
High Performance Transactions in Deuteronomy
Justin Levandoski David Lomet Sudipta Sengupta Ryan Stutsman Rui Wang

Microsoft Research, Redmond, WA

{justin.levandoski, lomet, sudipta, rystutsm, ruiwang}@microsoft.com

ABSTRACT
The Deuteronomy architecture provides a clean separation of

transaction functionality (performed in a transaction component, or

TC) from data management functionality (performed in a data

component, or DC). In prior work we implemented both a TC and

DC that achieved modest performance. We recently built a high

performance DC (the Bw-tree key value store) that achieves very

high performance on modern hardware and is currently shipping as

an indexing and storage layer in a number of Microsoft systems.

This new DC executes operations more than 100× faster than the

TC we previously implemented. This paper describes how we

achieved two orders of magnitude speedup in TC performance and

shows that a full Deuteronomy stack can achieve very high

performance overall. Importantly, the resulting full stack is a

system that caches data residing on secondary storage while

exhibiting performance on par with main memory systems. Our

new prototype TC combined with the previously re-architected DC

scales to effectively use 48 hardware threads on our 4 socket

NUMA machine and commits more than 1.5 million transactions

per second (6 million total operations per second) for a variety of

workloads.

1. INTRODUCTION

1.1 Deuteronomy
The Deuteronomy architecture [11, 17] decomposes database

kernel functionality into two interacting components such that each

one provides useful capability by itself. The idea is to enforce a

clean, layered separation of duties where a transaction component

(TC) provides concurrency control and recovery that interacts with

one or more data components (DC) providing data storage and

management duties (access methods, cache, stability). The TC

knows nothing about data storage details. Likewise, the DC knows

nothing about transactional functionality – it is essentially a key-

value store.

An initial implementation [11] demonstrated the feasibility of

Deuteronomy via a TC and a number of modest local and cloud-

based DCs, though its performance was not competitive with the

latest high performance systems. But this low performance was not

fundamental to the Deuteronomy architecture. Subsequently, an

effort to redesign each Deuteronomy component for high

performance on modern hardware led to the Bw-tree latch-free

access method [13] and LLAMA [12], a latch-free, log structured

cache and storage manager. The result was a key-value store that

executes several million operations per second that is now used as

the range index method in SQL Server Hekaton [2] and the storage

and indexing layer in several other Microsoft products, including

Azure DocumentDB [29]. Not only was the DC implementation a

performance success, but it also showed that the DC could be

further decomposed (see Figure 1) to also maintain a hard

separation between access methods and the LLAMA latch-free, log

structured cache and storage engine.

With a DC capable of millions of operations per second the original

TC became the immediate bottleneck. Architected in a “traditional”

manner (undo/redo recovery, lock manager, etc.), it was limited to

a few tens of thousands of operations per second. Clearly, a new TC

design was needed for a high performance transactional key-value

store.

This paper confirms the performance story for the full

Deuteronomy stack by describing the design and implementation

of a high performance transaction component. It describes how the

redesigned TC architecture achieves a two order of magnitude

speedup to match our DC performance. Further, the full stack is

not a main memory-only system; rather, it is a “traditional”

transactional system where data is stored on secondary storage

and is only cached in main memory. This shows that such a

system can rival main memory system performance while being

able to serve substantially more data than can fit in main memory.

The techniques that we use in our new TC are vastly different from

the traditional lock management and redo/undo recovery.

Nonetheless, the essential nature of the Deuteronomy architecture

remains unchanged: the TC can interface with any number and

flavor of DC key-value stores, whether local or remote.

1.2 Performance Factors for a New TC
Achieving a two orders of magnitude performance gain requires

serious new thinking. We are driven by a number of fundamental

design principles.

1. Exploit modern hardware. Our TC exploits lessons learned

building Hekaton and the Bw-tree. Latch-freedom, log

structuring, and copy-on-write delta updates that avoid

update-in-place are well-suited to modern multicore machines

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution

and reproduction in any medium as well as allowing derivative works,

provided that you attribute the original work to the author(s) and
CIDR 2015.

7th Biennial Conference on Innovative Data Systems Research
(CIDR ’15) January 4-7, 2015, Asilomar, California, USA.

Figure 1: Deuteronomy storage engine architecture.

App needing

transactional

key-value store

App needing

atomic key-value

store

App needing high-

performance “page”

storage engine

Data Component (DC)

Access Methods

Bw-Tree

Range Index
Linear Hashing ...

LLAMA: Latch-Free, Log-Structured Storage Engine

Local or Remote

Communication

Transactional

Component (TC)

with deep cache hierarchies and low-latency flash storage. The

TC takes advantage of all of these techniques.

2. Eliminate high-latency from the critical-paths. DC access

latency can limit performance, especially for remote DCs.

This is particularly bad for hotspot data where the maximum

update rate of 1/latency (independent of concurrency control

approach) can severely limit performance. TC caching is

essential to minimize latency.

3. Minimize transaction conflicts. Modern multi-version

concurrency techniques [8, 16] demonstrate the ability to

enormously reduce conflicts. Deployed systems like Hekaton

have proven that MVCC performs well in practice. We also

exploit MVCC in the TC.

4. Minimize data traffic between TC and DC. Data transfers

are very costly. Our “distributed” database kernel requires

some data to be transferred between TC and DC. We strive to

limit this burden as much as possible.

5. Exploit batching. Effective batching often can reduce the per

“item” cost of an activity. We exploit batching when shipping

data updates to the DC.

6. Minimize data movement and space consumption.
Obviously, one wants only “necessary” data movement. By

putting data in its final resting place immediately (within the

TC), we can avoid what is very frequently a major

performance cost, while reducing memory footprint as well.

1.3 TC Design Overview
A TC is only part of a transactional key value store or database

kernel; its function is to provide transactional concurrency control

and recovery. Our approach is to weave the factors listed in the prior

subsection into all aspects of the TC design. Figure 2 presents a

schematic of our TC architecture, illustrating the flow of data

within it and between TC and DC. The TC consists of three main

components: (a) an MVCC component to manage the concurrency

control logic; (b) a version manager to manage our redo log (also

our version store) as well as cached records read from the DC; and

(c) a TC Proxy that lives beside the DC and whose job is to submit

committed operations to the DC. The DC maintains database state.

1.3.1 Caching
One pervasive issue we faced was what it meant to cache data at

the TC. Since we use MVCC, we knew we would have versions

cached somewhere for concurrency control purposes. Versions

resulting from updates are written into the redo recovery log. These

recovery log versions are accessed via the MVCC component,

which stores version offsets as part of its version entry and requests

them through the version manager interface. Our version manager

uses the redo log as part of the TC record version cache. In-memory

log buffers are written to stable storage and retained in memory to

serve as a version cache until they are eventually recycled and

reused.

Versions of data not yet updated need to be acquired from the DC.

To make them accessible to MVCC, the version manager retains

these versions in the read cache. Both read cache and recovery log

buffers are subject to different forms of log structured cleaning

(garbage collection). Thus, an MVCC request to the version

manager could hit (1) the read cache; or (2) a log buffer (in-memory

or stable). Section 3 provides the details of efficient cache

management.

1.3.2 Recovery Implications
To minimize data movement, we immediately post updates in their

“final resting place” on the recovery log. Because we are using the

recovery log buffers as part of our cache, we use pure redo logging

to avoid diluting the cache with undo versions.

Immediately logging updates means that uncommitted updates are

on the log without any means of undoing them if their transaction

is aborted. So we cannot post updates to the DC until we know that

the containing transaction has committed. Updates from aborted

transactions are simply never applied at the DC.

1.3.3 Posting Changes to the DC
The TC includes a TC Proxy: a module that resides on the same

machine as the DC. The TC Proxy receives log buffers from the

version manager after the buffer is made stable and posts updates

to the DC as appropriate. Since we use pure redo logging, these

updates are “blind”, in that they do not require first reading a pre-

image of the record for undo. Posting can only be done after the

transaction responsible for the update has committed. This posting

is part of log buffer garbage collection when the TC Proxy and DC

are collocated with the TC. Otherwise cleaning occurs once the

buffer has been received by a remote TC Proxy. Posting updates to

the DC is not part of the latency path of any operation and is done

in the background. However, it is important for it to be somewhat

timely, because it constrains the rate at which MVCC entries can be

garbage collected.

1.4 Contributions
Deuteronomy’s architecture enables a flexible configuration of data

management systems. This paper focuses on the transactional

component as a piece separate from, but able to exploit, our

previous high performance Bw-tree key value store or any key

value store used as a DC. While living within the Deuteronomy

architecture, we have achieved two orders of magnitude

performance gains over our previous TC design by using:

1. Multi-version concurrency control exploiting a variant of

timestamp order concurrency control (Section 2).

2. Fast transaction commit that avoids read-only transaction

difficulty in a highly efficient way. (Section 2)

3. Commit records in the recovery log as a queue for the deferred

delivery of transaction outcome messages, once the recovery

log buffer is durable. (Section 2)

4. Version management that exploits the recovery log buffers as

a log structured store cache at the TC (Section 3).

Figure 2: Data flow in the transactional component (TC)

Id Version offset

MVCC Component · Uses latch-free hash table to

manage version data

· MVCC items store offsets into

version manager for version access

Buffer n Buffer n-1 Buffer n-2 Buffer n-k...

Already stable

Stable Buffers

Volatile

DC

Record

Read

Cache

Version Manager

Version Access

In-Memory Buffers (Recycled)

Version Migration

Recovery log is the version store

Data Component

DC Reads

5. Batching updates in log buffers when sending them to the DC

and posting them from our TC Proxy (Section 4).

6. Applying each update by the TC Proxy at the DC using a blind

write operation that does not require reading a prior version

(Section 4).

7. New latch-free cache mechanisms in buffer management and

epochs that remove performance bottlenecks (Section 5).

We ran a number of experiments (Section 6) that illustrate the

performance of the newly designed and implemented TC. Of

particular note, while we can run our transactional key-value store

solely in-memory and without transaction durability, we report

results based on a data component on stable storage (the Bw-tree)

and a durable log enforcing durable commit.

2. CONCURRENCY CONTROL
A number of research prototypes [8, 16] and system

implementations [2] have confirmed that using multi-version

concurrency control (MVCC) is one key to achieving high

performance. In particular, it can mostly eliminate read-write

conflicts (by reading a version earlier than an uncommitted writer’s

version). We briefly describe our approach here.

2.1 Timestamp Order MVCC
Timestamp order (TO) concurrency control is a very old

method [23], including a variant that uses multiple versions. The

idea is to assign a timestamp to a transaction such that all of its

writes are associated with its timestamp, and all of its reads only

“see” versions that are visible as of its timestamp. A correct

timestamp order schedule of operations using the timestamps is

then enforced. Transactions are aborted when the timestamp

ordering cannot be maintained. Recent work in Hyper [6, 21]

showed that, with very short transactions, TO can work well, even

in the single version case.

It is possible to use multiple versions to support weaker levels of

transaction isolation. For example, Hekaton’s design point is

snapshot isolation because it avoids validating read/write conflicts

(serializability is possible at the cost of validation). However, our

focus is on enabling serializability. A real plus for TO is that no

validation step is required at the end of a transaction. All validation

happens incrementally as versions as accessed.

The TC tracks transactions via a transaction table. Each entry in

the table denotes a transaction status, its transaction id, and a

timestamp issued when the transaction starts. The entry for each

version in the MVCC hash table (see §2.2 below) is marked with

the transaction id that created the version. This permits an easy

check if the transaction information for each version, including its

timestamp.

The status in the transaction table entry indicates whether the

transaction is active, committed, or aborted. Periodically, we

compute the oldest active transaction (the one with the oldest

timestamp), or OAT, which is used to determine which version

information is safe to garbage collect.

2.2 Latch-free MVCC Hash Table
We maintain a latch-free hash table to manage MVCC data.

Versions are hashed to a bucket based on their key. Each bucket

item represents a record and contains the following entries: (a) a

fixed-sized hash of the record key; (b) a pointer to the full key (keys

can be variable length); (c) the timestamp of the youngest

transaction that read the record; and (d) a version list describing the

version(s) for the record. Each record item is fixed length for

performance: it is both allocator friendly, and it guarantees items

stay within cache line size (important if threads are simply “passing

by” looking for other items in the bucket chains). To perform record

lookup, the fixed-sized hash is compared to the hash of the record

key; if the hashes match the full key pointer is dereferenced and full

key comparison is performed to ensure it is the correct key. The

version list is then traversed to find the appropriate version to read.

The last read timestamp on each item is used in our timestamp order

concurrency control approach. It represents the last read time of the

most recently written version, and protects a younger transaction’s

read by ensuring that an older transaction cannot write a new

version that the younger transaction should have seen. Only the

youngest version needs this read protection. Older versions are

protected by the younger versions. Further, a read time for the

youngest version only needs to be written when it is later than the

read time already present.

Version list items are fixed size and contain: (a) the transaction id

of the creating transaction; (b) a version offset, used to reference

the payload from the version manager; and (c) an “aborted” bit used

to signify that this version is garbage and the transaction that

created it has aborted – this is used as a fast track for the garbage

collection process (see §2.4)

Both the per-bucket record lists and the per-record version lists are

entirely latch-free. New entries are prepended to lists using a

compare-and-swap. Removing entries requires multiple steps.

When an entry in a list is no longer needed its “next” pointer is

atomically marked with a special “removed” bit using a compare-

and-swap. Future traversals over the list complete the unlinking of

the item. This approach avoids races between the unlinking of an

item and its predecessor: without care, this could otherwise result

in an unlinked item “coming back to life.”

To provide pointer stability for all latch-free data structures, we use

an epoch mechanism that ensures that a memory location (for an

MVCC record item, version item, etc.) is never reused until it is

guaranteed that no active thread can deference a pointer to it. We

improved upon our prior epoch mechanism (described in [12]) by

reducing need for several atomic operations; we describe epoch

management in Section 5.2.

2.3 Committing Transactions

2.3.1 Fast Commit
We use what has been called the “fast commit” optimization [1],

where the TC acts as if the transaction has committed once its

commit record is written to the recovery log buffer, except for

notifying users of the commit. We wait until the recovery log buffer

containing the commit record is stable before notifying the user.

This works well for read/write transactions for which we write

commit records.

Read only transactions typically do not write such a commit record.

Instead they have been considered committed immediately once the

commit operation is issued. Without care, however, this could lead

to a logical bug after crash recovery: a read-only transaction may

have read from a transaction that wasn’t durable and which would

be aborted during recovery. To avoid this problem, by default we

write a commit record for read only transactions, delaying commit

notification until everything that they read is stable.

However, writing commit records for all read-only transactions

became a performance bottleneck. For read-heavy workloads these

commit records dominated the recovery log contents and generated

extra disk I/O. As a result, we optimized them away in the

(common) case where everything read by a read-only transaction

came from durably committed transactions by commit time. As a

transaction reads versions, it tracks the highest commit log

sequence number (LSN) among all the transactions from which it

has read. At commit time, a commit record is written to the log only

if that highest commit LSN is not yet durable. If it is durable, then

all versions read by the transaction are already stably committed.

There is no threat that any version it read will disappear in the event

of a crash, so no commit record is needed. In this case, read-only

transactions return the commit message immediately.

2.3.2 Durable Commit
We have no separate mechanism to enqueue transaction outcome

messages. Rather, we use the commit records in the recovery log as

the queue of outcome messages. Each commit record contains the

return message that is to be sent when the transaction is durably

committed.

Once a recovery log buffer is on the stable log, we scan it for

transaction commit records. We link commit records together to

enable us to skip over the intervening operation log records, which

will usually be the vast majority (e.g. 90%) of the log. During this

scan, we read the commit records, which contain the outcome

messages, and notify the transaction users that their transaction has

committed. The commit scan is performed just before sending the

buffer to the TC Proxy.

2.4 Garbage Collection
The MVCC table needs to maintain versions that can be seen by

uncommitted transactions. We do this conservatively by identifying

versions that are not needed by these transactions or that are

available from the DC.

1. Any updated version older than the version visible to the OAT

cannot be seen by active transactions and can be discarded

from the hash table. These versions are never needed again.

2. Any version visible to the OAT but with no later updates can

also be discarded once it is known to have been applied at the

DC. We are guaranteed to be able to retrieve such a record

version from the DC. If we could not delete these entries, the

MVCC table would eventually contain the entire database.

Versions needed but not present in the MVCC table are read from

the DC.

Section 4 describing the TC Proxy explains how the TC concisely

reports to the TC progress of installing versions at the DC, and

Section 6.5 evaluates the impact of MVCC garbage collection on

overall TC performance.

3. MANAGING VERSIONS

3.1 Version Sources
Providing fast access to versions is critical to high performance in

Deuteronomy. The TC serves requests for its cached versions from

two locations. The first is directly from in-memory recovery log

buffers. The second is from a “read cache” used to hold hot versions

that may not have been written recently enough to remain in the

recovery log buffers.

3.2 Recovery Log Caching
The TC’s MVCC approves and mediates all updates, which allows

it to cache and index updated versions. To make this efficient, the

TC makes dual-use of both its recovery log buffers and its MVCC

hash table. When a transaction attempts an update, it is first

approved by MVCC. This permission, if given, results in the new

version being stored in a recovery log buffer within the version

manager. Afterward, an entry for the version is created in the

MVCC hash table that contains an offset to the version in the

recovery log and associates it with the updating transaction. Later

reads for that version that are approved by the MVCC can directly

find the data in memory using the version offset. Thus, in addition

to concurrency control, the MVCC hash table serves as a version

index, and the in-memory recovery buffers play the role of a cache.

Each updated version stored at the TC serves both as an MVCC

version and as a redo log record for the transaction. The TC uses

pure redo logging and does not include before images in these log

records. Versions are written immediately to the recovery log buffer

to avoid later data movement. This means that an update (redo log

record) cannot be applied at the DC until its transaction is known

to be committed, since there is no way to undo the update. The

TC Proxy (§4) ensures this.

Recovery log buffers are written to stable storage to ensure

transaction durability. However, our use of the buffers as a main

memory version cache means recovery buffers are retained in

memory even after they have been flushed to disk. Buffers are lazily

recycled via a log structured cleaning process [24, 25] that results

in the relevant updates being sent by the TC Proxy to the DC. The

version manager initiates this process by lending or sending stable

buffers to the TC Proxy depending on whether the DC is local or

remote.

3.3 Read Cache
The recovery log acts as a cache for recently written versions, but

some read-heavy, slow-changing versions are eventually evicted

from the recovery log buffers when they are recycled. Similarly, hot

read-only versions may preexist in the DC and are never cached in

the recovery log. If reads for these hot versions were always served

from the DC, TC performance would be limited by the round-trip

latency to the DC.

To prevent this, the TC’s version manager keeps an in-memory read

cache to house versions fetched from the DC. Each version that is

fetched from the DC is placed in the read cache, and an entry is

added to the MVCC table for it. As a further optimization, the

version manager relocates uncommitted and hot versions into the

read cache from recovery log buffers that are about to be recycled.

The read cache is latch-free and log-structured, similar to recovery

log buffers (§5.1). One key difference is that the read cache

includes a lossy, latch-free index structure; this index provides a

level of indirection that allows versions to be addressed by an

opaque 64-bit identifier. This simplifies relocating versions into

the cache from recovery log buffers. The MVCC table refers to

versions by their log-assigned offsets, and the index allows a

version to be relocated into the cache without having to update

references it.

Figure 3 illustrates the read cache. Versions are added to the buffer

in a ring-like fashion, overwriting objects that were stored in the

previous “lap” over the buffer. New versions are added to the read

Log-structured Buffer Tail

d e f gh i j

Lossy Hash Index

Figure 3: The read cache is structured as two lock-free

structures. A lossy hash index maps opaque 64-bit identifiers

to offsets within a large log-structured buffer.

cache in two steps. First, the “tail” offset of the log-structured

buffer is atomically advanced. The tail offset is monotonically

increasing and never wraps; it is mapped to a virtual address inside

the buffer using the tail modulo buffer size. Once the tail has been

advanced, space has been reserved for the new version in the buffer.

The version’s 64-bit identifier, the size of the version, and the

version data itself is copied into the reserved space. Then an entry

is added to the hash index mapping the 64-bit identifier to the tail

offset where it was copied.

In the process of reserving space for a new version, the tail offset

“passes over” older versions that were placed into the buffer earlier

and new data is copied on top of the old data. For example, in

Figure 3, if a new object k is allocated at the tail, then its reservation

may extend into object d (or further). For older versions (like d after

k is appended or g), offsets stored in the hash index may “dangle,”

pointing to places in the log buffer that have since been overwritten.

The read cache makes no attempt to fix this up: lookups must treat

the offsets returned by the hash index as hints about where entries

might be in the buffer. Lookups must check the current tail offset

against the offset given by the index both before and after they copy

data out of the buffer for safety (some additional care is needed

when copying the version out of the buffer to ensure that an

overwritten size field doesn’t cause memory corruption).

Not only does the index sometimes point to locations in the buffer

that have been overwritten, but it also “forgets” mappings over

time. When an entry is installed it is added to a row in the index

based on the hash of its 64-bit identifier. Within the row, the word

with the lowest buffer offset is overwritten. Effectively, the index

has a row-by-row FIFO eviction policy of mappings. As a result,

the hash index may even forget about versions that are still

accessible in the read cache buffer (version f). The size of the index

and the buffer are co-calculated to minimize these mismatches;

however, no other attempt is made to synchronize evictions

between the buffer and the index. Cache semantics make this safe:

a missing entry in the index manifests itself as a cache miss.

As a log-structured ring buffer, the read cache is naturally populated

and reused in FIFO order. So far, this policy has been sufficient for

us; it symbiotically works with the TC’s MVCC to naturally

preserve hot items. This is because whenever a record is updated it

is “promoted” to the tail of the record log buffers, naturally

extending the in-memory lifetime of the record (though, via a new

version). The read-cache could be augmented with a second-chance

cleaning policy that would copy read-only hot versions from the

head to the tail instead of overwriting them. So far, our metrics

indicate there is little incentive to make this optimization.

Our read cache is similar to the concurrently developed MICA key-

value store [14], though we were unaware of its design until its

recent publication.

3.4 Latch-free Buffer Management
Similar to the LLAMA cache/storage subsystem [12], posting

versions to either recovery log buffer or read cache buffer is done

in a fully latch-free fashion. It is the buffer space reservation that

requires coordination, while copying of data can proceed in a thread

safe manner without coordination. We have improved the

scalability of buffer space reservation by using atomic-add instead

of a compare-and-swap (see §5).

4. TC Proxy
The TC Proxy’s main job is to receive stable recovery log buffers

from the TC and efficiently apply the versions within them to the

DC. The TC Proxy runs co-located with the DC. It enforces a well-

defined contract that separates the TC and the DC sufficiently to

allow the DC to run locally with the TC or on a remote machine.

4.1 Buffer Communication
Once a recovery log buffer is stable, it is sent to the TC Proxy; the

recovery log buffer itself acts as an update batch. It is only at the

TC Proxy that the operations are unbundled and submitted to the

DC as appropriate.

When the DC is local, it avoids copying the recovery log buffer by

borrowing a reference to it from the version manager. In the case

that the DC is remote, the networking subsystem similarly holds a

reference to the buffer, but only until the remote TC Proxy has

acknowledged its receipt.

4.2 Interaction Contract
In the earlier Deuteronomy design [11], updates were sent to the

DC as they were generated. If a transaction aborted, then undo

operations were sent to the DC to compensate for the earlier

updates. TC operations were latency-bound since they were issued

directly to the DC. Further, the updates were sent to the DC before

becoming stable in the recovery log (in fact updates were sent prior

to being on the recovery log at all). An end-of-stable-log control

operation (EOSL) informed the DC when operations up to a given

LSN could be made stable to enforce the write-ahead log (WAL)

protocol.

With the new design, all updates are in the stable log at the time

that they are sent to the TC Proxy. It is safe for the TC Proxy to

apply any committed operation to the DC without delay. The EOSL

conveys to the DC that it is allowed to write updates to secondary

storage because it knows that the WAL protocol has been enforced.

The DC can also use the EOSL to determine when it has seen all

operations up to some LSN. This permits it, for instance, to re-

organize and optimize its storage layout to simplify idempotence

checking.

4.3 Applying Operations at the DC

4.3.1 Delayed Application
Good performance depends upon processing log records as close to

a single time as possible. Our pure redo design requires that only

Figure 4: The TC Proxy receives full, stable log buffers

from the TC. An eager pass updates transaction statuses; a

lazy pass applies committed operations to the DC.

Version Manager

Buffer n-1 Buffer n-2 Buffer n-k...

Stable/Lent to TC ProxyVolatile DC

Record

Read

Cache

TC Proxy

In-Memory, servicing reads

Data Component

Buffer n

Buffer n-1 Buffer n-2 Buffer n-k+1

Transaction
Table Commit

Record

Pass

Buffer n-k

Version

Writeback

Pass

Clean Buffer

Local (no copy) or transmitted over network for remote DCs

Side Buffer

...

durably committed operations be submitted to the DC. Ideally, the

TC Proxy would only encounter records of committed transactions

when it processes a recovery log buffer. Then, all operations could

be applied as they were encountered. When the scan of the buffer

completed, the buffer could be marked as clean and reused.

To make that ideal scenario “almost true”, we delay update

processing of buffers. Figure 4 depicts this process. When the TC

Proxy is remote, it queues multiple buffers, but it immediately

scans arriving buffers for commit records and updates its version of

the transaction table to indicate what transactions have committed

(indicated by encountering their commit records). When the TC is

collocated with the DC, this scan is not necessary since the TC

Proxy can reference the TC’s transaction table. During processing

the TC stores the LSNs of commit records for transactions in the

transaction table as they commit volatilely. In either case (remote

or local DC), a “global” high water mark is maintained denoting

the largest stable LSN on the recovery log. The combination of

commit record LSN in the transaction table and high water mark

tells us when a transaction is durably committed.

In the delayed operation scan, all operations of transactions known

to be committed are applied. Operations of transactions known to

be aborted are discarded. Operations of transactions whose

outcomes are not known are relocated into a side buffer. The result

is that at the end of the operation scan, the entire recovery log buffer

is cleaned and can be reused.

This strategy works well when very few operations have undecided

outcomes. Delaying operation installation to the DC minimizes the

number of operations that must be relocated into a side buffer. The

side buffer space requirement for storing the undecided transaction

operations is very modest. Side buffer operations are applied to the

DC once they are determined to be committed, and discarded when

they are determined to be aborted.

4.3.2 Blind Writes
The TC Proxy is actually executing a form of redo recovery. In that

situation, it only needs to apply the update. There is no need to

inspect the prior state of a record to generate a pre-image. Because

of this, the TC Proxy uses “upsert” operations in applying

operations at the DC. An upsert has the same effect regardless of

the prior state of the record, so no read of the prior state is needed.

We changed our Bw-tree implementation to permit it to service

upserts. This is an important optimization. Not needing a prior read

means that we can simply prepend a delta update to a Bw-tree page

without accessing the rest of the page. One implication of this is

that we do not even need to have a page fully in cache to perform

the upsert. We can prepend the delta update to what we call a page

stub containing just enough information to allow us to identify that

we are updating the correct page (e.g. the boundary keys contain

the key being updated).

Should multiple upserts add multiple versions of a single record to

a page, an idempotence test will permit us to identify the correct

version (only the latest). We delay the execution of this

idempotence test until we need to read the page or the record or

until we want to consolidate the page. Until then, we can permit

multiple versions of a record to exist as delta updates.

4.4 Tracking DC Progress
Over time, MVCC version entries must be garbage collected from

the MVCC hash table. The MVCC uses the transaction table to

track the oldest active transaction’s timestamp (OAT) and only

retain version entries that remain visible to all ongoing and future

transactions. This prevents the MVCC from removing entries

needed to correctly perform concurrency control for the active

transactions.

However, the MVCC must be careful; dropping version entries that

have not been applied at the DC may result in the TC reading

incorrect versions. For example, if a read is performed on a key for

which the MVCC has no entry, it forwards the read to the DC. If

the TC wrote a newer version for that key and the MVCC has

“forgotten” it, then when the read is issued to the DC the wrong

version could be returned.

To prevent this, MVCC entry garbage collection must be aware of

the progress of the TC Proxy in applying updates to the DC. The

TC Proxy provides a concise two-integer summary to the TC for

this purpose (described below). Thus, the TC retains a read and

write timestamp for a record version until it knows that the update

has been applied at the DC.

The TC Proxy could use a single LSN to track the earliest unapplied

version in the log in reporting progress to the TC. Unfortunately,

this would allow long running transactions to stall MVCC garbage

collection. Instead, the TC Proxy uses a pair <T-LSN, O-LSN> that

is maintained in the two separate TC Proxy passes. The T-LSN

tracks the progress of the transaction scan in identifying

transactions whose commit records have been encountered. The

O-LSN tracks the prefix of the log that has been applied at the DC,

excluding operations belonging to transactions with a commit

record LSN greater than the T-LSN. No transaction can hold back

the O-LSN or T-LSN even if it is long running. An MVCC version

can be safely discarded (case 2 of Section 2.4) if its LSN ≤ O-LSN

and its transaction's commit record LSN ≤ T-LSN.

5. SUPPORTING MECHANISMS
A high performance system needs a global design that provides a

framework that enables the performance. It also needs careful

design and implementation at every level. In this section, we

describe some of the technological innovations that we have used

to achieve great performance.

5.1 Latch-free Buffer Management
We described latch-free buffer management in prior

papers [12, 13]. There are common elements to what we do in our

TC with the recovery log. Unlike the prior work, which was based

on compare-and-swap, buffer reservation now leverages atomic-

add instructions.

As with our prior technique, we maintain a one word OFFSET to

where the next storage within a buffer is to be allocated. OFFSET

is initialized to zero when the buffer is empty. When allocating

space, we execute an atomic-add instruction to add the SIZE of the

allocation to the OFFSET. The atomic-add returns the value of

OFFSET as it was modified; the requestor uses this as the end of

his allocated space and subtracts SIZE to determine the start

location for the allocation.

There are no losers with atomic-add: it always succeeds and returns

a different result (and hence a different region of the buffer) to each

space requestor. If two atomic-adds are concurrent, one of them

returns the sum of the two sizes. Subtracting each’s SIZE correctly

identifies the different starts of the reserved spaces for each; and

further, it leaves the OFFSET pointing to the remaining unallocated

space.

In our experiments, using atomic-add improves performance and

scalability. Atomic-add avoids extra cache coherence traffic that

compare-and-swap suffers under contention by reducing the

conflict window. Further, atomic-add immediately acquires a cache

line as modified, while the load for the pre-image preceding a

compare-and-swap may also first fetch the cache line in shared

mode.

We also need to track the number of active users of the buffer. We

do this by including a USERS field as the high order 32 bits of the

OFFSET field. Both fields are modified atomically with a single

add by using an addend of 232 + SIZE so that an allocation request

both reserves space in the buffer and increases the number of users

as recorded in the USERS field. When finished populating the

reserved space, the USERS field is decremented using atomic-add

of (−232).

We need to cleanly terminate this when the buffer fills and “seal” it

so that others will see that it should no longer be used and, thus,

shift their attention to the next buffer. Further, when the buffer is

filled, it needs to be written to secondary storage.

We determine whether a buffer is sealed by whether the offset

returned from an atomic add is larger than the buffer extent. At that

point, the OFFSET is also larger than the buffer extent and serves

to seal the buffer. When that happens and the USERS field has

dropped to zero, the buffer is both full and ready to be written.

To ensure that only one thread schedules the buffer write, we give

that responsibility to the thread whose requested reservation

straddled the end of the buffer. That is, the responsibility belongs to

the sole thread whose atomic-add operation returned an offset

beyond buffer end, but whose begin offset was within the buffer

extent. To preserve lock-free discipline, any thread concurrently

attempting a reservation on a buffer whose offset is beyond its

extent attempts to atomically set a fresh buffer as the active log

buffer.

5.2 Epoch Mechanism and Memory Reuse
Lock-free data structures pose challenges for memory reclamation.

When an item is unlinked from a lock-free data structure, some

threads may still be accessing the item. To make this safe, the TC

uses an epoch-based mechanism to provide pointer stability; it

posts unlinked items to a garbage list where they remain until no

thread can reference them again, at which point they can be reused.

The basic idea of epoch-based memory management is that before

each operation (for example, a read or update) a thread joins the

current epoch E; this is usually done by incrementing E's

membership count. If a thread frees a memory block M during its

operation (for example, it unlinks an MVCC item), it places a

pointer to M on E's garbage list. Memory on E's garbage list is not

reclaimed until (a) E is no longer the current epoch and (b) E's

membership count is zero; this is sufficient to ensure that no other

thread can possibly dereference memory on E's garbage list.

In previous work, we described how to implement an epoch

mechanism using two epochs [12, 13]. Its major performance issue

was that the epoch membership counter was a hotspot, especially

on multi-socket NUMA architectures. It required an atomic fetch-

and-increment (and decrement) to the counter before and after

every operation. Our new epoch design avoids such a hot spot.

The new epoch protection consists of a monotonically increasing

global epoch (an unsigned 64-bit integer), a set of thread-local

epochs (aligned on separate cache lines), and a garbage list where

each item is held until it is safe to reuse its memory.

Whenever a thread starts a TC operation like read, write, or commit,

it copies the global epoch into its slot in the thread-local epoch set.

After completing an operation this thread-local epoch is set to ∞.

Each thread-local epoch indicates to reclamation operations

“when” the thread entered the TC and what it might have observed.

When an item is unlinked from one of the TC's internal data

structures, the global epoch is copied into a garbage list entry along

with a pointer to the unlinked item. Each time an entry is added to

the garbage list, an old entry’s item is removed for reuse. The

garbage list is a fixed-size ring: when a new item is inserted at the

head of the ring, the old item is removed and deallocated (if it is

safe to do so).

It is safe to deallocate a garbage list item when the epoch stored

with its entry is less than the minimum epoch found in the thread-

local epoch set. If the item's epoch is smaller, then no thread has a

reference to the item (the item must have been unlinked before any

of the threads in the thread-local set entered the TC). Recomputing

this minimum epoch for each item to be deallocated would be

prohibitively slow. Instead, the minimum thread-local epoch is

recomputed whenever the global epoch is incremented or if items

in the list cannot be reclaimed because of low thread-local epochs.

The global epoch is incremented with an atomic increment only

periodically whenever the garbage list has accumulated a

significant number of new items that need to be returned to the

allocator. This is the only atomic operation in the epoch manager,

and the only operation that modifies a hot shared location. We

currently increment the global epoch when the fixed-size garbage

list has overwritten a quarter of its capacity; the minimum thread-

local epoch is recomputed and cached at the same time.

Epoch protection is a tiny fraction of the total cost of each TC

operation (less than 0.1% of wall time). Three things make it

extremely fast. First, there are no locked, atomic, contended, or

uncached operations on the fast path. Threads entering and exiting

the TC only consult the (slowly changing) global epoch and update

a single word in an exclusively owned cache line. Second, TC

operations are short and non-blocking, enabling protection of all

TC data structures with a single epoch enter/exit call pair per TC

operation. This makes programming within the TC easier: all TC

operations can safely hold and use references to any item in any

data structure for the entire duration of the operation. Finally, the

overhead to determine the minimum thread-local epoch is

amortized over hundreds-of-thousands of unlink operations.

5.3 Latch-free Memory Allocation
Allocations for version storage are always handled using the latch-

free recovery log buffers and read cache. However, managing

MVCC hash table record and version entries and record keys is also

allocation intensive and can limit TC performance.

These allocations are harder to deal with in a “log structured” way.

Instead we use a general-purpose latch-free allocator for these data

structures and other less common allocations. We use Hekaton’s

lock-free memory allocator, which in turn is based on Michael’s

allocator [20]. It uses per-core heaps and allocates from a small set

of size classes up to 8 KB. Larger allocations are handled with

Windows’ low-fragmentation heap.

5.4 Thread Management
Threads must be carefully managed to achieve high performance

on modern multi-core processors. Indeed, this requires the program

to have some understanding of the “topology” of the cores as well.

Consequently, peak performance cannot be obtained by blindly

running across more cores despite Deuteronomy’s latch-freedom.

Work must be carefully partitioned as the system scales beyond a

single CPU socket. At the same time, our goal of building a general-

purpose and easy-to-use system deters us from using data

partitioning. We want the best performance possible even with

workloads that do not partition cleanly by data.

We limit the number of threads and assign work to them as if they

were cores. This keeps us from over scheduling work and allows us

to control thread placement relative to sockets. Deuteronomy scales

by splitting TC and TC Proxy/DC operations onto separate sockets

when load exceeds what can be handled within a single socket. This

allows it to leverage more cores and reduces cache pressure on both

modules at the cost of increasing cache coherence traffic between

them. We also make the best of the processor interconnect topology

by minimizing communication between processor pairs with no

direct connection.

At full load, the DC consists of a thread pool of up to 16 additional

threads pinned to a single socket; the precise number of threads

adapts to try to ensure that the DC applies operations as quickly as

they are logged by the TC. To the extent possible, TC transaction

processing occurs on hardware threads from adjacent sockets first,

only spilling onto a socket that is two “hops” from the DC when

necessary.

5.5 Asynchronous Programming
Deuteronomy uses a specialized asynchronous programming

pattern to give it tight control over scheduling, to avoid thread

context switch overheads, and to avoid holding indeterminately

large stack space for each blocked thread. This programming

pattern is used extensively within Microsoft to limit memory

footprint in multi-job system settings.

This asynchronous pattern requires the use of a “continuation”

whenever an asynchronous event (an I/O, for example) may make

immediate and synchronous completion of a request impossible. In

the naïve case, a continuation consists of the entire “paused” stack

and CPU register set. With the asynchronous pattern, an explicit

continuation must be provided. The stack is then “unwound” by

programs returning up the call chain indicating that the call thread

has “gone asynchronous”.

Deuteronomy continuations usually require only the re-execution

of a request. But each system level that requires re-execution needs

to add its task state to the set that constitutes the full continuation.

And continuations need to be on the heap when needed, as the

return path will have folded up the stack allocations. The

conventional way this is handled is to provide a heap-based

continuation upon entering a code module. We optimize this

asynchronous pattern to avoid this expensive heap allocation of

context state in the common case.

Deuteronomy, unlike a naïve use of asynchronous continuation

posting, stores its continuations on the stack, not the heap. When

the execution of an operation can be done synchronously all heap

allocation is avoided; this is the common case, since often all

needed data is cached. Only when the asynchronous path is required

(for example, if the operation needs to perform an I/O operation to

bring needed data into the cache) are the continuations copied from

the stack to the heap. This simple technique is fundamental to

Deuteronomy’s high performance: it means that for the vast

majority of operations, the overhead of heap allocation for task state

is avoided completely. This is especially essential for read

operations that hit in memory, for which no heap allocation

operations occur at all.

6. EVALUATION
Our goal is to show Deuteronomy’s performance is competitive

with modern, monolithically architected databases on realistic

workloads. Indeed, even further, we hope to show that

Deuteronomy is competitive with main memory databases when

the working set of an application fits in Deuteronomy main

memory.

We used our previously built DC (Bw-tree and LLAMA, evaluated

elsewhere [12, 13]) in the evaluation of our TC. The Bw-tree-based

DC is deployed in existing Microsoft products including

Hekaton [2] and DocumentDB [29].

Our experimental machine set up is described in Table 1. Each of

its four CPUs reside in separate NUMA nodes, which are organized

as a ring.

6.1 Experimental Workload
For these experiments we use workloads similar to the YCSB

benchmarks. The DC database is preloaded with 50 million

100-byte values. Client threads read and update values with keys

chosen randomly using a Zipfian distribution with skew chosen

such that 20% of the keys receive 80% of the accesses. Transactions

are created by grouping operations into sets of four. Recovery

logging and DC updates share a single commodity SSD.

Overall, this workload stresses the TC with a large, fine-grained,

and high-churn dataset. Most realistic cloud deployments would

exhibit stronger skew and temporal locality due to historical data.

For example, assuming throughput of 1.5 M transactions/s (which

the TC can sustain for this workload) Figure 5 shows that in less

than 20 seconds the majority of the records in the database have

been read or written (nearly 2.5 GB of the initial set of records, and

this does not count the additional versions generated due to

updates). Likewise, the 100-byte record size represents a worst-

case for the TC: for every version newer than the oldest active

transaction the MVCC uses more space for a hash table entry than

it does for the space to store the version contents. Thus, these

experiments show the TC performance under an exceptionally

difficult workload.

OS Windows® Server 2012

CPUs 4× Intel® Xeon® E5-4650L

32 total cores

64 total hardware threads

Memory 192 GB DDR3-1600 SDRAM

Storage 320 GB Flash SSD

 Effective read/write: 430/440 MB/s

 Effective read/write IOPS: 91,000/41,000

Table 1: Details of the system used for experiments.

Figure 5: For our experimental workload of about 5 GB the

TC accesses more than 2.5 GB of the records every 20

seconds. It accesses nearly all of the records every two

minutes.

6.2 Scalability
Figure 6 shows Deuteronomy’s performance as the TC is scaled

across multiple hardware threads and sockets (each core hosts two

hardware threads). The combined TC Proxy and DC use up to 16

additional hardware threads on the last socket (not included in the

count on the axis). Points are averaged over 5 runs; error bars show

the min/max of the 5 runs (variance is insignificant for most points).

Overall, 84% of the operations issued are independently and

randomly chosen to be read operations; this results in about 50% of

transactions being read-only with the other half issuing one or more

writes. With 32 threads (two sockets) issuing transactions,

Deuteronomy sustains 1.5 million transactions per second in steady

state (6 million total operations per second) with an insignificant

abort rate. Performance scales well within a single socket, and it

shows small improvement running across two sockets. It levels off

once all of the machine’s NUMA groups are involved.

Overall, performance is limited by DRAM latency, primarily

MVCC table accesses, read cache and log buffer accesses, and

Bw-tree traversal and data page accesses. The large working set

hampers the effectiveness of CPU caches and the DTLBs. Large or

relatively fixed-size structures like the recovery log buffers, the

read cache, and the transaction table are all backed by 1 GB

super-pages to reduce TLB pressure.

6.3 Read-write Ratio
Figure 7 shows how the read-write mix of the workload impacts

throughput. Read-intensive workloads stress MVCC table

performance and the read cache, while write-intensive workloads

put pressure on recovery log buffer allocation, I/O, and TC

Proxy/DC updates. For common read-intensive data center

workloads Deuteronomy provides between 1 and 2 million

transactions per second (4 to 8 million operations per second). For

more heavily skewed and more nearly read-only workloads than

those shown above, the TC can sustain around 14 million

operations per second.

For workloads with less than about 70% reads all of the cores of the

TC Proxy/DC are busy updating records. Ideally, I/O bandwidth

would be the limiting factor for write-intensive workloads rather

than software overheads. In our write-only workload, our SSD

sustains 390 MB/s: 89% of its peak write bandwidth. DC updates

occasionally stall waiting for I/O, so adding additional write

bandwidth capacity may still yield increased performance.

6.4 Caching Effectiveness & TC Latency
Figure 8 shows a cumulative distribution of TC and DC operation

latencies which illustrates three key points. First, TC caching is

effective. Versions for TC read operations are serviced from the

combined log buffers and read cache 92% of the time (this can be

seen as the “knee” in the TC Read line on the left graph). Reads are

on the critical path, so the resulting 4× improvement in mean read

latency (compare the mean TC Read time of 2.4 µs to the mean

DC Get time of 11 µs) translates almost directly into 4× improved

transaction throughput since most of the increased latency is added

instruction path.

Second, TC Reads are limited by DC Get performance on cache

misses. Thus, the line for DC Get operations also appears

(compressed and shifted) as part of the tail of the TC Read and TC

Update lines, since some TC Read and TC Update operations resort

to DC Gets. However, DC Upsert latency never appears as part of

TC operation lines, since upserts are performed as a background

activity by the TC Proxy, outside of any operation’s execution

(latency) path.

Third, the right graph of Figure 8 shows that MVCC garbage

collection only impacts a small fraction of TC response latencies.

The long tails of the “TC Read” and “TC Update” lines show that

less than 0.1% of operations are delayed by garbage collection.

This can be seen as the nearly 100 µs-long “shelf” in the TC Read

and TC Update lines. The graph also shows that updates are delayed

by garbage collection more frequently than reads; this is because

each update issues multiple MVCC table operations, giving it twice

as many opportunities to be recruited to do garbage collection (§6.5

explores garbage collection in more detail).

Overall, Figure 8 shows that overhead on the fast (and common)

path is extremely low. The MVCC table’s dual purpose minimizes

redundant work on the fast-path: the TC can track MVCC hash

table entries and find the corresponding versions with a single

hashed lookup on one data structure. This puts TC fast-path

operations on par with the internal lookup performance of other

highly latency-focused non-transactional in-memory storage

Figure 6: Stable-state performance as the TC expands to

execute transactions across more hardware threads.
Figure 7: The impact of workload read/write mix on

performance and DC core utilization.

systems like RAMCloud [25] even while Deuteronomy does

additional work for concurrency control.

6.5 MVCC Version Garbage Collection
Over time the MVCC table accumulates information about versions

and grows large. In steady-state operation, the MVCC table must

reclaim space by removing versions that can never be referenced

again and records that are unlikely to be referenced again soon.

To do this, the MVCC table is configured with two “watermarks;”

if the MVCC table size reaches these watermarks, threads issuing

TC operations are co-opted into performing garbage collection

operations on the table. At the soft limit, threads begin evicting

older version entries from records they access. At the hard limit,

threads begin scanning portions of the MVCC table to evict version

and record table entries for colder records. Also, no new operations

are permitted until MVCC table size is brought back under the hard

limit. If table size cannot be controlled, then the TC begins to shed

load by aborting transactions. Ideally, the TC should be configured

so that this isn’t necessary.

Figure 9 explores the impact of MVCC version garbage collection

on transaction throughput and MVCC table size. Each of the three

graphs tracks a different TC metric over the first 5 minutes of its

life after it starts up. The top graph shows transaction throughput

over time from the start of the TC until it reaches steady state while

it runs the same experimental workload as in Section 6.2. The

middle graph tracks the MVCC table size relative to its configured

soft and hard watermarks, and the bottom graph shows what

fraction of the hardware threads executing transactions goes into

performing garbage collection work.

After 100 seconds the MVCC table size grows beyond the soft

limit, and threads begin discarding old versions associated with the

records they are accessing. This curbs MVCC table growth

somewhat, but once the version lists for the hot records in the table

have been trimmed the table begins to grow again. At about

160 seconds, the table hits the hard limit and threads begin scanning

and evicting not only old versions, but also whole record

information for cold records.

Overall, garbage collection operations grows to consume about 4%

in total of the 16 hardware threads dedicated to running transactions

while holding MVCC table size steady. Steady state transaction

throughput drops by about 20% from 1.6 down to 1.3 million

transactions per second.

The impact of MVCC table garbage collection on CPU utilization

and transaction throughput is highly (and non-linearly) dependent

on the choice of thresholds and the working set size of the

workload. Higher limits defer garbage collection longer, making it

more likely garbage collection will be able to reclaim space quickly

without needing to pace normal operations. On this workload, for

example, a 1 GB hard limit only decreases performance to

1.0 million transactions per second, but garbage collection

operations continuously consume 50% of the TC CPU’s socket.

In the future, automatically setting the soft and hard limits will be

important for real-world deployment. MVCC table space competes

for DRAM with other applications as well as in-memory log buffer

and read cache space, which can be used to reduce version access

latency. One idea is to create a feedback loop that increases the

limits when transaction throughput is suffering and cycles spent in

garbage collection is high and tightens limits when cache misses

appear to be limiting performance.

6.6 Performance Impact of Checkpointing
Periodically, the TC induces a DC checkpoint operation to ensure

that the DC has durably written all applied operations up to some

LSN. The TC uses this so that it can truncate the recovery log and

bound recovery time. To enable this, the TC Proxy tracks the lowest

LSN such that all prior operations are applied at the DC. It sends

this to the DC occasionally as a Deuteronomy “end of stable log”

(EOSL) control operation that permits the DC to make stable

operations with lower LSNs.

From time to time, the TC Proxy executes a Deuteronomy “redo

scan start point” (RSSP) operation to request a checkpoint that

forces the DC to make stable all operations up to and including the

RSSP LSN stable. After the checkpoint completes, the TC is free to

truncate the recovery log up to the RSSP LSN; the log earlier than

RSSP only contains operations whose transaction outcome is

known and, if committed, the operations have been applied stably

at the DC. In our experiments, the DC completes a checkpoint about

every 45 seconds; this also serves as a rough bound on recovery

time.

Figure 8: Cumulative distribution of TC and DC operation latencies. The mean of each set of samples is shown as a point. The

right graph represents the same data against a log scale to highlight tail latency. The stair step effect in the left graph and on the

left side of the right graph are due to low clock resolution (about 400 ns) rather than a low number of samples.

Checkpointing runs on a single thread bound to the same socket as

the TC Proxy and DC. Overall, it doesn’t have a statistically

significant impact on performance except under heavy write loads

(it contends for storage bandwidth). However, even for a 100%

write workload throughput only decreases by 8%.

All experiments in this paper include checkpointing overhead

except for Figure 9, where the attempt is to isolate MVCC garbage

collection overhead (though, even for that figure checkpointing

made no measurable difference).

7. RELATED WORK
Database kernel architecture. The database kernel has

traditionally been treated as a monolithic module, intertwining

transactional concurrency control with data caching and

storage [4]. Our work shows that great performance is possible

when decomposing a database kernel into a transactional

component (for concurrency control and recovery) and data

component (for data storage).

High performance transactional and storage engines. There has

been a flurry of research and development of novel main-memory

database systems. Examples include Hyper [6],

H-Store/VoltDB [5, 24], Microsoft Hekaton [2], Oracle

TimesTen [7], IBM SolidDB [15], and SAP HANA [9].

MICA [14], Masstree [18], and RAMCloud [25] are fast main-

memory key value storage engines. As key-value stores, these

engines could be made to work as a DC in the Deuteronomy

architecture akin to the Bw-tree. Silo [27] is a main-memory

database built atop Masstree. The Silo design follows a traditional

monolithic architecture that couples concurrency control with

access methods. In contrast, Deuteronomy decouples transactional

concurrency control from data storage while providing comparable

performance for working sets that fit in memory. Nonetheless, in

contrast to the aforementioned systems, Deuteronomy is not a

main-memory transactional engine where all records are assumed

to “live” in memory. Rather, data lives on secondary storage and is

only cached in main memory.

Concurrency control. Classic database architectures use a

pessimistic concurrency control scheme based on locking [3].

Recently a number of optimistic concurrency control schemes have

been revisited in the context of main-memory optimized systems.

Hekaton uses an optimistic multi-versioned concurrency control

technique [8]. H-Store/VoltDB uses a partitioned model where all

threads execute serially on a partition. HyPer has evaluated the use

of timestamp ordering (TO) [10, 21].

Our TC design uses TO as its concurrency control scheme. Our

architecture stores record TO entries in memory. However, these

TO entries may reference record versions on secondary storage

(either the redo log or in the DC).

Recovery. Most classically architected databases model recovery

on the ARIES protocol [22]. However, most high-performance

transactions engines diverge from ARIES. For example, Hekaton

logs updates and rebuilds in memory tables from scratch after a

crash. VoltDB recovers by using coarse-grained command logging

and replays transactions from a consistent checkpoint [19]. Our

recovery scheme also diverges from traditional ARIES recovery.

We use logical redo-only logging and only apply committed record

updates at the DC.

Log structuring. We make heavy use of log structured storage

techniques throughput the TC similar to those first proposed for use

in file systems [24]. Our TC performs log-structured cleaning of in-

memory redo log buffers. The TC read cache is also log structured

even though it resides entirely in memory; this allows fast

allocation and efficient space utilization. Similar benefits were

observed with RAMCloud’s in memory logging [25]. As

mentioned earlier, MICA caches in a log-structured ring with many

similarities [14]. In previous work we described our log-structured

storage techniques used in our DC implementation [12, 13] that

reduce write amplification by writing deltas instead of whole pages.

8. DISCUSSION

8.1 Status of Prototype
We planned a staged implementation of for our new transactional

component. Our first focus, and what we report on in this paper, is

to provide transactional support for the usual key-value store

CRUD operations. Our goal was to provide 100× the performance

of our original TC. We have succeeded in this, even while providing

full transactional durability.

Part of this performance is due to the data component we are using,

which is based on the Bw-tree and LLAMA that together provide

an atomic record store. This atomic record store is a product quality

implementation that is being used currently in a number of

Microsoft products.

Figure 9: MVCC version garbage collection slows steady-

state transaction throughput by about 20%. The top graph

shows TC transaction throughput. The middle shows MVCC

table size relative to its soft and hard garbage collection

watermarks. The bottom shows CPU utilization due to

MVCC table garbage collection.

8.2 Limitations and Plans
We have focused on serializable transactions for our TC

implementation. And, for the set of operations supported, that is

what we implement. However, we do not yet support transactional

key range operations. This support is needed to fully realize our

serializability goal, and we are in the midst of implementing this

capability.

A number of experimental results over different workload mixes

reinforces our belief that we need to augment timestamp order

concurrency control. We expect that this will (at least some of the

time) require commit time validation. But we worry about

transactions with higher latency, especially in a high contention

setting. Our expectation is that this enhancement will enable many

transactions that currently might abort using pure timestamp order

concurrency control to successfully commit.

Both of these work items will add overhead to TC execution paths,

and, as always, our goal will be to minimize this so as to achieve

very high performance. We have high confidence that overhead for

both these capabilities can be offset by further tuning of our existing

code paths, and/or more astute thread management.

8.3 Conclusions
We believe the importance of the work reported here is that it points

to new ways of realizing stateful transactional resource managers.

The Deuteronomy architectural framework enables such resource

managers to be composed with reusable components, each

component providing useful functionality in and of itself. Our

latch-free and log structured implementation approach enables the

construction of these components with very high performance. This

combination of architectural flexibility and great performance has

already found a warm reception within Microsoft products. Our

Deuteronomy effort brings main memory database-level

performance to a system where data lives on secondary storage and

is only cached in main memory. This is a unique Deuteronomy

capability.

9. REFERENCES
[1] D. Dewitt et al. Implementation Techniques for Main Memory

Database Systems. In SIGMOD, 1984, pp. 1-8.

[2] C. Diaconu et al. Hekaton: SQL Server’s Memory-Optimized
OLTP Engine. In SIGMOD, 2013, pp. 1243-1254.

[3] J. Gray, R. A. Lorie, G. R. Putzolu, I. L. Traiger. Granularity of
Locks in a Shared Data Base. In VLDB, 1975, pp. 428-451.

[4] J. M. Hellerstein, M. Stonebraker, and J. R. Hamilton.

Architecture of a Database System. Foundations and Trends in
Databases. 1(2) pp. 141-259, 2007.

[5] R. Kallman et al. H-Store: A High-Performance, Distributed Main

Memory Transaction Processing System. PVLDB 1(2): 1496-

1499, 2008.

[6] A. Kemper and T. Neumann. HyPer: A Hybrid OLTP&OLAP
Main Memory Database System based on Virtual Memory

Snapshots. In ICDE, 2011, pp. 195-206.

[7] T. Lahiri, M-A. Neimat, S. Folkman. Oracle TimesTen: An In-
Memory Database for Enterprise Applications. IEEE Data Eng.

Bulletin 36(2): 6-13, 2013.

[8] P-A Larson et al: High-Performance Concurrency Control
Mechanisms for Main-Memory Databases. PVLDB 5(4): 298-

309, 2011.

[9] J. Lee et al. High-Performance Transaction Processing in SAP
HANA. Data Eng. Bulletin 36(2): 28-33, 2013.

[10] V. Leis, A. Kemper, and T. Neumann. Exploiting Hardware

Transactional Memory in Main-Memory Databases. In ICDE,

2014, pp. 580-591.

[11] J. Levandoski, D. Lomet, M. Mokbel, and K. Zhao. Deuteronomy:
Transaction Support for Cloud Data. In CIDR, 2011, pp. 123–133.

[12] J. Levandoski, D. Lomet, S. Sengupta. LLAMA: A Cache/Storage
Subsystem for Modern Hardware. PVLDB 6(10): 877-888, 2013.

[13] J. Levandoski, D. Lomet, and S. Sengupta. The Bw-Tree: A B-tree

for New Hardware Platforms. In ICDE 2013: 302-313.

[14] H. Lim, D. Han, D. G. Andersen, M. Kaminsky. MICA: A Holistic
Approach to Fast In-Memory Key-Value Stroage. In NSDI, 2014,

pp. 429-444.

[15] J. Lindström et al. IBM solidDB: In-Memory Database Optimized
for Extreme Speed and Availability. IEEE Data Eng. Bulletin

36(2): 14-20, 2013.

[16] D. Lomet, A. Fekete, R. Wang, and P. Ward. Multi-Version

Concurrency via Timestamp Range Conflict Management. In

ICDE, 2012, pp. 714-725.

[17] D. Lomet, A. Fekete, G. Weikum, M. Zwilling. Unbundling

Transaction Services in the Cloud. In CIDR, 2009: 123–133.

[18] Y. Mao, E. Kohler, R. T. Morris. Cache Craftiness for Fast
Multicore Key-Value Storage. In EuroSys, 2012, pp. 183-196.

[19] N. Malviya, A. Weisberg, S. Madden, and M. Stonebraker.
Rethinking Main Memory OLTP Recovery. In ICDE, 2014, pp.

604-615.

[20] M. Michael. Scalable Lock-Free Dynamic Memory Allocation. In

PLDI, 2004, pp. 35-46.

[21] H. Mühe, S. Wolf, A. Kemper, and T. Neumann: An Evaluation of
Strict Timestamp Ordering Concurrency Control for Main-

Memory Database Systems. In IMDM Workshop, 2013, 74-85.

[22] C. Mohan, et al. ARIES: A Transaction Recovery Method
Supporting Fine-Granularity Locking and Partial Rollbacks Using

Write-Ahead Logging. ACM TODS 17(1): 94-162, 1992.

[23] D. P. Reed. Naming and Synchronization in a Decentralized
Computer System. Ph.D. dissertations, Dept. or Electrical

Engineering, M.I.T., Cambridge, MA, Sept. 1978.

[24] M. Rosenblum and J. Ousterhout. The Design and Implementation
of a Log-Structured File System. ACM TOCS 10(1): 26–52, 1992.

[25] S. M. Rumble, A. Kejriwal, and J. Ousterhout. Log-structured

memory for DRAM-based storage. In FAST, 2014, pp. 1-16.

[26] M. Stonebraker and A. Weisberg. The VoltDB Main Memory
DBMS. IEEE Data Eng. Bulletin 36(2): 21-27, 2013.

[27] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden. Speedy

Transactions in Multicore In-Memory Databases. In SOSP, 2013,
pp. 18-32.

[28] W. Zheng, S. Tu, E. Kohler, and B. Liskov. Fast Databases with

Fast Durability and Recovery through Multicore Parallelism. In

OSDI, 2014, pp. 465-478.

[29] Microsoft Azure DocumentDB:
http://www.documentdb.com

