
to facilitate the object-oriented extension, and supports mul- 
tithreaded processing for scalable performance on 
multiprocessor platforms. 

Table 2 summarizes three implemented parallel recovery 
schemes. PL2P combines the physical logging and the two- 
pass restart algorithm. DL2P combines the differential log- 
ging and the two-pass restart algorithm. DLlP combines the 
differential logging and the one-pass restart algorithm. All 
of these schemes support pipelining between LR and LP 
during log processing in restart. When restarting with more 
than two log disks, PL2P reads log records from log disks 
in parallel, merge them by the serialization order, and re- 
plays them in that order. Therefore, PL2P does the I/O job 
in parallel but it does the CPU job sequentially. In contrast, 
DL schemes (DL2P and DLlP) also do the CPU job in par- 
allel. In the experiment, log records are partitioned into one 
to eight disks using the transaction-based log-partitioning 
scheme, and the fuzzy checkpointing is used. 

The test database is derived from the SMS domain [I l l ,  
which is one of update-intensive wireless information ser- 
vices. The size of the primary database is roughly 250 MB, 
which includes 1 million records. For the controlled ex- 
periment, we made a simplified SMS message table with 
three fields: message id, destination address, and message. 
The message id is a 4-byte integer. The destination address 
is a 12-byte character array, which consists of a MIN (mo- 
bile identification number), the type of MIN, and so on. The 
message is a 240-byte character array. Thus, the total record 
or slot size is 256 bytes. 

We mixed two types of update transactions: one inserts 2 
messages into the table and the other removes 2 messages 

60 

50 

2'40 

8 
i= 20 

vi - 30 

10 

0 
OK 200K 400K 600K 

#transactions since the checkpoint 

Figure 5. Log processing time with the log volume and 
log disks 

from the table. These transaction types mock the message 
receiver and the flusher processes of the SMS system, re- 
spectively. The former receives message through the SS#7 
network and inserts them, and the latter moves sent mes- 
sages to the archive in order to keep the MMDB from 
exploding. 

The experiment is conducted on a Compaq ML 570 
server with four 700 MHz Xeon CPUs, 6GB RAM, and 
dozen disks. It has a single U 0  channel, which can support 
up to 160MB/sec. The disks are of the same model. Their 
average seek time is 6.3 ms, average latency time is 4.17ms, 
and maximum sustained transfer rate is 29 MB/sec. 

5.2. Log Processing Time 

As we analyzed in the section 4.2, the restart time is broken 
down to the backup DB loading time and the log processing 
time. The first is dominated by the disk access and is inde- 
pendent of the logging scheme. Therefore, in identifying the 
impact of the differential logging, we first focus on the 
measurement of the latter varying the volume of log, the 
number of log disks, and the abort ratio. In the measure- 
ment, we expect that: 

DL schemes reduce the total log volume by almost half 
compared with PL2P, and thus will accelerate the log 
processing even if a single log disk is used. 
The speedup ratio of DL schemes over PL2P remains 
constant despite the changes in the number of update 
transactions since the last checkpoint. 
The benefit of increasing the number of log disks is 
higher in DL schemes than in PL2P in the multiprocessor 
environment. 

Table 2. Tested recovery schemes 
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Figure 6. Breakdown of log processing time 

DLIP will outperform DL2P as the abort ratio increases. 

Figure 5 shows the log processing time measured by 
varying the number of update transactions since the last 
checkpoint. Note that this number determines the total log 
volume to process during restart. When it is 600K, the log 
volume is 721MB for PL2P, 377MB for DL2P and 370MB 
for DLlP. The abort ratio was fixed at 2%. The numbers in 
the parentheses represent the number of log disks. DLlP(4) 
is about six times faster than PL2P(4) and about seven 
times faster than PL2P(I), regardless of the total log vol- 
ume. 

Figure 6 shows the log processing time of PL2P and 
DLIP (with 600K update transactions since the last check- 
point) by varying the number of log disks. For DLlP, it de- 
creases almost linearly with the number of disks until it 
reaches a saturation point. On the other hand, for PL2P, the 
log processing time first decreases linearly and then in- 
creases slowly after a certain point. To show where the per- 
formance difference comes, two components of the log 
processing time are shown with broken lines: the U 0  time 
to read log records from disk (LR time) and the CPU time 
to replay the log (LP time). For both PL2P and DLIP, the 
U 0  time decreases almost linearly with the number of disks. 
DLIP takes 47% less VO time than PL2P because of the 
difference in the total log volume. Note that PL2P is domi- 
nated by the LP time when more than two log disks are 
used, while DLIP is dominated by the LR time regardless 
of the number of disks. This is because the LP step of PL2P 
requires merging of logs from different disks by the 
serialization order. 
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Figure 7. Comparison of DL2P and DLlP with the 
abort ratio 

To compare DLIP with DL2P, we measured the log 
processing time varying the abort ratio from 0% to 20%. 
Figure 7 shows the result when four log disks are used and 
600K transactions had been performed since the last check- 
point. This result shows that DLlP outperforms DL2P by 
about 1.15 times when the abort ratio is 20%. This im- 
provement is mainly attributed to the difference in the log 
volume. Since DLlP does not make compensation log re- 
cords when a transaction aborts, the log volume of DLlP 
remains constant regardless of the abort ratio. DLIP is also 
faster than DL2P in terms of the CPU time because DLlP 
does not replay the log records of aborted transactions 
while DL2P does the log records of both the committed and 
the aborted transactions. 

5.3. Total Recovery Time 

To see the impact of fully parallel restart based on the dif- 
ferential logging, we measured the restart time for the fol- 
lowing recovery schemes: 

PL2P-Seq: PL2P observing the parallelism level 2 rule of 
section 4. Namely, the backup DB loading and the log 
processing are done in sequence while the pipelining is 
allowed in each of these two steps. 
DLIP-Seq: the DLIP version of PL2P-Seq. 
DLIP-Para: DLlP observing the parallelism level 4 rule 
of section 4. The backup DB processing is intermixed 
with the log processing. 
Figure 8 shows the measured restart time when the 

backup DB size is 250MB and the processed log volume is 
370MB for DLIP and 721MB for PL2P. Figure 8(a) shows 
the result with two log disks and two backup DB.disks and 
Figure 8(b) with four log disks and four backup DB disks. 
Here are the observations drawn from this figure. 

As in the log processing time, the backup DB loading 
time also decreases by half as the number of disks dou- 
bles. 
DLlP-Seq outperforms PL2P-Seq significantly, by about 
two times in Figure 8(a) and by about three times in 
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Figure 8(b). The difference comes mainly from the log 
processing time while the backup DB loading time re- 
mains the same. 
The parallelism further decreases the total restart time. 
DLIP-Para outperforms DLIP-Seq by about two times 
in both of Figure 8(a) and Figure 8(b). 

5.4. Transaction Throughput 

In this series of experiment, we measured the logging per- 
formance varying the number of log disks and the size of a 
slot. 

Figure 9(a) shows the throughput in TPS (transactions 
per second) with the number of disks. In this measurement, 
the abort ratio is 2%. This result shows that the logging per- 
formance of DLlP and PL2P increases in proportion to the 
number of disks. DLlP(8) outperforms PL2P(I) by 9.6 
times. Even if the same number of log disks are used, DLlP 
processes over 1.8 times as many transactions as PL2P dur- 
ing the same time interval. 

Figure 9(b) shows the throughput measured varying the 
slot size. As the slot size increases, the overhead ratio of log 
header decreases and the ratio of DL1P.log volume to PL2P 
log volume approaches 0.5. As result, the performance gain 
of DLIP(4) over PL2P(4) approaches two. Note that the 
performance gain of DLIP(4) over PL2P(l)is about six. 
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Figure 9. Logging performance with the number of 
log disks and the size of data objects 

6. Related Work 

The idea of using the XOR-based logging has been ad- 
dressed in the DRDBMS context under the name of transi- 
tion logging [6]. However, if the normal update and recov- 
ery operations are applied directly to the disk database with 
only the XOR difference on the log disk and if the system 
crashes in the middle of such operations, it is impossible to 
recover the consistent database state. The shadow page 
scheme has been considered for each disk update to solve 
this problem, but it has been abandoned because of its high 
run-time overhead. Fortunately, the MMDBMS does not 
have this problem because it applies the update and recov- 
ery operations to the main memory copy of the backup da- 
tabase on the disk. 

In order to reduce the log write and recovery time, the 
redo-only logging has been studied in the MMDB context 
[2][5][8]. By keeping the log of uncommitted, active trans- 
actions in memory, it is possible to write only the redo part 
of the log on disk when a transaction commits. Thus, the 
disk-resident log volume is reduced to almost half as in the 
differential logging. However, the differential logging has 
at least the following three advantages over the redo-only 
logging. First, it permits the unrestricted parallelism in re- 
covery as mentioned before. Second, it can be used with the 
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fuzzy checkpointing while the redo-only logging can be 
used only with the consistent checkpointing schemes [8]. 
Third, it does not need the memory space to keep the log of 
active transactions, whose volume can grow substantially 
when long transactions are involved. Although we com- 
pared the differential logging with the redo-only logging, 
they are basically orthogonal and can be used together. 
However, the only benefit from such combination is not to 
write the log data of aborted transactions while the fuzzy 
checkpointing becomes impossible. 

The transaction-partitioned parallel logging and recovery 
has been studied in the shared disk architecture [lo]. This 
scheme, named ARIESISD, is similar to the PL2P physical 
logging scheme introduced in section 5. The difference is 
that AFUES/SD logs at the page level while the PL2P logs at 
the slot level. 

7. Conclusion 

This paper studied the problem of parallel MMDB logging 
and recovery to increase the transaction processing per- 
formance and to reduce the recovery time exploiting the 
low-cost multiprocessor platforms and commodity disks in 
the market. 

The novel contribution of this paper is to introduce the 
secalled differential logging for parallel MMDB logging 
and recovery. Using the bit-wise XOR operation both to 
compute the log and to recover the consistent state from the 
log, the differential logging permits unrestricted parallelism 
in MMDB logging and recovery. In addition, because the 
log is the XOR difference between the before and after im- 
ages, the log volume is reduced to almost half compared 
with the physical logging. We assumed the transaction- 
based partitioning of log for distribution to multiple log 
disks and presented two versions of the parallel recovery 
scheme based on the differential logging. The two-pass ver- 
sion scans the log twice for redo and undo as in the well- 
known ARIES algorithm, and the one-pass version scans 
the log only once taking advantage of the nice properties of 
the differential logging. 

An experimental study of comparing the differential log- 
ging and the physical logging shows that the former outper- 
forms the latter significantly both in the update transaction 
throughput and in the recovery time. It is also shown that 
since the differential logging permits interleaving of the log 
replaying with the backup DB replaying during the restart, 
the backup DB loading and the log processing can proceed 
in parallel to reduce the total recovery time. Such a level of 
parallelism is unthinkable in the MMDBMS based on the 
traditional logging schemes or in the context of DRDBMS. 

In this paper, we have conducted our experiment in the 
4-CPU shared-memory multiprocessor environment. In the 
future, we plan to study the benefit of the differential log- 
ging in different types of parallel computing environment. 

We also plan to verify the benefit of the differential logging 
by applying it  to the real environment such as e-commerce 
and mobile value-added information services. 
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