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Background

Code Generation / Transpilation

JIT Compilation (LLVM)

Real-world Implementations
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HEKATON REMARK

After switching to an in-memory DBMS, the only 
way to increase throughput is to reduce the 
number of instructions executed.
→ To go 10x faster, the DBMS must execute 90% fewer 

instructions…
→ To go 100x faster, the DBMS must execute 99% fewer 

instructions…
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COMPILATION IN THE MICROSOFT SQL 
SERVER HEKATON ENGINE
IEEE Data Engineering Bulletin 2011
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OBSERVATION

One way to achieve such a reduction in 
instructions is through code specialization.

This means generating code that is specific to a 
particular task in the DBMS.

Most code is written to make it easy for humans to 
understand rather than performance…
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EXAMPLE DATABASE
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CREATE TABLE A (
id INT PRIMARY KEY,
val INT

);

CREATE TABLE B (
id INT PRIMARY KEY,
val INT

);

CREATE TABLE C (
a_id INT REFERENCES A(id),
b_id INT REFERENCES B(id),
PRIMARY KEY (a_id, b_id)

);

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
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QUERY PROCESSING
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Tuple-at-a-time
→ Each operator calls next on their child to get 

the next tuple to process.

Operator-at-a-time
→ Each operator materializes their entire output 

for their parent operator.

Vector-at-a-time
→ Each operator calls next on their child to get 

the next chunk of data to process.

SELECT A.id, B.val
FROM A, B
WHERE A.id = B.id
AND B.val > 100

A B

A.id=B.id

val>100

A.id, B.val

⨝
s

p
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QUERY INTERPRETATION
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SELECT *
FROM A, C, 
(SELECT B.id, COUNT(*)

FROM B
WHERE B.val = ? + 1
GROUP BY B.id) AS B

WHERE A.val = 123 
AND A.id = C.a_id
AND B.id = C.b_id

⨝A.id=C.a_id

σA.val=123

A

⨝B.id=C.b_id

ΓB.id, COUNT(*)

σB.val=?+1

B C

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
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QUERY INTERPRETATION
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SELECT *
FROM A, C, 
(SELECT B.id, COUNT(*)

FROM B
WHERE B.val = ? + 1
GROUP BY B.id) AS B

WHERE A.val = 123 
AND A.id = C.a_id
AND B.id = C.b_id

⨝A.id=C.a_id

σA.val=123

A

⨝B.id=C.b_id

ΓB.id, COUNT(*)

σB.val=?+1

B C

⨝
for t1 in left.next():

buildHashTable(t1)
for t2 in right.next():

if probe(t2): emit(t1⨝t2)

for t in child.next():
if evalPred(t): emit(t)σ ⨝

for t1 in left.next():
buildHashTable(t1)

for t2 in right.next():
if probe(t2): emit(t1⨝t2)

for t in A:
emit(t)A

for t in B:
emit(t)B for t in C:

emit(t)C

for t in child.next():
if evalPred(t): emit(t)σ

Γ
for t in child.next():
buildAggregateTable(t)

for t in aggregateTable:
emit(t)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
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Execution Context

PREDICATE INTERPRETATION
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SELECT *
FROM A, C, 
(SELECT B.id, COUNT(*)

FROM B
WHERE B.val = ? + 1
GROUP BY B.id) AS B

WHERE A.val = 123 
AND A.id = C.a_id
AND B.id = C.b_id

Current Tuple
(123, 1000)

Query Parameters
(int:999)

Table Schema
B→(int:id, int:val)

TupleAttribute(B.val)

Constant(1)

=

+

Parameter(0)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
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1000

Execution Context

PREDICATE INTERPRETATION
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SELECT *
FROM A, C, 
(SELECT B.id, COUNT(*)

FROM B
WHERE B.val = ? + 1
GROUP BY B.id) AS B

WHERE A.val = 123 
AND A.id = C.a_id
AND B.id = C.b_id

Current Tuple
(123, 1000)

Query Parameters
(int:999)

Table Schema
B→(int:id, int:val)

TupleAttribute(B.val)

Constant(1)

=

+

Parameter(0)
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1000

999

Execution Context

PREDICATE INTERPRETATION
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SELECT *
FROM A, C, 
(SELECT B.id, COUNT(*)

FROM B
WHERE B.val = ? + 1
GROUP BY B.id) AS B

WHERE A.val = 123 
AND A.id = C.a_id
AND B.id = C.b_id

Current Tuple
(123, 1000)

Query Parameters
(int:999)

Table Schema
B→(int:id, int:val)

TupleAttribute(B.val)

Constant(1)

=

+

Parameter(0)
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SELECT *
FROM A, C, 
(SELECT B.id, COUNT(*)

FROM B
WHERE B.val = ? + 1
GROUP BY B.id) AS B

WHERE A.val = 123 
AND A.id = C.a_id
AND B.id = C.b_id

Current Tuple
(123, 1000)

Query Parameters
(int:999)

Table Schema
B→(int:id, int:val)

TupleAttribute(B.val)

Constant(1)

=

+

Parameter(0)
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1000

999 1
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1000

Execution Context

PREDICATE INTERPRETATION
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SELECT *
FROM A, C, 
(SELECT B.id, COUNT(*)

FROM B
WHERE B.val = ? + 1
GROUP BY B.id) AS B

WHERE A.val = 123 
AND A.id = C.a_id
AND B.id = C.b_id

Current Tuple
(123, 1000)

Query Parameters
(int:999)

Table Schema
B→(int:id, int:val)

TupleAttribute(B.val)

Constant(1)

=

+

Parameter(0)
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CODE SPECIALIZATION

Any CPU intensive entity of database can be 
natively compiled if they have a similar execution 
pattern on different inputs. 
→ Access Methods
→ Stored Procedures
→ Operator Execution
→ Predicate Evaluation
→ Logging Operations

9
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BENEFITS

Attribute types are known a priori.
→ Data access function calls can be converted to inline 

pointer casting.

Predicates are known a priori.
→ They can be evaluated using primitive data comparisons.

No function calls in loops
→ Allows the compiler to efficiently distribute data to 

registers and increase cache reuse.

10
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ARCHITECTURE OVERVIEW

11

SQL Query

Parser
Abstract

Syntax
Tree

Physical 
Plan

Cost
Estimates

System
Catalog

Binder

Optimizer
Annotated 

AST

Native Code

Compiler

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
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CODE GENERATION

Approach #1: Transpilation
→ Write code that converts a relational query plan into 

C/C++ and then run it through a conventional compiler 
to generate native code.

Approach #2: JIT Compilation
→ Generate an intermediate representation (IR) of the query 

that can be quickly compiled into native code .

12
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HIQUE CODE GENERATION

For a given query plan, create a C/C++ program 
that implements that query’s execution.
→ Bake in all the predicates and type conversions.

Use an off-shelf compiler to convert the code into 
a shared object, link it to the DBMS process, and 
then invoke the exec function.

13

GENERATING CODE FOR HOLISTIC QUERY 
EVALUATION
ICDE 2010

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2018/papers/03-compilation/krikellas-icde2010.pdf
http://15721.courses.cs.cmu.edu/spring2018/papers/03-compilation/krikellas-icde2010.pdf
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OPERATOR TEMPL ATES

14

SELECT * FROM A WHERE A.val = ? + 1

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
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Interpreted Plan

OPERATOR TEMPL ATES

14

for t in range(table.num_tuples):
tuple = get_tuple(table, t)
if eval(predicate, tuple, params):

emit(tuple)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

Interpreted Plan

OPERATOR TEMPL ATES

14

for t in range(table.num_tuples):
tuple = get_tuple(table, t)
if eval(predicate, tuple, params):

emit(tuple)

1. Get schema in catalog for table.
2. Calculate offset based on tuple size.
3. Return pointer to tuple.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
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Interpreted Plan

OPERATOR TEMPL ATES

14

for t in range(table.num_tuples):
tuple = get_tuple(table, t)
if eval(predicate, tuple, params):

emit(tuple)

1. Get schema in catalog for table.
2. Calculate offset based on tuple size.
3. Return pointer to tuple.

1. Traverse predicate tree and pull values up.
2. If tuple value, calculate the offset of the target 

attribute.
3. Perform casting as needed for comparison operators.
4. Return true / false.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
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Templated PlanInterpreted Plan

OPERATOR TEMPL ATES

14

tuple_size = ###
predicate_offset = ###
parameter_value = ###

for t in range(table.num_tuples):
tuple = table.data + t ∗ tuple_size
val = (tuple+predicate_offset) + 1
if (val == parameter_value):

emit(tuple)

for t in range(table.num_tuples):
tuple = get_tuple(table, t)
if eval(predicate, tuple, params):

emit(tuple)

1. Get schema in catalog for table.
2. Calculate offset based on tuple size.
3. Return pointer to tuple.

1. Traverse predicate tree and pull values up.
2. If tuple value, calculate the offset of the target 

attribute.
3. Perform casting as needed for comparison operators.
4. Return true / false.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
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Templated PlanInterpreted Plan

OPERATOR TEMPL ATES

14

tuple_size = ###
predicate_offset = ###
parameter_value = ###
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if (val == parameter_value):

emit(tuple)

for t in range(table.num_tuples):
tuple = get_tuple(table, t)
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emit(tuple)

1. Get schema in catalog for table.
2. Calculate offset based on tuple size.
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1. Traverse predicate tree and pull values up.
2. If tuple value, calculate the offset of the target 

attribute.
3. Perform casting as needed for comparison operators.
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Templated PlanInterpreted Plan

OPERATOR TEMPL ATES

14
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2. If tuple value, calculate the offset of the target 

attribute.
3. Perform casting as needed for comparison operators.
4. Return true / false.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

DBMS INTEGRATION

The generated query code can invoke any other 
function in the DBMS.

This allows it to use all the same components as 
interpreted queries.
→ Concurrency Control
→ Logging / Checkpoints
→ Indexes

15
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EVALUATION

Generic Iterators
→ Canonical model with generic predicate evaluation.

Optimized Iterators
→ Type-specific iterators with inline predicates.

Generic Hardcoded
→ Handwritten code with generic iterators/predicates.

Optimized Hardcoded
→ Direct tuple access with pointer arithmetic.

HIQUE
→ Query-specific specialized code.

16
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QUERY COMPIL ATION EVALUATION
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QUERY COMPIL ATION COST
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OBSERVATION

Relational operators are a useful way to reason 
about a query but are not the most efficient way to 
execute it.

It takes a (relatively) long time to compile a 
C/C++ source file into executable code.

HIQUE does not allow for full pipelining…

19
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PIPELINED OPERATORS

20

SELECT *
FROM A, C, 
(SELECT B.id, COUNT(*)

FROM B
WHERE B.val = ? + 1
GROUP BY B.id) AS B

WHERE A.val = 123 
AND A.id = C.a_id
AND B.id = C.b_id

⨝A.id=C.a_id

σA.val=123

A

⨝B.id=C.b_id

ΓB.id,COUNT(*)

σB.val=?+1

B C

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
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PIPELINED OPERATORS

20

SELECT *
FROM A, C, 
(SELECT B.id, COUNT(*)

FROM B
WHERE B.val = ? + 1
GROUP BY B.id) AS B

WHERE A.val = 123 
AND A.id = C.a_id
AND B.id = C.b_id

⨝A.id=C.a_id

σA.val=123

A

⨝B.id=C.b_id

ΓB.id,COUNT(*)

σB.val=?+1

B C

Pipeline Boundaries #1

#4

#2

#3

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
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HYPER JIT  QUERY COMPIL ATION

Compile queries in-memory into native code using 
the LLVM toolkit.

Organizes query processing in a way to keep a 
tuple in CPU registers for as long as possible.
→ Push-based vs. Pull-based
→ Data Centric vs. Operator Centric

21

EFFICIENTLY COMPILING EFFICIENT QUERY 
PLANS FOR MODERN HARDWARE
VLDB 2011

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2018/papers/03-compilation/p539-neumann.pdf
http://15721.courses.cs.cmu.edu/spring2018/papers/03-compilation/p539-neumann.pdf
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LLVM

Collection of modular and reusable compiler and 
toolchain technologies.

Core component is a low-level programming 
language (IR) that is similar to assembly.

Not all of the DBMS components need to be 
written in LLVM IR.
→ LLVM code can make calls to C++ code.

22

http://db.cs.cmu.edu/
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PUSH-BASED EXECUTION

23

SELECT *
FROM A, C, 
(SELECT B.id, COUNT(*)

FROM B
WHERE B.val = ? + 1
GROUP BY B.id) AS B

WHERE A.val = 123 
AND A.id = C.a_id
AND B.id = C.b_id

Generated Query Plan

for t in A:
if t.val == 123:

Materialize t in HashTable ⨝(A.id=C.a_id)

for t in B:
if t.val == <param> + 1:

Aggregate t in HashTable Γ(B.id)

for t in Γ(B.id):
Materialize t in HashTable ⨝(B.id=C.b_id)

for t3 in C:
for t2 in ⨝(B.id=C.b_id):

for t1 in ⨝(A.id=C.a_id):
emit(t1⨝t2⨝t3)

#1

#4

#2

#3

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
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QUERY COMPIL ATION EVALUATION
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QUERY COMPIL ATION COST
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QUERY COMPIL ATION COST

LLVM's compilation time grows super-linearl
relative to the query size.
→ # of joins
→ # of predicates
→ # of aggregations

Not a big issue with OLTP applications.

Major problem with OLAP workloads.

26
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HYPER ADAPTIVE EXECUTION

First generate the LLVM IR for the query.

Then execute that IR in an interpreter.

Compile the query in the background.

When the compiled query is ready, seamlessly 
replace the interpretive execution.

27

ADAPTIVE EXECUTION OF COMPILED QUERIES
ICDE 2018

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2018/papers/03-compilation/kohn-icde2018.pdf
http://15721.courses.cs.cmu.edu/spring2018/papers/03-compilation/kohn-icde2018.pdf
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HYPER ADAPTIVE EXECUTION

28
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(0.2 ms)
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Code Generator
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Query Plan
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Byte Code 
Compiler
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LLVM Compiler
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REAL-WORLD IMPLEMENTATIONS

IBM System R

Oracle

Microsoft Hekaton

Cloudera Impala

Actian Vector

29

MemSQL

VitesseDB

Apache Spark

Peloton

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
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IBM SYSTEM R

A primitive form of code generation and query 
compilation was used by IBM in 1970s.
→ Compiled SQL statements into assembly code by 

selecting code templates for each operator.

Technique was abandoned when IBM built DB2:
→ High cost of external function calls
→ Poor portability
→ Software engineer complications

30

A HISTORY AND EVALUATION OF SYSTEM R
COMMUNICATIONS OF THE ACM 1981

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=358784
http://dl.acm.org/citation.cfm?id=358784
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ORACLE

Convert PL/SQL stored procedures into Pro*C 
code and then compiled into native C/C++ code.

They also put Oracle-specific operations directly
in the SPARC chips as co-processors.
→ Memory Scans
→ Bit-pattern Dictionary Compression
→ Vectorized instructions designed for DBMSs
→ Security/encryption

31

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

MICROSOFT HEKATON

Can compile both procedures and SQL.
→ Non-Hekaton queries can access Hekaton tables through 

compiled inter-operators.

Generates C code from an imperative syntax tree, 
compiles it into DLL, and links at runtime.

Employs safety measures to prevent somebody 
from injecting malicious code in a query.

32

COMPILATION IN THE MICROSOFT SQL 
SERVER HEKATON ENGINE
IEEE DATA ENGINEERING BULLETIN 2011

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2018/papers/03-compilation/freedman-ieee2014.pdf
http://15721.courses.cs.cmu.edu/spring2018/papers/03-compilation/freedman-ieee2014.pdf
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CLOUDERA IMPAL A

LLVM JIT compilation for predicate evaluation 
and record parsing.
→ Not sure if they are also doing operator compilation.

Optimized record parsing is important for Impala 
because they need to handle multiple data formats 
stored on HDFS.

33

IMPALA: A MODERN, OPEN-SOURCE SQL 
ENGINE FOR HADOOP
CIDR 2015

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://www.cidrdb.org/cidr2015/Papers/CIDR15_Paper28.pdf
http://www.cidrdb.org/cidr2015/Papers/CIDR15_Paper28.pdf
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ACTIAN VECTOR

Pre-compiles thousands of “primitives” that 
perform basic operations on typed data.
→ Example: Generate a vector of tuple ids by applying a less 

than operator on some column of a particular type.

The DBMS then executes a query plan that 
invokes these primitives at runtime.
→ Function calls are amortized over multiple tuples

34

MICRO ADAPTIVITY IN VECTORWISE
SIGMOD 2013

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=2465292
http://dl.acm.org/citation.cfm?id=2465292
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ACTIAN VECTOR

Pre-compiles thousands of “primitives” that 
perform basic operations on typed data.
→ Example: Generate a vector of tuple ids by applying a less 

than operator on some column of a particular type.

The DBMS then executes a query plan that 
invokes these primitives at runtime.
→ Function calls are amortized over multiple tuples

34

MICRO ADAPTIVITY IN VECTORWISE
SIGMOD 2013

size_t scan_lessthan_int32(int *res, int32_t *col, int32_t val) {
size_t k = 0;
for (size_t i = 0; i < n; i++)

if (col[i] < val) res[k++] = i;
return (k);

}

size_t scan_lessthan_double(int *res, int32_t *col, double val) {
size_t k = 0;
for (size_t i = 0; i < n; i++)

if (col[i] < val) res[k++] = i;
return (k);

}

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=2465292
http://dl.acm.org/citation.cfm?id=2465292
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MEMSQL (PRE 2016)

Performs the same C/C++ code generation as 
HIQUE and then invokes gcc.

Converts all queries into a parameterized form and 
caches the compiled query plan.

35

SELECT * FROM A 
WHERE A.id = ?

SELECT * FROM A 
WHERE A.id = 123

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
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MEMSQL (PRE 2016)

Performs the same C/C++ code generation as 
HIQUE and then invokes gcc.

Converts all queries into a parameterized form and 
caches the compiled query plan.

35

SELECT * FROM A 
WHERE A.id = ?

SELECT * FROM A 
WHERE A.id = 123

SELECT * FROM A 
WHERE A.id = 456

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
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MEMSQL (2016 PRESENT )

A query plan is converted into an imperative plan 
expressed in a high-level imperative DSL.
→ MemSQL Programming Language (MPL)
→ Think of this as a C++ dialect.

The DSL then gets converted into a second 
language of opcodes.
→ MemSQL Bit Code (MBC)
→ Think of this as JVM byte code.

Finally the DBMS compiles the opcodes into 
LLVM IR and then to native code.

36

Source: Drew Paroski

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://highscalability.com/blog/2016/9/7/code-generation-the-inner-sanctum-of-database-performance.html
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VITESSEDB

Query accelerator for Postgres/Greenplum that 
uses LLVM + intra-query parallelism.
→ JIT predicates
→ Push-based processing model
→ Indirect calls become direct or inlined.
→ Leverages hardware for overflow detection.

Does not support all of Postgres’ types and 
functionalities. All DML operations are still 
interpreted.

37

Source: CK Tan

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.youtube.com/watch?v=PEmVuYjhQFo
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APACHE SPARK

Introduced in the new Tungsten engine in 2015.

The system converts a query's WHERE clause 
expression trees into ASTs.

It then compiles these ASTs to generate JVM 
bytecode, which is then executed natively.

38

SPARK SQL: RELATIONAL DATA PROCESSING 
IN SPARK
SIGMOD 2015

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://dl.acm.org/citation.cfm?id=2742797
https://dl.acm.org/citation.cfm?id=2742797


CMU 15-721 (Spring 2018)

PELOTON

Full compilation of the entire query plan.

Relax the pipeline breakers of HyPer to create 
mini-batches for operators that can be vectorized.

Use software pre-fetching to hide memory stalls.

39

RELAXED OPERATOR FUSION FOR IN-MEMORY DATABASES: MAKING 
COMPILATION, VECTORIZATION, AND PREFETCHING WORK TOGETHER AT LAST
VLDB 2017

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2018/papers/22-vectorization2/menon-vldb2017.pdf
http://15721.courses.cs.cmu.edu/spring2018/papers/22-vectorization2/menon-vldb2017.pdf
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PELOTON
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http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
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PARTING THOUGHTS

Query compilation makes a difference but is non-
trivial to implement.

The 2016 version of MemSQL is the best query 
compilation implementation out there.
Hekaton is very good too.

Any new DBMS that wants to compete has to 
implement query compilation.

41

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/


CMU 15-721 (Spring 2018)

NEXT CL ASS

Concurrency Control

42

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

