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ABSTRACT 
The Deuteronomy architecture provides a clean separation of 

transaction functionality (performed in a transaction component, or 

TC) from data management functionality (performed in a data 

component, or DC). In prior work we implemented both a TC and 

DC that achieved modest performance. We recently built a high 

performance DC (the Bw-tree key value store) that achieves very 

high performance on modern hardware and is currently shipping as 

an indexing and storage layer in a number of Microsoft systems. 

This new DC executes operations more than 100× faster than the 

TC we previously implemented. This paper describes how we 

achieved two orders of magnitude speedup in TC performance and 

shows that a full Deuteronomy stack can achieve very high 

performance overall. Importantly, the resulting full stack is a 

system that caches data residing on secondary storage while 

exhibiting performance on par with main memory systems. Our 

new prototype TC combined with the previously re-architected DC 

scales to effectively use 48 hardware threads on our 4 socket 

NUMA machine and commits more than 1.5 million transactions 

per second (6 million total operations per second) for a variety of 

workloads. 

1. INTRODUCTION 

1.1 Deuteronomy  
The Deuteronomy architecture [11, 17] decomposes database 

kernel functionality into two interacting components such that each 

one provides useful capability by itself. The idea is to enforce a 

clean, layered separation of duties where a transaction component 

(TC) provides concurrency control and recovery that interacts with 

one or more data components (DC) providing data storage and 

management duties (access methods, cache, stability). The TC 

knows nothing about data storage details. Likewise, the DC knows 

nothing about transactional functionality – it is essentially a key-

value store. 

An initial implementation [11] demonstrated the feasibility of 

Deuteronomy via a TC and a number of modest local and cloud-

based DCs, though its performance was not competitive with the 

latest high performance systems. But this low performance was not 

fundamental to the Deuteronomy architecture. Subsequently, an 

effort to redesign each Deuteronomy component for high 

performance on modern hardware led to the Bw-tree latch-free 

access method [13] and LLAMA [12], a latch-free, log structured 

cache and storage manager. The result was a key-value store that 

executes several million operations per second that is now used as 

the range index method in SQL Server Hekaton [2] and the storage 

and indexing layer in several other Microsoft products, including 

Azure DocumentDB [29]. Not only was the DC implementation a 

performance success, but it also showed that the DC could be 

further decomposed (see Figure 1) to also maintain a hard 

separation between access methods and the LLAMA latch-free, log 

structured cache and storage engine. 

With a DC capable of millions of operations per second the original 

TC became the immediate bottleneck. Architected in a “traditional” 

manner (undo/redo recovery, lock manager, etc.), it was limited to 

a few tens of thousands of operations per second. Clearly, a new TC 

design was needed for a high performance transactional key-value 

store. 

This paper confirms the performance story for the full 

Deuteronomy stack by describing the design and implementation 

of a high performance transaction component. It describes how the 

redesigned TC architecture achieves a two order of magnitude 

speedup to match our DC performance. Further, the full stack is 

not a main memory-only system; rather, it is a “traditional” 

transactional system where data is stored on secondary storage 

and is only cached in main memory. This shows that such a 

system can rival main memory system performance while being 

able to serve substantially more data than can fit in main memory. 

The techniques that we use in our new TC are vastly different from 

the traditional lock management and redo/undo recovery. 

Nonetheless, the essential nature of the Deuteronomy architecture 

remains unchanged: the TC can interface with any number and 

flavor of DC key-value stores, whether local or remote.    

1.2 Performance Factors for a New TC 
Achieving a two orders of magnitude performance gain requires 

serious new thinking. We are driven by a number of fundamental 

design principles. 

1. Exploit modern hardware. Our TC exploits lessons learned 

building Hekaton and the Bw-tree. Latch-freedom, log 

structuring, and copy-on-write delta updates that avoid 

update-in-place are well-suited to modern multicore machines 
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Figure 1: Deuteronomy storage engine architecture. 
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with deep cache hierarchies and low-latency flash storage. The 

TC takes advantage of all of these techniques. 

2. Eliminate high-latency from the critical-paths. DC access 

latency can limit performance, especially for remote DCs. 

This is particularly bad for hotspot data where the maximum 

update rate of 1/latency (independent of concurrency control 

approach) can severely limit performance. TC caching is 

essential to minimize latency. 

3. Minimize transaction conflicts. Modern multi-version 

concurrency techniques [8, 16] demonstrate the ability to 

enormously reduce conflicts. Deployed systems like Hekaton 

have proven that MVCC performs well in practice. We also 

exploit MVCC in the TC. 

4. Minimize data traffic between TC and DC. Data transfers 

are very costly. Our “distributed” database kernel requires 

some data to be transferred between TC and DC. We strive to 

limit this burden as much as possible. 

5. Exploit batching. Effective batching often can reduce the per 

“item” cost of an activity. We exploit batching when shipping 

data updates to the DC. 

6. Minimize data movement and space consumption. 
Obviously, one wants only “necessary” data movement.  By 

putting data in its final resting place immediately (within the 

TC), we can avoid what is very frequently a major 

performance cost, while reducing memory footprint as well. 

1.3 TC Design Overview 
A TC is only part of a transactional key value store or database 

kernel; its function is to provide transactional concurrency control 

and recovery. Our approach is to weave the factors listed in the prior 

subsection into all aspects of the TC design. Figure 2 presents a 

schematic of our TC architecture, illustrating the flow of data 

within it and between TC and DC. The TC consists of three main 

components: (a) an MVCC component to manage the concurrency 

control logic; (b) a version manager to manage our redo log (also 

our version store) as well as cached records read from the DC; and 

(c) a TC Proxy that lives beside the DC and whose job is to submit 

committed operations to the DC. The DC maintains database state.  

1.3.1 Caching 
One pervasive issue we faced was what it meant to cache data at 

the TC. Since we use MVCC, we knew we would have versions 

cached somewhere for concurrency control purposes. Versions 

resulting from updates are written into the redo recovery log. These 

recovery log versions are accessed via the MVCC component, 

which stores version offsets as part of its version entry and requests 

them through the version manager interface. Our version manager 

uses the redo log as part of the TC record version cache. In-memory 

log buffers are written to stable storage and retained in memory to 

serve as a version cache until they are eventually recycled and 

reused.  

Versions of data not yet updated need to be acquired from the DC. 

To make them accessible to MVCC, the version manager retains 

these versions in the read cache.  Both read cache and recovery log 

buffers are subject to different forms of log structured cleaning 

(garbage collection). Thus, an MVCC request to the version 

manager could hit (1) the read cache; or (2) a log buffer (in-memory 

or stable). Section 3 provides the details of efficient cache 

management. 

1.3.2 Recovery Implications 
To minimize data movement, we immediately post updates in their 

“final resting place” on the recovery log.  Because we are using the 

recovery log buffers as part of our cache, we use pure redo logging 

to avoid diluting the cache with undo versions. 

Immediately logging updates means that uncommitted updates are 

on the log without any means of undoing them if their transaction 

is aborted.  So we cannot post updates to the DC until we know that 

the containing transaction has committed. Updates from aborted 

transactions are simply never applied at the DC. 

1.3.3 Posting Changes to the DC 
The TC includes a TC Proxy: a module that resides on the same 

machine as the DC. The TC Proxy receives log buffers from the 

version manager after the buffer is made stable and posts updates 

to the DC as appropriate. Since we use pure redo logging, these 

updates are “blind”, in that they do not require first reading a pre-

image of the record for undo. Posting can only be done after the 

transaction responsible for the update has committed. This posting 

is part of log buffer garbage collection when the TC Proxy and DC 

are collocated with the TC.  Otherwise cleaning occurs once the 

buffer has been received by a remote TC Proxy. Posting updates to 

the DC is not part of the latency path of any operation and is done 

in the background.  However, it is important for it to be somewhat 

timely, because it constrains the rate at which MVCC entries can be 

garbage collected.  

1.4 Contributions 
Deuteronomy’s architecture enables a flexible configuration of data 

management systems. This paper focuses on the transactional 

component as a piece separate from, but able to exploit, our 

previous high performance Bw-tree key value store or any key 

value store used as a DC.  While living within the Deuteronomy 

architecture, we have achieved two orders of magnitude 

performance gains over our previous TC design by using: 

1. Multi-version concurrency control exploiting a variant of 

timestamp order concurrency control (Section 2). 

2. Fast transaction commit that avoids read-only transaction 

difficulty in a highly efficient way. (Section 2) 

3. Commit records in the recovery log as a queue for the deferred 

delivery of transaction outcome messages, once the recovery 

log buffer is durable. (Section 2) 

4. Version management that exploits the recovery log buffers as 

a log structured store cache at the TC (Section 3). 

Figure 2: Data flow in the transactional component (TC) 
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5. Batching updates in log buffers when sending them to the DC 

and posting them from our TC Proxy (Section 4). 

6. Applying each update by the TC Proxy at the DC using a blind 

write operation that does not require reading a prior version 

(Section 4). 

7. New latch-free cache mechanisms in buffer management and 

epochs that remove performance bottlenecks (Section 5). 

We ran a number of experiments (Section 6) that illustrate the 

performance of the newly designed and implemented TC. Of 

particular note, while we can run our transactional key-value store 

solely in-memory and without transaction durability, we report 

results based on a data component on stable storage (the Bw-tree) 

and a durable log enforcing durable commit.   

2. CONCURRENCY CONTROL 
A number of research prototypes [8, 16] and system 

implementations [2] have confirmed that using multi-version 

concurrency control (MVCC) is one key to achieving high 

performance. In particular, it can mostly eliminate read-write 

conflicts (by reading a version earlier than an uncommitted writer’s 

version). We briefly describe our approach here. 

2.1 Timestamp Order MVCC 
Timestamp order (TO) concurrency control is a very old 

method [23], including a variant that uses multiple versions. The 

idea is to assign a timestamp to a transaction such that all of its 

writes are associated with its timestamp, and all of its reads only 

“see” versions that are visible as of its timestamp. A correct 

timestamp order schedule of operations using the timestamps is 

then enforced.  Transactions are aborted when the timestamp 

ordering cannot be maintained. Recent work in Hyper [6, 21] 

showed that, with very short transactions, TO can work well, even 

in the single version case. 

It is possible to use multiple versions to support weaker levels of 

transaction isolation. For example, Hekaton’s design point is 

snapshot isolation because it avoids validating read/write conflicts 

(serializability is possible at the cost of validation). However, our 

focus is on enabling serializability. A real plus for TO is that no 

validation step is required at the end of a transaction. All validation 

happens incrementally as versions as accessed. 

The TC tracks transactions via a transaction table.  Each entry in 

the table denotes a transaction status, its transaction id, and a 

timestamp issued when the transaction starts. The entry for each 

version in the MVCC hash table (see §2.2 below) is marked with 

the transaction id that created the version. This permits an easy 

check if the transaction information for each version, including its 

timestamp. 

The status in the transaction table entry indicates whether the 

transaction is active, committed, or aborted. Periodically, we 

compute the oldest active transaction (the one with the oldest 

timestamp), or OAT, which is used to determine which version 

information is safe to garbage collect. 

2.2 Latch-free MVCC Hash Table 
We maintain a latch-free hash table to manage MVCC data. 

Versions are hashed to a bucket based on their key. Each bucket 

item represents a record and contains the following entries: (a) a 

fixed-sized hash of the record key; (b) a pointer to the full key (keys 

can be variable length); (c) the timestamp of the youngest 

transaction that read the record; and (d) a version list describing the 

version(s) for the record. Each record item is fixed length for 

performance: it is both allocator friendly, and it guarantees items 

stay within cache line size (important if threads are simply “passing 

by” looking for other items in the bucket chains). To perform record 

lookup, the fixed-sized hash is compared to the hash of the record 

key; if the hashes match the full key pointer is dereferenced and full 

key comparison is performed to ensure it is the correct key. The 

version list is then traversed to find the appropriate version to read. 

The last read timestamp on each item is used in our timestamp order 

concurrency control approach. It represents the last read time of the 

most recently written version, and protects a younger transaction’s 

read by ensuring that an older transaction cannot write a new 

version that the younger transaction should have seen. Only the 

youngest version needs this read protection. Older versions are 

protected by the younger versions. Further, a read time for the 

youngest version only needs to be written when it is later than the 

read time already present. 

Version list items are fixed size and contain: (a) the transaction id 

of the creating transaction; (b) a version offset, used to reference 

the payload from the version manager; and (c) an “aborted” bit used 

to signify that this version is garbage and the transaction that 

created it has aborted – this is used as a fast track for the garbage 

collection process (see §2.4) 

Both the per-bucket record lists and the per-record version lists are 

entirely latch-free. New entries are prepended to lists using a 

compare-and-swap. Removing entries requires multiple steps. 

When an entry in a list is no longer needed its “next” pointer is 

atomically marked with a special “removed” bit using a compare-

and-swap. Future traversals over the list complete the unlinking of 

the item. This approach avoids races between the unlinking of an 

item and its predecessor: without care, this could otherwise result 

in an unlinked item “coming back to life.” 

To provide pointer stability for all latch-free data structures, we use 

an epoch mechanism that ensures that a memory location (for an 

MVCC record item, version item, etc.) is never reused until it is 

guaranteed that no active thread can deference a pointer to it. We 

improved upon our prior epoch mechanism (described in [12]) by 

reducing need for several atomic operations; we describe epoch 

management in Section 5.2.   

2.3 Committing Transactions 

2.3.1 Fast Commit 
We use what has been called the “fast commit” optimization [1], 

where the TC acts as if the transaction has committed once its 

commit record is written to the recovery log buffer, except for 

notifying users of the commit. We wait until the recovery log buffer 

containing the commit record is stable before notifying the user. 

This works well for read/write transactions for which we write 

commit records.  

Read only transactions typically do not write such a commit record. 

Instead they have been considered committed immediately once the 

commit operation is issued. Without care, however, this could lead 

to a logical bug after crash recovery: a read-only transaction may 

have read from a transaction that wasn’t durable and which would 

be aborted during recovery. To avoid this problem, by default we 

write a commit record for read only transactions, delaying commit 

notification until everything that they read is stable. 

However, writing commit records for all read-only transactions 

became a performance bottleneck. For read-heavy workloads these 

commit records dominated the recovery log contents and generated 

extra disk I/O. As a result, we optimized them away in the 

(common) case where everything read by a read-only transaction 

came from durably committed transactions by commit time. As a 

transaction reads versions, it tracks the highest commit log 



sequence number (LSN) among all the transactions from which it 

has read. At commit time, a commit record is written to the log only 

if that highest commit LSN is not yet durable. If it is durable, then 

all versions read by the transaction are already stably committed. 

There is no threat that any version it read will disappear in the event 

of a crash, so no commit record is needed. In this case, read-only 

transactions return the commit message immediately. 

2.3.2 Durable Commit 
We have no separate mechanism to enqueue transaction outcome 

messages. Rather, we use the commit records in the recovery log as 

the queue of outcome messages. Each commit record contains the 

return message that is to be sent when the transaction is durably 

committed.   

Once a recovery log buffer is on the stable log, we scan it for 

transaction commit records.  We link commit records together to 

enable us to skip over the intervening operation log records, which 

will usually be the vast majority (e.g. 90%) of the log. During this 

scan, we read the commit records, which contain the outcome 

messages, and notify the transaction users that their transaction has 

committed. The commit scan is performed just before sending the 

buffer to the TC Proxy. 

2.4 Garbage Collection 
The MVCC table needs to maintain versions that can be seen by 

uncommitted transactions. We do this conservatively by identifying 

versions that are not needed by these transactions or that are 

available from the DC.  

1. Any updated version older than the version visible to the OAT 

cannot be seen by active transactions and can be discarded 

from the hash table. These versions are never needed again. 

2. Any version visible to the OAT but with no later updates can 

also be discarded once it is known to have been applied at the 

DC. We are guaranteed to be able to retrieve such a record 

version from the DC.  If we could not delete these entries, the 

MVCC table would eventually contain the entire database. 

Versions needed but not present in the MVCC table are read from 

the DC. 

Section 4 describing the TC Proxy explains how the TC concisely 

reports to the TC progress of installing versions at the DC, and 

Section 6.5 evaluates the impact of MVCC garbage collection on 

overall TC performance. 

3. MANAGING VERSIONS 

3.1 Version Sources 
Providing fast access to versions is critical to high performance in 

Deuteronomy. The TC serves requests for its cached versions from 

two locations. The first is directly from in-memory recovery log 

buffers. The second is from a “read cache” used to hold hot versions 

that may not have been written recently enough to remain in the 

recovery log buffers. 

3.2 Recovery Log Caching 
The TC’s MVCC approves and mediates all updates, which allows 

it to cache and index updated versions. To make this efficient, the 

TC makes dual-use of both its recovery log buffers and its MVCC 

hash table. When a transaction attempts an update, it is first 

approved by MVCC. This permission, if given, results in the new 

version being stored in a recovery log buffer within the version 

manager. Afterward, an entry for the version is created in the 

MVCC hash table that contains an offset to the version in the 

recovery log and associates it with the updating transaction. Later 

reads for that version that are approved by the MVCC can directly 

find the data in memory using the version offset. Thus, in addition 

to concurrency control, the MVCC hash table serves as a version 

index, and the in-memory recovery buffers play the role of a cache. 

Each updated version stored at the TC serves both as an MVCC 

version and as a redo log record for the transaction. The TC uses 

pure redo logging and does not include before images in these log 

records. Versions are written immediately to the recovery log buffer 

to avoid later data movement. This means that an update (redo log 

record) cannot be applied at the DC until its transaction is known 

to be committed, since there is no way to undo the update.  The 

TC Proxy (§4) ensures this. 

Recovery log buffers are written to stable storage to ensure 

transaction durability. However, our use of the buffers as a main 

memory version cache means recovery buffers are retained in 

memory even after they have been flushed to disk. Buffers are lazily 

recycled via a log structured cleaning process [24, 25] that results 

in the relevant updates being sent by the TC Proxy to the DC. The 

version manager initiates this process by lending or sending stable 

buffers to the TC Proxy depending on whether the DC is local or 

remote. 

3.3 Read Cache 
The recovery log acts as a cache for recently written versions, but 

some read-heavy, slow-changing versions are eventually evicted 

from the recovery log buffers when they are recycled. Similarly, hot 

read-only versions may preexist in the DC and are never cached in 

the recovery log. If reads for these hot versions were always served 

from the DC, TC performance would be limited by the round-trip 

latency to the DC. 

To prevent this, the TC’s version manager keeps an in-memory read 

cache to house versions fetched from the DC. Each version that is 

fetched from the DC is placed in the read cache, and an entry is 

added to the MVCC table for it. As a further optimization, the 

version manager relocates uncommitted and hot versions into the 

read cache from recovery log buffers that are about to be recycled. 

The read cache is latch-free and log-structured, similar to recovery 

log buffers (§5.1). One key difference is that the read cache 

includes a lossy, latch-free index structure; this index provides a 

level of indirection that allows versions to be addressed by an 

opaque 64-bit identifier.  This simplifies relocating versions into 

the cache from recovery log buffers. The MVCC table refers to 

versions by their log-assigned offsets, and the index allows a 

version to be relocated into the cache without having to update 

references it.  

Figure 3 illustrates the read cache.  Versions are added to the buffer 

in a ring-like fashion, overwriting objects that were stored in the 

previous “lap” over the buffer.  New versions are added to the read 
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Figure 3: The read cache is structured as two lock-free 

structures. A lossy hash index maps opaque 64-bit identifiers 

to offsets within a large log-structured buffer.  

 



cache in two steps. First, the “tail” offset of the log-structured 

buffer is atomically advanced. The tail offset is monotonically 

increasing and never wraps; it is mapped to a virtual address inside 

the buffer using the tail modulo buffer size. Once the tail has been 

advanced, space has been reserved for the new version in the buffer. 

The version’s 64-bit identifier, the size of the version, and the 

version data itself is copied into the reserved space. Then an entry 

is added to the hash index mapping the 64-bit identifier to the tail 

offset where it was copied. 

In the process of reserving space for a new version, the tail offset 

“passes over” older versions that were placed into the buffer earlier 

and new data is copied on top of the old data. For example, in 

Figure 3, if a new object k is allocated at the tail, then its reservation 

may extend into object d (or further). For older versions (like d after 

k is appended or g), offsets stored in the hash index may “dangle,” 

pointing to places in the log buffer that have since been overwritten.  

The read cache makes no attempt to fix this up: lookups must treat 

the offsets returned by the hash index as hints about where entries 

might be in the buffer. Lookups must check the current tail offset 

against the offset given by the index both before and after they copy 

data out of the buffer for safety (some additional care is needed 

when copying the version out of the buffer to ensure that an 

overwritten size field doesn’t cause memory corruption).  

Not only does the index sometimes point to locations in the buffer 

that have been overwritten, but it also “forgets” mappings over 

time. When an entry is installed it is added to a row in the index 

based on the hash of its 64-bit identifier. Within the row, the word 

with the lowest buffer offset is overwritten. Effectively, the index 

has a row-by-row FIFO eviction policy of mappings. As a result, 

the hash index may even forget about versions that are still 

accessible in the read cache buffer (version f). The size of the index 

and the buffer are co-calculated to minimize these mismatches; 

however, no other attempt is made to synchronize evictions 

between the buffer and the index. Cache semantics make this safe: 

a missing entry in the index manifests itself as a cache miss. 

As a log-structured ring buffer, the read cache is naturally populated 

and reused in FIFO order. So far, this policy has been sufficient for 

us; it symbiotically works with the TC’s MVCC to naturally 

preserve hot items. This is because whenever a record is updated it 

is “promoted” to the tail of the record log buffers, naturally 

extending the in-memory lifetime of the record (though, via a new 

version). The read-cache could be augmented with a second-chance 

cleaning policy that would copy read-only hot versions from the 

head to the tail instead of overwriting them. So far, our metrics 

indicate there is little incentive to make this optimization. 

Our read cache is similar to the concurrently developed MICA key-

value store [14], though we were unaware of its design until its 

recent publication. 

3.4 Latch-free Buffer Management 
Similar to the LLAMA cache/storage subsystem [12], posting 

versions to either recovery log buffer or read cache buffer is done 

in a fully latch-free fashion.  It is the buffer space reservation that 

requires coordination, while copying of data can proceed in a thread 

safe manner without coordination. We have improved the 

scalability of buffer space reservation by using atomic-add instead 

of a compare-and-swap (see §5). 

4. TC Proxy 
The TC Proxy’s main job is to receive stable recovery log buffers 

from the TC and efficiently apply the versions within them to the 

DC. The TC Proxy runs co-located with the DC. It enforces a well-

defined contract that separates the TC and the DC sufficiently to 

allow the DC to run locally with the TC or on a remote machine.  

4.1 Buffer Communication 
Once a recovery log buffer is stable, it is sent to the TC Proxy; the 

recovery log buffer itself acts as an update batch. It is only at the 

TC Proxy that the operations are unbundled and submitted to the 

DC as appropriate. 

When the DC is local, it avoids copying the recovery log buffer by 

borrowing a reference to it from the version manager. In the case 

that the DC is remote, the networking subsystem similarly holds a 

reference to the buffer, but only until the remote TC Proxy has 

acknowledged its receipt. 

4.2 Interaction Contract 
In the earlier Deuteronomy design [11], updates were sent to the 

DC as they were generated. If a transaction aborted, then undo 

operations were sent to the DC to compensate for the earlier 

updates.  TC operations were latency-bound since they were issued 

directly to the DC. Further, the updates were sent to the DC before 

becoming stable in the recovery log (in fact updates were sent prior 

to being on the recovery log at all).  An end-of-stable-log control 

operation (EOSL) informed the DC when operations up to a given 

LSN could be made stable to enforce the write-ahead log (WAL) 

protocol. 

With the new design, all updates are in the stable log at the time 

that they are sent to the TC Proxy. It is safe for the TC Proxy to 

apply any committed operation to the DC without delay.  The EOSL 

conveys to the DC that it is allowed to write updates to secondary 

storage because it knows that the WAL protocol has been enforced. 

The DC can also use the EOSL to determine when it has seen all 

operations up to some LSN. This permits it, for instance, to re-

organize and optimize its storage layout to simplify idempotence 

checking.   

4.3  Applying Operations at the DC 

4.3.1 Delayed Application 
Good performance depends upon processing log records as close to 

a single time as possible.  Our pure redo design requires that only 

 

Figure 4: The TC Proxy receives full, stable log buffers 

from the TC. An eager pass updates transaction statuses; a 

lazy pass applies committed operations to the DC.  
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durably committed operations be submitted to the DC. Ideally, the 

TC Proxy would only encounter records of committed transactions 

when it processes a recovery log buffer. Then, all operations could 

be applied as they were encountered. When the scan of the buffer 

completed, the buffer could be marked as clean and reused. 

To make that ideal scenario “almost true”, we delay update 

processing of buffers. Figure 4 depicts this process. When the TC 

Proxy is remote, it queues multiple buffers, but it immediately 

scans arriving buffers for commit records and updates its version of 

the transaction table to indicate what transactions have committed 

(indicated by encountering their commit records).   When the TC is 

collocated with the DC, this scan is not necessary since the TC 

Proxy can reference the TC’s transaction table. During processing 

the TC stores the LSNs of commit records for transactions in the 

transaction table as they commit volatilely. In either case (remote 

or local DC), a “global” high water mark is maintained denoting 

the largest stable LSN on the recovery log. The combination of 

commit record LSN in the transaction table and high water mark 

tells us when a transaction is durably committed. 

In the delayed operation scan, all operations of transactions known 

to be committed are applied. Operations of transactions known to 

be aborted are discarded. Operations of transactions whose 

outcomes are not known are relocated into a side buffer. The result 

is that at the end of the operation scan, the entire recovery log buffer 

is cleaned and can be reused.   

This strategy works well when very few operations have undecided 

outcomes. Delaying operation installation to the DC minimizes the 

number of operations that must be relocated into a side buffer. The 

side buffer space requirement for storing the undecided transaction 

operations is very modest.  Side buffer operations are applied to the 

DC once they are determined to be committed, and discarded when 

they are determined to be aborted. 

4.3.2 Blind Writes 
The TC Proxy is actually executing a form of redo recovery.  In that 

situation, it only needs to apply the update. There is no need to 

inspect the prior state of a record to generate a pre-image. Because 

of this, the TC Proxy uses “upsert” operations in applying 

operations at the DC. An upsert has the same effect regardless of 

the prior state of the record, so no read of the prior state is needed.   

We changed our Bw-tree implementation to permit it to service 

upserts. This is an important optimization. Not needing a prior read 

means that we can simply prepend a delta update to a Bw-tree page 

without accessing the rest of the page.  One implication of this is 

that we do not even need to have a page fully in cache to perform 

the upsert. We can prepend the delta update to what we call a page 

stub containing just enough information to allow us to identify that 

we are updating the correct page (e.g. the boundary keys contain 

the key being updated).   

Should multiple upserts add multiple versions of a single record to 

a page, an idempotence test will permit us to identify the correct 

version (only the latest). We delay the execution of this 

idempotence test until we need to read the page or the record or 

until we want to consolidate the page. Until then, we can permit 

multiple versions of a record to exist as delta updates. 

4.4 Tracking DC Progress 
Over time, MVCC version entries must be garbage collected from 

the MVCC hash table. The MVCC uses the transaction table to 

track the oldest active transaction’s timestamp (OAT) and only 

retain version entries that remain visible to all ongoing and future 

transactions. This prevents the MVCC from removing entries 

needed to correctly perform concurrency control for the active 

transactions. 

However, the MVCC must be careful; dropping version entries that 

have not been applied at the DC may result in the TC reading 

incorrect versions. For example, if a read is performed on a key for 

which the MVCC has no entry, it forwards the read to the DC. If 

the TC wrote a newer version for that key and the MVCC has 

“forgotten” it, then when the read is issued to the DC the wrong 

version could be returned. 

To prevent this, MVCC entry garbage collection must be aware of 

the progress of the TC Proxy in applying updates to the DC. The 

TC Proxy provides a concise two-integer summary to the TC for 

this purpose (described below). Thus, the TC retains a read and 

write timestamp for a record version until it knows that the update 

has been applied at the DC.   

The TC Proxy could use a single LSN to track the earliest unapplied 

version in the log in reporting progress to the TC. Unfortunately, 

this would allow long running transactions to stall MVCC garbage 

collection. Instead, the TC Proxy uses a pair <T-LSN, O-LSN> that 

is maintained in the two separate TC Proxy passes. The T-LSN 

tracks the progress of the transaction scan in identifying 

transactions whose commit records have been encountered. The 

O-LSN tracks the prefix of the log that has been applied at the DC, 

excluding operations belonging to transactions with a commit 

record LSN greater than the T-LSN. No transaction can hold back 

the O-LSN or T-LSN even if it is long running.  An MVCC version 

can be safely discarded (case 2 of Section 2.4) if its LSN ≤ O-LSN 

and its transaction's commit record LSN ≤ T-LSN.  

5. SUPPORTING MECHANISMS 
A high performance system needs a global design that provides a 

framework that enables the performance. It also  needs careful 

design and implementation at every level. In this section, we 

describe some of the technological innovations that we have used 

to achieve great performance. 

5.1 Latch-free Buffer Management 
We described latch-free buffer management in prior 

papers [12, 13]. There are common elements to what we do in our 

TC with the recovery log. Unlike the prior work, which was based 

on compare-and-swap, buffer reservation now leverages atomic-

add instructions. 

As with our prior technique, we maintain a one word OFFSET to 

where the next storage within a buffer is to be allocated. OFFSET 

is initialized to zero when the buffer is empty. When allocating 

space, we execute an atomic-add instruction to add the SIZE of the 

allocation to the OFFSET. The atomic-add returns the value of 

OFFSET as it was modified; the requestor uses this as the end of 

his allocated space and subtracts SIZE to determine the start 

location for the allocation.  

There are no losers with atomic-add: it always succeeds and returns 

a different result (and hence a different region of the buffer) to each 

space requestor. If two atomic-adds are concurrent, one of them 

returns the sum of the two sizes. Subtracting each’s SIZE correctly 

identifies the different starts of the reserved spaces for each; and 

further, it leaves the OFFSET pointing to the remaining unallocated 

space.   

In our experiments, using atomic-add improves performance and 

scalability. Atomic-add avoids extra cache coherence traffic that 

compare-and-swap suffers under contention by reducing the 

conflict window. Further, atomic-add immediately acquires a cache 

line as modified, while the load for the pre-image preceding a 



compare-and-swap may also first fetch the cache line in shared 

mode. 

We also need to track the number of active users of the buffer. We 

do this by including a USERS field as the high order 32 bits of the 

OFFSET field. Both fields are modified atomically with a single 

add by using an addend of 232 + SIZE so that an allocation request 

both reserves space in the buffer and increases the number of users 

as recorded in the USERS field. When finished populating the 

reserved space, the USERS field is decremented using atomic-add 

of (−232). 

We need to cleanly terminate this when the buffer fills and “seal” it 

so that others will see that it should no longer be used and, thus, 

shift their attention to the next buffer. Further, when the buffer is 

filled, it needs to be written to secondary storage.  

We determine whether a buffer is sealed by whether the offset 

returned from an atomic add is larger than the buffer extent. At that 

point, the OFFSET is also larger than the buffer extent and serves 

to seal the buffer. When that happens and the USERS field has 

dropped to zero, the buffer is both full and ready to be written.  

To ensure that only one thread schedules the buffer write, we give 

that responsibility to the thread whose requested reservation 

straddled the end of the buffer. That is, the responsibility belongs to 

the sole thread whose atomic-add operation returned an offset 

beyond buffer end, but whose begin offset was within the buffer 

extent. To preserve lock-free discipline, any thread concurrently 

attempting a reservation on a buffer whose offset is beyond its 

extent attempts to atomically set a fresh buffer as the active log 

buffer.  

5.2 Epoch Mechanism and Memory Reuse 
Lock-free data structures pose challenges for memory reclamation. 

When an item is unlinked from a lock-free data structure, some 

threads may still be accessing the item. To make this safe, the TC 

uses an epoch-based mechanism to provide pointer stability; it 

posts unlinked items to a garbage list where they remain until no 

thread can reference them again, at which point they can be reused. 

The basic idea of epoch-based memory management is that before 

each operation (for example, a read or update) a thread joins the 

current epoch E; this is usually done by incrementing E's 

membership count. If a thread frees a memory block M during its 

operation (for example, it unlinks an MVCC item), it places a 

pointer to M on E's garbage list. Memory on E's garbage list is not 

reclaimed until (a) E is no longer the current epoch and (b) E's 

membership count is zero; this is sufficient to ensure that no other 

thread can possibly dereference memory on E's garbage list.  

In previous work, we described how to implement an epoch 

mechanism using two epochs [12, 13]. Its major performance issue 

was that the epoch membership counter was a hotspot, especially 

on multi-socket NUMA architectures. It required an atomic fetch-

and-increment (and decrement) to the counter before and after 

every operation. Our new epoch design avoids such a hot spot.  

The new epoch protection consists of a monotonically increasing 

global epoch (an unsigned 64-bit integer), a set of thread-local 

epochs (aligned on separate cache lines), and a garbage list where 

each item is held until it is safe to reuse its memory. 

Whenever a thread starts a TC operation like read, write, or commit, 

it copies the global epoch into its slot in the thread-local epoch set. 

After completing an operation this thread-local epoch is set to ∞. 

Each thread-local epoch indicates to reclamation operations 

“when” the thread entered the TC and what it might have observed. 

When an item is unlinked from one of the TC's internal data 

structures, the global epoch is copied into a garbage list entry along 

with a pointer to the unlinked item. Each time an entry is added to 

the garbage list, an old entry’s item is removed for reuse. The 

garbage list is a fixed-size ring: when a new item is inserted at the 

head of the ring, the old item is removed and deallocated (if it is 

safe to do so). 

It is safe to deallocate a garbage list item when the epoch stored 

with its entry is less than the minimum epoch found in the thread-

local epoch set. If the item's epoch is smaller, then no thread has a 

reference to the item (the item must have been unlinked before any 

of the threads in the thread-local set entered the TC). Recomputing 

this minimum epoch for each item to be deallocated would be 

prohibitively slow. Instead, the minimum thread-local epoch is 

recomputed whenever the global epoch is incremented or if items 

in the list cannot be reclaimed because of low thread-local epochs. 

The global epoch is incremented with an atomic increment only 

periodically whenever the garbage list has accumulated a 

significant number of new items that need to be returned to the 

allocator. This is the only atomic operation in the epoch manager, 

and the only operation that modifies a hot shared location. We 

currently increment the global epoch when the fixed-size garbage 

list has overwritten a quarter of its capacity; the minimum thread-

local epoch is recomputed and cached at the same time. 

Epoch protection is a tiny fraction of the total cost of each TC 

operation (less than 0.1% of wall time). Three things make it 

extremely fast. First, there are no locked, atomic, contended, or 

uncached operations on the fast path. Threads entering and exiting 

the TC only consult the (slowly changing) global epoch and update 

a single word in an exclusively owned cache line. Second, TC 

operations are short and non-blocking, enabling protection of all 

TC data structures with a single epoch enter/exit call pair per TC 

operation. This makes programming within the TC easier: all TC 

operations can safely hold and use references to any item in any 

data structure for the entire duration of the operation. Finally, the 

overhead to determine the minimum thread-local epoch is 

amortized over hundreds-of-thousands of unlink operations. 

5.3 Latch-free Memory Allocation 
Allocations for version storage are always handled using the latch-

free recovery log buffers and read cache. However, managing 

MVCC hash table record and version entries and record keys is also 

allocation intensive and can limit TC performance. 

These allocations are harder to deal with in a “log structured” way. 

Instead we use a general-purpose latch-free allocator for these data 

structures and other less common allocations. We use Hekaton’s 

lock-free memory allocator, which in turn is based on Michael’s 

allocator [20]. It uses per-core heaps and allocates from a small set 

of size classes up to 8 KB. Larger allocations are handled with 

Windows’ low-fragmentation heap. 

5.4 Thread Management 
Threads must be carefully managed to achieve high performance 

on modern multi-core processors. Indeed, this requires the program 

to have some understanding of the “topology” of the cores as well.  

Consequently, peak performance cannot be obtained by blindly 

running across more cores despite Deuteronomy’s latch-freedom. 

Work must be carefully partitioned as the system scales beyond a 

single CPU socket. At the same time, our goal of building a general-

purpose and easy-to-use system deters us from using data 



partitioning. We want the best performance possible even with 

workloads that do not partition cleanly by data.      

We limit the number of threads and assign work to them as if they 

were cores. This keeps us from over scheduling work and allows us 

to control thread placement relative to sockets. Deuteronomy scales 

by splitting TC and TC Proxy/DC operations onto separate sockets 

when load exceeds what can be handled within a single socket. This 

allows it to leverage more cores and reduces cache pressure on both 

modules at the cost of increasing cache coherence traffic between 

them. We also make the best of the processor interconnect topology 

by minimizing communication between processor pairs with no 

direct connection. 

At full load, the DC consists of a thread pool of up to 16 additional 

threads pinned to a single socket; the precise number of threads 

adapts to try to ensure that the DC applies operations as quickly as 

they are logged by the TC. To the extent possible, TC transaction 

processing occurs on hardware threads from adjacent sockets first, 

only spilling onto a socket that is two “hops” from the DC when 

necessary.  

5.5 Asynchronous Programming 
Deuteronomy uses a specialized asynchronous programming 

pattern to give it tight control over scheduling, to avoid thread 

context switch overheads, and to avoid holding indeterminately 

large stack space for each blocked thread. This programming 

pattern is used extensively within Microsoft to limit memory 

footprint in multi-job system settings. 

This asynchronous pattern requires the use of a “continuation” 

whenever an asynchronous event (an I/O, for example) may make 

immediate and synchronous completion of a request impossible. In 

the naïve case, a continuation consists of the entire “paused” stack 

and CPU register set. With the asynchronous pattern, an explicit 

continuation must be provided. The stack is then “unwound” by 

programs returning up the call chain indicating that the call thread 

has “gone asynchronous”.  

Deuteronomy continuations usually require only the re-execution 

of a request. But each system level that requires re-execution needs 

to add its task state to the set that constitutes the full continuation. 

And continuations need to be on the heap when needed, as the 

return path will have folded up the stack allocations. The 

conventional way this is handled is to provide a heap-based 

continuation upon entering a code module. We optimize this 

asynchronous pattern to avoid this expensive heap allocation of 

context state in the common case. 

Deuteronomy, unlike a naïve use of asynchronous continuation 

posting, stores its continuations on the stack, not the heap. When 

the execution of an operation can be done synchronously all heap 

allocation is avoided; this is the common case, since often all 

needed data is cached. Only when the asynchronous path is required 

(for example, if the operation needs to perform an I/O operation to 

bring needed data into the cache) are the continuations copied from 

the stack to the heap. This simple technique is fundamental to 

Deuteronomy’s high performance: it means that for the vast 

majority of operations, the overhead of heap allocation for task state 

is avoided completely. This is especially essential for read 

operations that hit in memory, for which no heap allocation 

operations occur at all. 

6. EVALUATION 
Our goal is to show Deuteronomy’s performance is competitive 

with modern, monolithically architected databases on realistic 

workloads. Indeed, even further, we hope to show that 

Deuteronomy is competitive with main memory databases when 

the working set of an application fits in Deuteronomy main 

memory.  

We used our previously built DC (Bw-tree and LLAMA, evaluated 

elsewhere [12, 13]) in the evaluation of our TC. The Bw-tree-based 

DC is deployed in existing Microsoft products including 

Hekaton [2] and DocumentDB [29].  

Our experimental machine set up is described in Table 1. Each of 

its four CPUs reside in separate NUMA nodes, which are organized 

as a ring. 

6.1 Experimental Workload  
For these experiments we use workloads similar to the YCSB 

benchmarks. The DC database is preloaded with 50 million 

100-byte values. Client threads read and update values with keys 

chosen randomly using a Zipfian distribution with skew chosen 

such that 20% of the keys receive 80% of the accesses. Transactions 

are created by grouping operations into sets of four. Recovery 

logging and DC updates share a single commodity SSD. 

Overall, this workload stresses the TC with a large, fine-grained, 

and high-churn dataset. Most realistic cloud deployments would 

exhibit stronger skew and temporal locality due to historical data. 

For example, assuming throughput of 1.5 M transactions/s (which  

the TC can sustain for this workload) Figure 5 shows that in less 

than 20 seconds the majority of the records in the database have 

been read or written (nearly 2.5 GB of the initial set of records, and 

this does not count the additional versions generated due to 

updates). Likewise, the 100-byte record size represents a worst-

case for the TC: for every version newer than the oldest active 

transaction the MVCC uses more space for a hash table entry than 

it does for the space to store the version contents. Thus, these 

experiments show the TC performance under an exceptionally 

difficult workload.   

OS Windows® Server 2012 

CPUs 4× Intel® Xeon® E5-4650L 

32 total cores 

64 total hardware threads 

Memory 192 GB DDR3-1600 SDRAM 

Storage 320 GB Flash SSD 

    Effective read/write: 430/440 MB/s 

    Effective read/write IOPS: 91,000/41,000 

Table 1: Details of the system used for experiments. 

 

Figure 5: For our experimental workload of about 5 GB the 

TC accesses more than 2.5 GB of the records every 20 

seconds. It accesses nearly all of the records every two 

minutes. 



6.2 Scalability  
Figure 6 shows Deuteronomy’s performance as the TC is scaled 

across multiple hardware threads and sockets (each core hosts two 

hardware threads). The combined TC Proxy and DC use up to 16 

additional hardware threads on the last socket (not included in the 

count on the axis). Points are averaged over 5 runs; error bars show 

the min/max of the 5 runs (variance is insignificant for most points).  

Overall, 84% of the operations issued are independently and 

randomly chosen to be read operations; this results in about 50% of 

transactions being read-only with the other half issuing one or more 

writes. With 32 threads (two sockets) issuing transactions, 

Deuteronomy sustains 1.5 million transactions per second in steady 

state (6 million total operations per second) with an insignificant 

abort rate. Performance scales well within a single socket, and it 

shows small improvement running across two sockets. It levels off 

once all of the machine’s NUMA groups are involved.  

Overall, performance is limited by DRAM latency, primarily 

MVCC table accesses, read cache and log buffer accesses, and 

Bw-tree traversal and data page accesses. The large working set 

hampers the effectiveness of CPU caches and the DTLBs. Large or 

relatively fixed-size structures like the recovery log buffers, the 

read cache, and the transaction table are all backed by 1 GB 

super-pages to reduce TLB pressure. 

6.3 Read-write Ratio 
Figure 7 shows how the read-write mix of the workload impacts 

throughput. Read-intensive workloads stress MVCC table 

performance and the read cache, while write-intensive workloads 

put pressure on recovery log buffer allocation, I/O, and TC 

Proxy/DC updates. For common read-intensive data center 

workloads Deuteronomy provides between 1 and 2 million 

transactions per second (4 to 8 million operations per second). For 

more heavily skewed and more nearly read-only workloads than 

those shown above, the TC can sustain around 14 million 

operations per second.   

For workloads with less than about 70% reads all of the cores of the 

TC Proxy/DC are busy updating records. Ideally, I/O bandwidth 

would be the limiting factor for write-intensive workloads rather 

than software overheads. In our write-only workload, our SSD 

sustains 390 MB/s: 89% of its peak write bandwidth. DC updates 

occasionally stall waiting for I/O, so adding additional write 

bandwidth capacity may still yield increased performance. 

6.4 Caching Effectiveness & TC Latency 
Figure 8 shows a cumulative distribution of TC and DC operation 

latencies which illustrates three key points. First, TC caching is 

effective. Versions for TC read operations are serviced from the 

combined log buffers and read cache 92% of the time (this can be 

seen as the “knee” in the TC Read line on the left graph). Reads are 

on the critical path, so the resulting 4× improvement in mean read 

latency (compare the mean TC Read time of 2.4 µs to the mean 

DC Get time of 11 µs) translates almost directly into 4× improved 

transaction throughput since most of the increased latency is added 

instruction path. 

Second, TC Reads are limited by DC Get performance on cache 

misses. Thus, the line for DC Get operations also appears 

(compressed and shifted) as part of the tail of the TC Read and TC 

Update lines, since some TC Read and TC Update operations resort 

to DC Gets. However, DC Upsert latency never appears as part of 

TC operation lines, since upserts are performed as a background 

activity by the TC Proxy, outside of any operation’s execution 

(latency) path.  

Third, the right graph of Figure 8 shows that MVCC garbage 

collection only impacts a small fraction of TC response latencies. 

The long tails of the “TC Read” and “TC Update” lines show that 

less than 0.1% of operations are delayed by garbage collection.  

This can be seen as the nearly 100 µs-long “shelf” in the TC Read 

and TC Update lines. The graph also shows that updates are delayed 

by garbage collection more frequently than reads; this is because 

each update issues multiple MVCC table operations, giving it twice 

as many opportunities to be recruited to do garbage collection (§6.5 

explores garbage collection in more detail). 

Overall, Figure 8 shows that overhead on the fast (and common) 

path is extremely low. The MVCC table’s dual purpose minimizes 

redundant work on the fast-path: the TC can track MVCC hash 

table entries and find the corresponding versions with a single 

hashed lookup on one data structure. This puts TC fast-path 

operations on par with the internal lookup performance of other 

highly latency-focused non-transactional in-memory storage 

Figure 6: Stable-state performance as the TC expands to 

execute transactions across more hardware threads. 
Figure 7: The impact of workload read/write mix on 

performance and DC core utilization. 



systems like RAMCloud [25] even while Deuteronomy does 

additional work for concurrency control.    

6.5 MVCC Version Garbage Collection 
Over time the MVCC table accumulates information about versions 

and grows large. In steady-state operation, the MVCC table must 

reclaim space by removing  versions that can never be referenced 

again and records that are unlikely to be referenced again soon. 

To do this, the MVCC table is configured with two “watermarks;” 

if the MVCC table size reaches these watermarks, threads issuing 

TC operations are co-opted into performing garbage collection 

operations on the table. At the soft limit, threads begin evicting 

older version entries from records they access. At the hard limit, 

threads begin scanning portions of the MVCC table to evict version 

and record table entries for colder records. Also, no new operations 

are permitted until MVCC table size is brought back under the hard 

limit. If table size cannot be controlled, then the TC begins to shed 

load by aborting transactions. Ideally, the TC should be configured 

so that this isn’t necessary. 

Figure 9 explores the impact of MVCC version garbage collection 

on transaction throughput and MVCC table size. Each of the three 

graphs tracks a different TC metric over the first 5 minutes of its 

life after it starts up. The top graph shows transaction throughput 

over time from the start of the TC until it reaches steady state while 

it runs the same experimental workload as in Section 6.2. The 

middle graph tracks the MVCC table size relative to its configured 

soft and hard watermarks, and the bottom graph shows what 

fraction of the hardware threads executing transactions goes into 

performing garbage collection work. 

After 100 seconds the MVCC table size grows beyond the soft 

limit, and threads begin discarding old versions associated with the 

records they are accessing. This curbs MVCC table growth 

somewhat, but once the version lists for the hot records in the table 

have been trimmed the table begins to grow again. At about 

160 seconds, the table hits the hard limit and threads begin scanning 

and evicting not only old versions, but also whole record 

information for cold records.  

Overall, garbage collection operations grows to consume about 4% 

in total of the 16 hardware threads dedicated to running transactions 

while holding MVCC table size steady. Steady state transaction 

throughput drops by about 20% from 1.6 down to 1.3 million 

transactions per second. 

The impact of MVCC table garbage collection on CPU utilization 

and transaction throughput is highly (and non-linearly) dependent 

on the choice of thresholds and the working set size of the 

workload. Higher limits defer garbage collection longer, making it 

more likely garbage collection will be able to reclaim space quickly 

without needing to pace normal operations. On this workload, for 

example, a 1 GB hard limit only decreases performance to 

1.0 million transactions per second, but garbage collection 

operations continuously consume 50% of the TC CPU’s socket. 

In the future, automatically setting the soft and hard limits will be 

important for real-world deployment. MVCC table space competes 

for DRAM with other applications as well as in-memory log buffer 

and read cache space, which can be used to reduce version access 

latency. One idea is to create a feedback loop that increases the 

limits when transaction throughput is suffering and cycles spent in 

garbage collection is high and tightens limits when cache misses 

appear to be limiting performance. 

6.6 Performance Impact of Checkpointing 
Periodically, the TC induces a DC checkpoint operation to ensure 

that the DC has durably written all applied operations up to some 

LSN. The TC uses this so that it can truncate the recovery log and 

bound recovery time. To enable this, the TC Proxy tracks the lowest 

LSN such that all prior operations are applied at the DC. It sends 

this to the DC occasionally as a Deuteronomy “end of stable log” 

(EOSL) control operation that permits the DC to make stable 

operations with lower LSNs.  

From time to time, the TC Proxy executes a Deuteronomy “redo 

scan start point” (RSSP) operation to request a checkpoint that 

forces the DC to make stable all operations up to and including the 

RSSP LSN stable. After the checkpoint completes, the TC is free to 

truncate the recovery log up to the RSSP LSN; the log earlier than 

RSSP only contains operations whose transaction outcome is 

known and, if committed, the operations have been applied stably 

at the DC. In our experiments, the DC completes a checkpoint about 

every 45 seconds; this also serves as a rough bound on recovery 

time. 

Figure 8: Cumulative distribution of TC and DC operation latencies. The mean of each set of samples is shown as a point. The 

right graph represents the same data against a log scale to highlight tail latency. The stair step effect in the left graph and on the 

left side of the right graph are due to low clock resolution (about 400 ns) rather than a low number of samples. 



Checkpointing runs on a single thread bound to the same socket as 

the TC Proxy and DC. Overall, it doesn’t have a statistically 

significant impact on performance except under heavy write loads 

(it contends for storage bandwidth). However, even for a 100% 

write workload throughput only decreases by 8%. 

All experiments in this paper include checkpointing overhead 

except for Figure 9, where the attempt is to isolate MVCC garbage 

collection overhead (though, even for that figure checkpointing 

made no measurable difference). 

7. RELATED WORK 
Database kernel architecture. The database kernel has 

traditionally been treated as a monolithic module, intertwining 

transactional concurrency control with data caching and 

storage [4]. Our work shows that great performance is possible 

when decomposing a database kernel into a transactional 

component (for concurrency control and recovery) and data 

component (for data storage). 

High performance transactional and storage engines. There has 

been a flurry of research and development of novel main-memory 

database systems. Examples include Hyper [6], 

H-Store/VoltDB [5, 24], Microsoft Hekaton [2], Oracle 

TimesTen [7], IBM SolidDB [15], and SAP HANA [9].  

MICA [14], Masstree [18], and RAMCloud [25] are fast main-

memory key value storage engines. As key-value stores, these 

engines could be made to work as a DC in the Deuteronomy 

architecture akin to the Bw-tree. Silo [27] is a main-memory 

database built atop Masstree. The Silo design follows a traditional 

monolithic architecture that couples concurrency control with 

access methods. In contrast, Deuteronomy decouples transactional 

concurrency control from data storage while providing comparable 

performance for working sets that fit in memory. Nonetheless, in 

contrast to the aforementioned systems, Deuteronomy is not a 

main-memory transactional engine where all records are assumed 

to “live” in memory. Rather, data lives on secondary storage and is 

only cached in main memory. 

Concurrency control. Classic database architectures use a 

pessimistic concurrency control scheme based on locking [3]. 

Recently a number of optimistic concurrency control schemes have 

been revisited in the context of main-memory optimized systems. 

Hekaton uses an optimistic multi-versioned concurrency control 

technique [8]. H-Store/VoltDB uses a partitioned model where all 

threads execute serially on a partition. HyPer has evaluated the use 

of timestamp ordering (TO) [10, 21]. 

Our TC design uses TO as its concurrency control scheme. Our 

architecture stores record TO entries in memory. However, these 

TO entries may reference record versions on secondary storage 

(either the redo log or in the DC). 

Recovery. Most classically architected databases model recovery 

on the ARIES protocol [22]. However, most high-performance 

transactions engines diverge from ARIES. For example, Hekaton 

logs updates and rebuilds in memory tables from scratch after a 

crash. VoltDB recovers by using coarse-grained command logging 

and replays transactions from a consistent checkpoint [19]. Our 

recovery scheme also diverges from traditional ARIES recovery. 

We use logical redo-only logging and only apply committed record 

updates at the DC. 

Log structuring. We make heavy use of log structured storage 

techniques throughput the TC similar to those first proposed for use 

in file systems [24]. Our TC performs log-structured cleaning of in-

memory redo log buffers. The TC read cache is also log structured 

even though it resides entirely in memory; this allows fast 

allocation and efficient space utilization. Similar benefits were 

observed with RAMCloud’s in memory logging [25]. As 

mentioned earlier, MICA caches in a log-structured ring with many 

similarities [14]. In previous work we described our log-structured 

storage techniques used in our DC implementation [12, 13] that 

reduce write amplification by writing deltas instead of whole pages. 

8. DISCUSSION 

8.1 Status of Prototype 
We planned a staged implementation of for our new transactional 

component. Our first focus, and what we report on in this paper, is 

to provide transactional support for the usual key-value store 

CRUD operations. Our goal was to provide 100× the performance 

of our original TC. We have succeeded in this, even while providing 

full transactional durability. 

Part of this performance is due to the data component we are using, 

which is based on the Bw-tree and LLAMA that together provide 

an atomic record store. This atomic record store is a product quality 

implementation that is being used currently in a number of 

Microsoft products. 

Figure 9: MVCC version garbage collection slows steady-

state transaction throughput by about 20%. The top graph 

shows TC transaction throughput. The middle shows MVCC 

table size relative to its soft and hard garbage collection 

watermarks. The bottom shows CPU utilization due to 

MVCC table garbage collection. 



8.2 Limitations and Plans 
We have focused on serializable transactions for our TC 

implementation. And, for the set of operations supported, that is 

what we implement. However, we do not yet support transactional 

key range operations. This support is needed to fully realize our 

serializability goal, and we are in the midst of implementing this 

capability. 

A number of experimental results over different workload mixes 

reinforces our belief that we need to augment timestamp order 

concurrency control. We expect that this will (at least some of the 

time) require commit time validation. But we worry about 

transactions with higher latency, especially in a high contention 

setting. Our expectation is that this enhancement will enable many 

transactions that currently might abort using pure timestamp order 

concurrency control to successfully commit. 

Both of these work items will add overhead to TC execution paths, 

and, as always, our goal will be to minimize this so as to achieve 

very high performance. We have high confidence that overhead for 

both these capabilities can be offset by further tuning of our existing 

code paths, and/or more astute thread management.   

8.3 Conclusions  
We believe the importance of the work reported here is that it points 

to new ways of realizing stateful transactional resource managers. 

The Deuteronomy architectural framework enables such resource 

managers to be composed with reusable components, each 

component providing useful functionality in and of itself. Our 

latch-free and log structured implementation approach enables the 

construction of these components with very high performance. This 

combination of architectural flexibility and great performance has 

already found a warm reception within Microsoft products. Our 

Deuteronomy effort brings main memory database-level 

performance to a system where data lives on secondary storage and 

is only cached in main memory. This is a unique Deuteronomy 

capability. 
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