
SQL Server Column Store Indexes
Per-Åke Larson, Cipri Clinciu, Eric N. Hanson, Artem Oks, Susan L. Price,

Srikumar Rangarajan, Aleksandras Surna, Qingqing Zhou
Microsoft

{palarson, ciprianc, ehans, artemoks, susanpr, srikumar, asurna, qizhou}@microsoft.com

ABSTRACT
The SQL Server 11 release (code named “Denali”) introduces a
new data warehouse query acceleration feature based on a new
index type called a column store index. The new index type
combined with new query operators processing batches of rows
greatly improves data warehouse query performance: in some
cases by hundreds of times and routinely a tenfold speedup for a
broad range of decision support queries. Column store indexes are
fully integrated with the rest of the system, including query
processing and optimization. This paper gives an overview of the
design and implementation of column store indexes including
enhancements to query processing and query optimization to take
full advantage of the new indexes. The resulting performance
improvements are illustrated by a number of example queries.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems – relational databases,
Microsoft SQL Server

General Terms
Algorithms, Performance, Design

Keywords
Columnar index, column store, OLAP, data warehousing.

1. INTRODUCTION
Database systems traditionally store data row-wise, that is,

values from different columns of a record are stored together. This
data organization works well for transaction processing where
requests typically touch only a few records. However, it is not
well suited for data warehousing where queries typically scan
many records but touch only a few columns. In this case, a
column-wise organization where values from the same column in
different records are stored together performs much better. It
reduces the data processed by a query because the query reads
only the columns that it needs and, furthermore, column-wise data
can be compressed efficiently. Systems using column-wise
storage are usually referred to as column stores.

SQL Server is a general-purpose database system that stores data
in row format. To improve performance on data warehousing
queries, SQL Server 11.0 (code named “Denali”) adds column-
wise storage and efficient column-wise processing to the system.
This capability is exposed as a new index type: a column store
index. That is, an index can now be stored either row-wise in a B-
tree or column-wise in a column store index.

SQL Server column store indexes are “pure” column stores, not a
hybrid, because they store all data for different columns on
separate pages. This improves I/O scan performance and makes
more efficient use of memory. SQL Server is the first major
database product to support a pure column store index. Others
have claimed that it is impossible to fully incorporate pure column
store technology into an established database product with a broad
market. We’re happy to prove them wrong!

To improve performance of typical data warehousing queries, all a
user needs to do is build a column store index on the fact tables in
the data warehouse. It may also be beneficial to build column
store indexes on extremely large dimension tables (say more than
10 million rows). After that, queries can be submitted unchanged
and the optimizer automatically decides whether or not to use a
column store index exactly as it does for other indexes.

We illustrate the potential performance gains by an example query
against a 1TB TPC-DS [10] test data warehouse. In this database,
the catalog_sales fact table contains 1.44 billion rows. The
following statement created a column store index containing all
34 columns of the table:

CREATE COLUMNSTORE INDEX cstore on catalog_sales
 (cs_sold_date_sk, cs_sold_time_sk, ···
 ···,cs_net_paid_inc_ship_tax, cs_net_profit)

We ran the following typical star-join query on a pre-release build
of Denali, with and without the column store index on the fact
table. All other tables were stored row-wise only. The test
machine had 40 cores (hyperthreading was enabled), 256GB of
memory, and a disk system capable of sustaining 10GB/sec.

select w_city, w_state, d_year,
 SUM(cs_sales_price) as cs_sales_price
from warehouse, catalog_sales, date_dim
where w_warehouse_sk = cs_warehouse_sk
 and cs_sold_date_sk = d_date_sk
 and w_state = 'SD'
 and d_year = 2002
group by w_city, w_state, d_year
order by d_year, w_state, w_city;

The query was run twice, first with a cold buffer pool and then
with a warm buffer pool. With a warm buffer pool, the input data
for the query all fit in main memory so no I/O was required.

 Table 1: Observed CPU and elapsed times (in sec)

 Cold buffer pool Warm buffer pool

 CPU Elapsed CPU Elapsed

Row store only 259 20 206 3.1

Column store 19.8 0.8 16.3 0.3

Improvement 13X 25X 13X 10X

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGMOD’10, June 12–16, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0661-4/11/06…$10.00.

1177

The results are shown in Table 1. The column store index
improves performance dramatically: the query consumes 13 times
less CPU time and runs 25 times faster with a cold buffer pool and
10 times faster with a warm buffer pool. SQL Server column store
technology gives subsecond response time for a star join query
against a 1.44 billion row table on a commodity machine. This
level of improvement is significant, especially considering that
SQL Server has efficient and competitive query processing
capabilities for data warehousing, having introduced star join
query enhancements in SQL Server 2008.

The machine used has a high-throughput I/O system (10GB/sec)
which favors the row store. On a machine with a weaker I/O
system, the relative improvement in elapsed time would be even
higher.

The rest of the paper provides more detail about column store
indexes. Section 2 describes how they are stored including how
they are compressed. Section 3 describes extensions to query
processing and query optimization to fully exploit the new index
type. Section 4 provides some experimental results and section 5
summarizes related work.

2. INDEX STORAGE
SQL Server has long supported two storage organization: heaps
(unordered) and B-trees (ordered), both row-oriented. A table or a
materialized view always has a primary storage structure and may
have additional secondary indexes. The primary structure can be
either a heap or a B-tree; secondary indexes are always B-trees.
SQL Server also supports filtered indexes, that is, an index that
stores only rows that satisfy a given selection predicate.

Column store capability is exposed as a new index type: a column
store index. A column store index stores its data column-wise in
compressed form and is designed for fast scans of complete
columns. While the initial implementation has restrictions, in
principle, any index can be stored as a column store index, be it
primary or secondary, filtered or non-filtered, on a base table or
on a view. A column store index will be able to support all the
same index operations (scans, lookups, updates, and so on) that
heaps and B-tree indices support. All index types are functionally
equivalent but they do differ in how efficiently various operations
can be performed.

2.1 Column-Wise Index Storage
We now outline how a column store index is physically stored.
Figure 1 illustrates the first step that converts rows to column
segments. The set of rows to be stored is first divided into row
groups, each group consisting of, say, one million rows. Each row
group is encoded and compressed independently. The result is one
compressed column segment for each column included. Figure 1
shows a table divided into three row groups where three of the
four columns are included in the column store index. The result is
nine compressed column segments, three segments for each of
columns A, B, and C.

The column segments are then stored using existing SQL Server
storage mechanisms as shown in Figure 2. Each column segment
is stored as a separate blob (LOB). Segment blobs may be large,
requiring multiple pages for storage, but this is automatically
handled by the existing blob storage mechanisms. A segment
directory keeps track of the location of each segment so that all
segments of a given column can be easily located. The directory is
stored in a new system table and visible through the catalog view
sys.column_store_segments. The directory also contains

additional metadata about each segment such as number of rows,
size, how data is encoded, and min and max values.

Storing a column store index in this way has several important
benefits. It leverages the existing blob storage and catalog
implementation - no new storage mechanisms are needed – and
many features are automatically available. Locking, logging,
recovery, partitioning, mirroring, replication and other features
immediately work for the new index type.

2.2 Data Encoding and Compression
Data is stored in a compressed form to reduce storage space and
I/O times. The format chosen allows column segments to be used
without decompression in query processing. Compressing the
columns in a segment consists of three steps.

1. Encode values in all columns.
2. Determine optimal row ordering.
3. Compress each column

2.2.1 Encoding
The encoding step transforms column values into a uniform type:
a 32-bit or 64-bit integer. Two types of encoding are supported: a
dictionary based encoding and a value based encoding.

The dictionary based encoding transforms a set of distinct values
into a set of sequential integer numbers (data ids). The actual

Figure 1: Converting rows to column segments

Figure 2: Storing column segments

A B C D

Encode,
compress

Encode,
compress

Encode,
compress

Compressed
column segments

1178

values are stored in a data dictionary, essentially an array that is
indexed by data ids. Each data dictionary is stored in a separate
blob and kept track of in a new system table which is visible
through the catalog view sys.column_store_dictionaries.

The value based encoding applies to integer and decimal data
types. It transforms the domain (min/max range) of a set of
distinct values into a smaller domain of integer numbers. The
value based encoding has two components: exponent and base.

For decimal data types the smallest possible positive exponent is
chosen so that all values in a column segment can be converted
into integer numbers. For example, for values 0.5, 10.77, and
1.333, the exponent would be 3 (1000) and the converted integer
numbers would be 500, 10770, and 1333 correspondingly.

For integer data types the smallest possible negative exponent is
chosen so that the distance between the min and the max integer
values in a column segment is reduced as much as possible
without losing precision. For example, for values 500, 1700, and
1333000, the exponent would be -2 (1/100) and the converted
integer numbers would be 5, 17, and 13330.

Once the exponent is chosen and applied, the base is set to the min
integer number in the column segment. Each value in the column
segment is then adjusted (rebased) by subtracting the base from
the value. For the decimal example above, the base would be 500
and the final encoded values (data ids) would be 0, 10270, and
833. For the integer example, the base would be 5 and the final
encoded values would be 0, 12, and 13325.

2.2.2 Optimal Row Ordering
Significant performance benefits accrue from operating directly
on data compressed using run-length encoding (RLE), so it is
important to get the best RLE compression possible. RLE gives
the best compression when many identical values are clustered
together in a column segment. Since the ordering of rows within a
row group is unimportant, we can freely rearrange rows to obtain
the best overall compression. For a schema containing only a
single column, we get the best clustering simply by sorting the
column as this will cluster identical values together. For schemas
with two or more columns it is not that simple - rearranging rows
based on one column can negatively affect clustering of identical
values in other columns.

We use the Vertipaq™ algorithm to rearrange rows within a row
group in an order that achieves maximal RLE compression. This
patented compression technology is shared with SQL Server
Analysis Services and PowerPivot.

2.2.3 Compression
Once the rows within a row group have been rearranged, each
column segment is compressed independently using RLE
compression or bit packing.

RLE (run-length encoding) compression stores data as a sequence
of <value, count> pairs. The actual value is a 32-bit or 64-bit
number containing either an encoded value or a value stored as is.

RLE compression thrives on long runs of identical values. If a
column contains few long runs, RLE compression may even
increase the space required. This occurs, for example, when all
values are unique. Since values in a column segment get encoded
into a smaller domain of integer numbers (data ids) in most cases,
the actual range of encoded values will usually require fewer bits
to represent each encoded value. Therefore, we also support a bit-
pack compression and different bit-pack compression sizes.

2.3 I/O and Caching
A blob storing a column segment or dictionary may extend over
multiple disk pages. When brought into memory, column
segments and dictionaries are stored not in the page-oriented
buffer pool but in a new cache designed for handling large
objects. Each object in the cache is stored in consecutive storage,
not scattered across discrete pages. This simplifies and speeds up
scanning of columns because there are no “page breaks”.

To improve I/O performance, read-ahead is applied both within
and among segments. That is, when reading a blob storing a
column segment, read-ahead is applied at the page level. A
column may be stored as multiple segments so read-ahead is also
applied at the segment level. Finally, read-ahead is also applied to
data dictionaries.

For on-disk storage additional compression could be applied.
When a column segment is written to disk, it could be further
compressed by applying some standard streaming compression
technique and automatically decompressed when being read into
memory. Whether or not to apply additional compression is a
tradeoff: it reduces both disk space and I/O requirements but
increases CPU load.

3. QUERY PROCESSING AND
 OPTIMIZATION
3.1 Query Processing Enhancements
For queries that scan a large number of rows, using a column store
index may reduce the amount of data read from disk by orders of
magnitude. Such a large reduction in disk I/O very likely causes
CPU resources to become the next bottleneck. To keep the system
balanced it was thus necessary to significantly reduce CPU
consumption for queries processing large numbers of rows.

Standard query processing in SQL Server is based on a row-at-a-
time iterator model, that is, a query operator processes one row at
a time. To reduce CPU time we introduced a new set of query
operators that instead processes a batch of rows at a time. As has
been observed before [8], batch-at-a-time processing significantly
reduces the overhead for data movement between operators. The
batch operators are optimized for data warehouse scenarios; they
are not intended as replacements for row-at-a-time operators in
OLTP workloads.

We chose not to implement a new engine specialized for data
warehousing applications but instead opted to extend the existing
SQL Server engine. This has several advantages.

1. Customers don’t have to invest in a new engine and transfer
data between engines. It is the same SQL Server system that
they are already used to; it just has a new index type that
greatly speeds up decision support queries. This is an
important and tangible customer benefit.

2. It greatly reduces implementation costs. SQL Server is a
mature product with lots of features that are automatically
available, for example, query plan diagrams, query execution
statistics, SQL profiling, SQL debugging, and so on.

3. A query plan can mix the two types of operators. The query
optimizer has been extended to select the best operator type
to use. It typically choses the new faster operators for the
expensive parts of a query that process large numbers of
rows.

1179

4. Queries may dynamically switch at runtime from using batch
operators to using row operators as necessary. For example,
currently joins and aggregations that spill to disk
automatically switch to row-at-a-time operators.

5. We get feature orthogonality. For example, the new operators
support the majority of existing SQL Server data types,
session level settings and so on. Any SQL query can take
advantage of the faster processing offered by the new
operators, not just stylized star-join queries.

The new batch iterator model is independent of the access
methods supported by different data sources. Similarly to access
methods for other data sources, access methods for column store
indexes support filtering by predicates and bitmap filters.
Whenever possible they perform operations directly on
compressed data. The new batch operators are then typically used
for the data intensive part of the computation, performing more
complex filtering, projections, joins and aggregation. Row
operators may sometimes be needed to finish the computation.

Certain access methods may expose additional optimizations such
as delayed string materialization, and the new iterators are
designed to transparently take advantage of these features
whenever possible.

While processing batches of rows at a time can by itself achieve
very significant reduction in processing time, it cannot achieve
orders of magnitude reduction.

Several additional improvements were also implemented:

1. The new iterators are fully optimized for the latest generation
of CPUs like Intel Nehalem or AMD Opteron architecture. In
particular, the algorithms were designed to take advantage of
increased memory throughput and better utilize 64-bit
processing and multicore CPUs.

2. The bitmap filter implementation was modified to have
several specific data layouts based on data distribution.

3. Runtime resource management was improved by making
operators share available memory with each other in a more
flexible manner.

For queries that process large numbers of rows, the net result of
all these improvements is order of magnitude performance
improvements. Row-at-a-time based operators are still preferred
for short OLTP queries. The query optimizer automatically
chooses the proper operators at query compilation time; no
application changes are required.

3.2 Query Optimization
In order to leverage the storage engine and query execution
capabilities described above, several changes were required in the
query optimizer. Unlike regular indexes, column store indexes do
not (efficiently) support point queries and range scans, do not
offer any sort order and, since sorting is not required to build
them, they do not offer any statistics. All these properties were
“de facto” assumptions in the row store world. On the other hand,
column store indexes offer high data compression, highly
effective usage of modern CPUs, and much reduced I/O. While
point queries will still heavily favor row stores, queries requiring
expensive scans will benefit greatly from column store indexes.
The query optimizer can get very accurate information about the
actual on-disk size of columns and uses this information to
estimate the amount of IO required.

Column store indexes are further complemented by the new batch
operators. The set of batch operators is limited in the initial
release and it is up to the query optimizer to ensure batch
execution is used where possible and beneficial. Mixing batch and
row operators is possible but converting data from one format to
the other has its own costs. Rather than creating a complex cost
based mechanism to decide when to convert between the two
modes the initial implementation uses a more conservative
approach that limits the number of conversions.

We introduced the concept of a batch segment in a query plan. A
batch segment consists of a sequence of batch operators that
execute using the same set of threads. An operator can only
extend the segment to a single child. In our implementation a join
always extends its segment to the probe side. A new
BatchHashTableBuild operator builds the hash table for a batch
hash join. It is a batch operator that can accept input either in
batch or row mode.

In order to make generation of these plan shapes possible, the
query optimizer introduced a new physical property used to
distinguish between batch and row output of an operator. Using
this property, it is now easy to make sure we do not have
unnecessary transitions between row and batch operators. All
batch operators will request that their children provide batches
and all row operators will request their children to provide rows.
Transitioning between the two modes is achieved by the ability of
some operators to output either rows or batches.

As stated above, batch hash join does not build its hash table; it is
built by the BatchHashTableBuild operator. BatchHashTableBuild
also has the ability to build a bitmap (Bloom filter) on the hash
key; this bitmap can be used to filter out rows early from the
probe side input. These bitmaps are even more important when
multiple batch hash joins are stacked. Bitmap filters are typically
very effective in filtering out rows early. In the same way as
regular selection predicates they can be pushed down all the way
into the storage engine (access method).

We also introduced new methods for handling multiple joins. The
SQL Server optimizer tries to collapse inner joins into a single n-
ary join operator. Our plan generation for column store indexes
uses the n-ary join as the starting point because the n-ary join
gives us the benefit of being able to inspect the entire join graph at
once rather than having to deal with just a subset of the tables
involved. Our algorithm consists of several steps.

We first go over the expressions joined together and analyze the
join predicates involved, trying to identify which join keys are
unique. Using the uniqueness information we identify fact tables
as the tables that do not have any unique key involved in a join.

Once this is done, starting from the smallest fact table, we expand
the join graph to cover as many dimension tables as possible by
only traversing many-to-one relationships. This will build a snow-
flake around the fact table. We then continue with the other fact
tables in increasing size order. This step ends when there are no
expressions from the original set left.

If multiple fact tables were identified initially, we will have
multiple snowflakes and these snowflakes need to be joined
together. Beginning with the snowflake with the largest fact table,
we recursively add neighboring snowflakes as dimensions of the
snowflake built so far. At this point we have a single snowflake
expression and can start generating the final plan shape.

1180

First we try to identify which joins are worthy candidates for
building bitmaps. Once the bitmap expressions are identified we
start building a right deep join tree with the dimensions on the left
side and the fact table on the right side of the rightmost join. Keep
in mind that each dimension can in turn be another snowflake and
the algorithm has to expand them recursively. At each join, certain
conditions are checked to ensure batch execution compatibility. If
the fact table does not meet the criteria for batch execution then
the tree generated cannot use batch hash joins. If the fact table
meets the criteria, then each join is analyzed and all the joins that
are batch-able are placed at the bottom and the remaining joins are
left at the top.

In practice, this algorithm reliably builds maximal-size batch hash
join pipelines for star join sub-expressions within a query, for star
joins centered on a fact table with a column store index.

The optimizer chooses the best plan based on estimated costs. The
optimizer’s cost model of course had to be augmented to include
the new batch operators and column store indexes.

4. EXPERIMENTAL RESULTS
This section presents early experimental results on compression
rates for six databases and performance improvement for four
example queries. All results were obtained on a pre-release build
of SQL Server 11.0 (code named “Denali”).

4.1 Data Compression
Compression ratios for artificially generated data are uninteresting
at best and misleading at worst; what matters are the results on
real data. Table 2 below shows the size of an uncompressed fact
table, the size of a column store index containing all columns of
the table, and the compression ratio for six real data sets. The
“Cosmetics” data set is from an orders fact table from a cosmetics
manufacturer. The “SQM” data set is from an internal Microsoft
data warehouse that tracks SQL Server usage patterns. The
“Xbox” data set tracks use of Xbox Live. “MSSales” contains
Microsoft sales data. The “Web Analytics” data set contains web
clickstream information. The “Telecom” data set contains call
detail records from a telecommunications data warehouse.

Table 2: Column store compression on real data sets

Data Set
Uncompressed

table size
(MB)

Column
store index
size (MB)

Com-
pression

Ratio

Cosmetics 1,302 88.5 14.7

SQM 1,431 166 8.6

Xbox 1,045 202 5.2

MSSales 642,000 126,000 5.1

Web Analytics 2,560 553 4.6

Telecom 2,905 727 4.0

On average, column store compression is about 1.8 times more
effective than SQL Server PAGE compression, the highest form
of compression implemented for the SQL Server row store
structures (heaps and B-trees), which was introduced in SQL
Server 2008. In other words, a column store index is about 1/1.8 =
0.56 times the size of a PAGE compressed B-tree or heap
containing the same data.

4.2 Example queries
In this section we illustrate the performance improvements that
can be achieved by using column store indexes. Four queries
against a TPC-DS [10] database at scale factor 100 are included.

A TPC-DS database at scale factor 100 is intended to require
about 100GB for the base tables. For SQL Server the space
requirements were 92.3 GB for data, 15.3GB for secondary (row
store) indexes and 36.6GB for column store indexes covering all
columns on every table. Our example queries used the five tables
listed below. Each table had a B-tree clustering index and a
column store index that included all columns. The two larger
(fact) tables had one secondary index each but not the three
smaller (dimension) tables. We found that dropping the column
store indexes on the three small tables had virtually no effect on
the observed times.

Catalog_sales (144M rows)

 Clustering index: cs_sold_date_sk_cluidx (cs_sold_date_sk)
 Secondary index: cs_item_sk_cs_order_number_idx

(cs_item_sk, cs_order_number)
 Column store index: catalog_sales_cstore(all columns)

Catalog_returns (14.4M rows)

 Clustering index: cr_returned_date_sk_cluidx
(cr_returned_date_sk)

 Secondary index: cr_item_sk_cr_order_number_idx
(cr_item_sk, cr_order_number)

 Column store index: catalog_returns_cstore(all columns).

Customer_address (1M rows)

 Clustering index: pk_ca_address_sk(ca_address_sk)
 Column store index: customer_address_cstore (all columns)

Item (204,000 rows)

 Clustering index: pk_i_item_sk(i_item_sk)
 Column stored index: Item_cstore (all columns)

Date_dim (73049 rows):

 Clustering index: pk_d_date_sk(d_date_sk)
 Column store index: date_dim_cstore (all columns)

The experiments were run on a small commodity server with the
following characteristics: Nehalem EP Xeon L5520 with two
four-core processors for a total of eight cores running at 2.27GHz,
hyper-threading off, 24G of memory, four 146G SAS drives in
RAID0 configuration, each with read throughput in the range 100
to 125 MB/sec.

We ran the four queries in two ways: a) restricting the optimizer
to use only row store indexes and b) allowing, but not forcing, the
optimizer to use column store indexes. Each query was run twice,
in isolation, first with a cold buffer pool and second with a warm
buffer pool. The database is large enough that all the required data
did not fit in memory. Tables 3 and 4 below show the observed
elapsed times and total CPU times (in seconds) and the
improvement when using column store indexes.

We will discuss the individual queries in more detail below but
they can be briefly characterized as follows. Query 1 is a
straightforward star-join query with one fact table and two
dimension tables. Query 2 exemplifies a drill-down query with a
very restrictive predicate where using a column store index
provides little or no benefit. Query 3 is a narrow single-table

1181

query with several expensive expressions. Query 4 is a complex
query with a common table expression and a subquery.

As shown in tables 3 and 4, all but Q2 show an improvement of
over 10X in elapsed time with a warm buffer pool. With a cold
buffer pool the improvements in elapsed time are somewhat less
but still very substantial.

Table 3: Observed query times (sec) with warm buffer pool

Warm Row store only Column store Improvement

Query Elapsed CPU Elapsed CPU Elapsed CPU

Q1 4.9 36.4 0.3 1.9 16.4X 19.3X

Q2 0.2 1.4 0.3 1.2 0.8X 1.2X

Q3 21.0 166.9 1.8 13.4 11.9X 12.5X

Q4 49.2 101.6 4.9 30.0 10.1X 3.4X

Table 4: Observed query times (sec) with cold buffer pool

Cold Row store only Column store Improvement

Query Elapsed CPU Elapsed CPU Elapsed CPU

Q1 19.7 35.6 1.6 2.0 12.3X 18.2X

Q2 1.7 0.9 1.3 1.3 1.3X 0.7X

Q3 55.1 168.4 8.5 13.7 6.5X 12.3X

Q4 55.5 102.3 7.2 20.5 7.7X 3.4X

4.2.1 Query one
This query is a typical OLAP query: a simple star-join query over
three tables with catalog_sales as the fact table and two dimension
tables, date_dim and item. The only selection predicate is on
date_dim.

select i_brand, count(*)
from catalog_sales, date_dim, item
where cs_sold_date_sk = d_date_sk and
 cs_item_sk = i_item_sk and d_year > 2001
group by i_brand

The query plan selected by the optimizer when allowed to use
column store indexes is shown in Figure 3. This plan was 16.4X
faster with a warm buffer pool and 12.3X faster with a cold buffer
pool than the best plan with row store indexes only. The query
processed over 144M tuples in less than a third of a second.

The optimizer chose to use column store indexes for all three
tables. Execution begins by scanning the two dimension tables
and building hash tables. Next multiple threads scan different
segments of catalog_sales column store index and probe the hash
tables in parallel. Batched partial aggregation is then performed
on each stream of joined tuples after which the tuples are
redistributed on i_brand to be able to finish the aggregation. Final
aggregation is completed in parallel on each stream and finally the
result tuples are gathered into a single output stream.

The plan also illustrates how batch and row processing can be
mixed in the same plan. The bulk of the processing is done in
batch mode. Only the final processing, from repartition on, is
done in row mode but by then only 5416 rows remain.

Evaluation of certain predicates can be pushed all the way down
into the storage engine. This includes selections with bitmaps

(Bloom filters). The predicate d_year > 2001 is pushed all the way
down and reduces the stream from date_dim_cstore from 73K to
35.8K. While the hash table on date_dim is built, a bitmap on the
join column d_date_sk is constructed. The input from
catalog_sales_cstore is immediately filtered using the bitmap
reducing it from 144M to 29.1M rows. The data is reduced in two
ways: a) some column segments can be immediately eliminated
based on segment metadata alone and b) in the remaining
segments, rows with no match in the bitmap are eliminated.

4.2.2 Query two
The next query is similar to Q1 but with a very restrictive
selection predicate. It is an example of a drill-down query that an
analyst might issue to get more detailed information. It illustrates
the fact that the optimizer may choose a plan that includes both
row store and column store indexes.

select i_brand, count(*)
from catalog_sales, date_dim, item
where cs_sold_date_sk = d_date_sk and
 cs_item_sk = i_item_sk and d_year = 2001 and
 d_moy = 11 and d_weekend = 'Y'
group by i_brand

With a warm buffer pool, the row store only plan is slightly faster
but, with a cold buffer pool, it is slightly slower.

The optimizer selects all indexes based on estimated cost. When
allowed to use column store indexes, the optimizer chose a mix of
column store and row store indexes. Execution begins by scanning
date_dim_cstore which produces only nine rows because of the
highly restrictive predicate. The result is then joined with
catalog_sales using a nested-loop join against the clustering index
which is a row store index. This produces an output of 1.4M rows
which is then preaggregated on cs_item_sk reducing it to 102K
rows. The result is hash-joined with the item table using the
column store index item_cstore and final aggregation is done
using hash aggregation.

4.2.3 Query three
Q3 (on the next page) is an aggregation query over a single table
where the aggregation contain somewhat more complex (and

1182

expensive) expressions. Batched expression evaluation is much
more efficient than evaluation one row at a time.

select cs_warehouse_sk,
 sum(cs_sales_price*(1-cs_ext_discount_amt) as s1,
 sum(cs_sales_price*(1-cs_ext_discount_amt)*
 (1 + cs_ext_tax)) as s2,
 avg(cs_quantity) as avg_qty,
 avg(cs_coupon_amt) as avg_coupon
from catalog_sales
where cs_sold_date_sk > 2450815+500 and
 cs_sold_date_sk < 2452654-500 and cs_quantity >=1
group by cs_warehouse_sk
order by cs_warehouse_sk;

With a warm buffer pool, the column store plan reduces the
elapsed time from 21.0 sec to 1.8 sec and the CPU time from
166.9 sec to 13.4 sec. We will outline the main causes of this
reduction in a moment.

The query plan using the column store index is shown in Figure 4.
The selection predicates are all pushed into the storage engine so
no filtering operator is required. The “compute scalar” operator
computes the arithmetic expression used in the aggregates. Each
parallel stream is then preaggregated, after which the streams are
gathered for the final aggregation which is done in row mode.

The row-store only plan is exactly the same except it begins with
a range scan of the clustering index. The predicate on cs_sold_-
date_sk defines the range so only part of the index is scanned.

So if the plans are the same, what explains the huge difference in
elapsed time and CPU time? The reduced elapsed time is caused
partly by reduced CPU time and partly by reduced I/O time. The
reduced I/O time is caused by two factors: scanning only a few
columns and quick elimination of many segments based on
metadata alone. The reduced CPU time is caused by the fact that
the batched operators and evaluation of expressions are much
more efficient. In batched expression evaluation, significant
savings accrue from switching between the query execution
component and the expression evaluation component once per
batch instead of once per row. The average cost of arithmetic
operations is reduced to around 10~20 cycles per operation.

4.2.4 Query four

Query four is shown in Figure 5 below. It is a complex query with
a common table expression and a subquery in the where-clause. It
illustrates the fact that the full power of SQL Server’s query
processing is available; arbitrarily complex queries can make use
of column store indexes.

The use of column store indexes reduced the elapsed time from
49.2 sec to 4.9 sec (with warm buffer pool) and CPU time from
101.6 sec to 30.0 sec.

The execution plan is too large to include here but the overall
structure is relatively simple. The outer query joining
customer_total_return, customer_address, and customer is
computed entirely in batch mode using column store indexes. The
subquery is then computed, with the joins done in batch mode but
aggregation done in row mode. Next, the result of the subquery is
joined with the result of the outer query. Up to this point,
everything has been done in parallel. Finally, the different streams
are gathered and the top operator evaluated. The plan processes a
total of 87.9M rows and about 62% is done in batch mode. With
around 1/3 of the rows processed in row mode, we can get at most
1/(1/3)=3 times improvement if the plan shape remains similar.
We obtained 3.4 X CPU improvements but the improvement in

with customer_total_return as
 (select cr_returning_customer_sk as ctr_customer_sk, ca_state as ctr_state,
 sum(cr_return_amt_inc_tax) as ctr_total_return
 from catalog_returns, date_dim, customer_address
 where cr_returned_date_sk = d_date_sk and d_year >=2000
 and cr_returning_addr_sk = ca_address_sk
 group by cr_returning_customer_sk, ca_state)

select top 5 c_customer_id, c_salutation, c_first_name, c_last_name,
 ca_street_number, ca_street_name, ca_street_type, ca_suite_number,ca_city,
 ca_county, ca_state, ca_zip, ca_country, ca_gmt_offset, ca_location_type,
 ctr_total_return
from customer_total_return ctr1, customer_address, customer
where ctr1.ctr_total_return > (select avg(ctr_total_return)*1.2
 from customer_total_return ctr2
 where ctr1.ctr_state = ctr2.ctr_state)
 and ca_address_sk = c_current_addr_sk and ca_state = 'GA'
 and ctr1.ctr_customer_sk = c_customer_sk
order by c_customer_id, c_salutation, c_first_name, c_last_name, ca_street_number,
 ca_street_name,ca_street_type, ca_suite_number, ca_city, ca_county,
 ca_state, ca_zip, ca_country, ca_gmt_offset, ca_location_type, ctr_total_return;

Figure 5: Query 4

1183

elapsed time is much higher. This is because the row-mode-only
execution plans causes some intermediate results to spill to disk
while the batch mode plan avoids this.

5. WORK IN PROGRESS
For reasons of scope and schedule, direct update and load of
tables with column store indexes is not supported in the Denali
release of SQL Server, but we still accommodate the need to
modify and load data. In Denali, you can add data to tables in a
number of ways. If the table is small enough, you can drop its
column store index, perform updates, and then rebuild the index.
Column store indexes fully support range partitioning. So for
larger tables, you can use partitioning to load a staging table,
index it with a column store index, and switch it in as the newest
partition. This can handle many loads per day, allowing you to
keep data current. We plan to support direct update in a future
release.

In SQL Server, the primary organization of a table can be either a
heap or a B-tree. Again, for reasons of scope and schedule, using
a column store index as the primary organization is not supported
in the initial release; they can only be used for secondary indexes.
We plan to lift this restriction in a future release.

6. RELATED WORK
Storing data column-wise is a rather old idea. The concept of
decomposing records into smaller subrecords and storing them in
separate files goes back to the early 1970s. Hoffer and Severance
[7] published a paper as early as 1975 on the optimal
decomposition into subrecords. Batory [4] investigated how to
compute queries agains such files in a paper from 1979. In a paper
from 1985, Copeland and Khoshafian [5] studied fully
decomposed storage where each column is stored in a separate
file, that is, a column store.

Research on column stores then lay largely dormant for almost
twenty years. The 2005 paper on C-Store by Stonebraker et al [9]
and subsequent papers [1][2][3] [6] revived interest in column
stores.

A considerable number of prototype and commercial systems
relying on column-wise storage have been developed. References
[4][5] include references to several prototype systems built during
the 1970s.

Several commercial systems are available today. They are
targeted for data warehousing and most are pure column stores,
that is, data is stored only in column format. The earliest such
systems are Sybase IQ [19] and MonetDB [16], which have been
available for over a decade. Newer players include Vertica [20],
Exasol [12], Paraccel [17], InfoBright [14] and SAND [18].

SQL Server is the first general-purpose database system to fully
integrate column-wise storage and processing into the system.
Ingres VectorWise [15] is a pure column store and engine
embedded within Ingres but it does not appear to interoperate with
the row-oriented Ingres engine, that is, a query cannot access data
both in the VectorWise column store and the standard Ingres row
store. Greenplum [13] and Aster Data [11] offer systems targeted
for data warehousing that began as row stores but have now added
column store capabilities. However, we have found no
information on how deeply column-wise processing has been
integrated into their engines.

7. ACKNOWLEDGMENTS
Many other people have contributed to the success of this project.
We would especially like to thank Amir Netz for his many ideas
and for challenging us, Cristian Petculescu for answering endless
questions, Hanuma Kodavalla for initiating and nurturing the
project, and Jose Blakeley and Mike Zwilling for their advice and
continuing support of the project.

8. REFERENCES
[1] Abadi, D.J., Madden, S.R., and Ferreira, M.: Integrating

compression and execution in column-oriented database
systems. SIGMOD, 2006, 671-682.

[2] Abadi, D.J., Myers, D.S., DeWitt, D.J., and Madden, S.R.:
Materialization strategies in a column-oriented DBMS.
ICDE, 2007, 466-475.

[3] Abadi, D.J., Madden, S.R., and Hachem, N.: Column-stores
vs. row-stores: how different are they really? SIGMOD,
2008, 981-992.

[4] Batory, D. S.: On searching transposed files. ACM Trans.
Database Syst. 4, 4 (1979), 531-544.

[5] Copeland, G.P., Khoshafian, S.N.: A Decomposition Storage
Model. In Proc. SIGMOD, 1985, 268-279.

[6] Harizopoulos, S., Liang, V., Abadi, D.J., and Madden, S.:
Performance tradeoffs in read-optimized databases. VLDB,
2006, 487-498.

[7] Jeffrey A. Hoffer, Dennis G. Severance: The Use of Cluster
Analysis in Physical Data Base Design. VLDB 1975: 69-86

[8] S. Padmanabhan, T. Malkemus, R. Agarwal, and A.
Jhingran. Block oriented processing of relational database
operations in modern computer architectures. ICDE, 2001,
567-574.

[9] M. Stonebraker et al. C-Store: A Column-oriented DBMS.
VLDB, 2005, 553-564.

[10] TPC Benchmark DS (Decision Support), Draft Specification,
Version 32, available at http://tpc.org/tpcds.

[11] Aster Data, http://www.asterdata.com

[12] ExaSolution, http://www.exasol.com

[13] Greenplum Database, http://www.greenplum.com

[14] InfoBright, http://www.infobright.com

[15] Ingres VectorWise,
http://www.ingres.com/products/vectorwise

[16] MonetDB, http://monetdb.cwi.nl

[17] ParAccel Analytic Database, http://paraccel.com

[18] SAND CDBMS, http://www.sand.com

[19] Sybase IQ Columnar database,
http://www.sybase.com/products/datawarehousing/sybaseiq

[20] Vertica, http://www.vertica.com

1184

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064506390020064506420627064A064A0633002006390631063600200648063706280627063906290020062706440648062B0627062606420020062706440645062A062F062706480644062900200641064A00200645062C062706440627062A002006270644062306390645062706440020062706440645062E062A064406410629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd00630068002000700072006f002000730070006f006c00650068006c0069007600e90020007a006f006200720061007a006f007600e1006e00ed002000610020007400690073006b0020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003b103be03b903cc03c003b903c303c403b7002003c003c103bf03b203bf03bb03ae002003ba03b103b9002003b503ba03c403cd03c003c903c303b7002003b503c003b903c703b503b903c103b703bc03b103c403b903ba03ce03bd002003b503b303b303c103ac03c603c903bd002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405E605D205D4002005D505D405D305E405E105D4002005D005DE05D905E005D4002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata pogodnih za pouzdani prikaz i ispis poslovnih dokumenata koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF00410020006800690076006100740061006c006f007300200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d0065006700740065006b0069006e007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200073007a00e1006e0074002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c00200068006f007a006800610074006a00610020006c00e9007400720065002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f0020006e00690065007a00610077006f0064006e00650067006f002000770079015b0077006900650074006c0061006e00690061002000690020006400720075006b006f00770061006e0069006100200064006f006b0075006d0065006e007400f300770020006600690072006d006f0077007900630068002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e007400720075002000760069007a00750061006c0069007a00610072006500610020015f006900200074006900700103007200690072006500610020006c0061002000630061006c006900740061007400650020007300750070006500720069006f0061007201030020006100200064006f00630075006d0065006e00740065006c006f007200200064006500200061006600610063006500720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f043e04340445043e0434044f04490438044500200434043b044f0020043d0430043404350436043d043e0433043e0020043f0440043e0441043c043e044204400430002004380020043f04350447043004420438002004340435043b043e0432044b044500200434043e043a0443043c0435043d0442043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020007000720069006d00650072006e006900680020007a00610020007a0061006e00650073006c006a00690076006f0020006f0067006c00650064006f00760061006e006a006500200069006e0020007400690073006b0061006e006a006500200070006f0073006c006f0076006e0069006800200064006f006b0075006d0065006e0074006f0076002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005400690063006100720069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900720020015f0065006b0069006c006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

