
Query Compilation

@Andy_Pavlo // 15-721 // Spring 2018

ADVANCED
DATABASE
SYSTEMS

L
e

c
tu

re
 #

0
3

https://twitter.com/andy_pavlo
http://15721.courses.cs.cmu.edu/spring2018/
http://db.cs.cmu.edu/

CMU 15-721 (Spring 2018)

Background

Code Generation / Transpilation

JIT Compilation (LLVM)

Real-world Implementations

2

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

HEKATON REMARK

After switching to an in-memory DBMS, the only
way to increase throughput is to reduce the
number of instructions executed.
→ To go 10x faster, the DBMS must execute 90% fewer

instructions…
→ To go 100x faster, the DBMS must execute 99% fewer

instructions…

3

COMPILATION IN THE MICROSOFT SQL
SERVER HEKATON ENGINE
IEEE Data Engineering Bulletin 2011

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2018/papers/03-compilation/freedman-ieee2014.pdf
http://15721.courses.cs.cmu.edu/spring2018/papers/03-compilation/freedman-ieee2014.pdf

CMU 15-721 (Spring 2018)

OBSERVATION

One way to achieve such a reduction in
instructions is through code specialization.

This means generating code that is specific to a
particular task in the DBMS.

Most code is written to make it easy for humans to
understand rather than performance…

4

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

EXAMPLE DATABASE

5

CREATE TABLE A (
id INT PRIMARY KEY,
val INT

);

CREATE TABLE B (
id INT PRIMARY KEY,
val INT

);

CREATE TABLE C (
a_id INT REFERENCES A(id),
b_id INT REFERENCES B(id),
PRIMARY KEY (a_id, b_id)

);

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

QUERY PROCESSING

6

Tuple-at-a-time
→ Each operator calls next on their child to get

the next tuple to process.

Operator-at-a-time
→ Each operator materializes their entire output

for their parent operator.

Vector-at-a-time
→ Each operator calls next on their child to get

the next chunk of data to process.

SELECT A.id, B.val
FROM A, B
WHERE A.id = B.id
AND B.val > 100

A B

A.id=B.id

val>100

A.id, B.val

⨝
s

p

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

QUERY INTERPRETATION

7

SELECT *
FROM A, C,
(SELECT B.id, COUNT(*)

FROM B
WHERE B.val = ? + 1
GROUP BY B.id) AS B

WHERE A.val = 123
AND A.id = C.a_id
AND B.id = C.b_id

⨝A.id=C.a_id

σA.val=123

A

⨝B.id=C.b_id

ΓB.id, COUNT(*)

σB.val=?+1

B C

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

QUERY INTERPRETATION

7

SELECT *
FROM A, C,
(SELECT B.id, COUNT(*)

FROM B
WHERE B.val = ? + 1
GROUP BY B.id) AS B

WHERE A.val = 123
AND A.id = C.a_id
AND B.id = C.b_id

⨝A.id=C.a_id

σA.val=123

A

⨝B.id=C.b_id

ΓB.id, COUNT(*)

σB.val=?+1

B C

⨝
for t1 in left.next():

buildHashTable(t1)
for t2 in right.next():

if probe(t2): emit(t1⨝t2)

for t in child.next():
if evalPred(t): emit(t)σ ⨝

for t1 in left.next():
buildHashTable(t1)

for t2 in right.next():
if probe(t2): emit(t1⨝t2)

for t in A:
emit(t)A

for t in B:
emit(t)B for t in C:

emit(t)C

for t in child.next():
if evalPred(t): emit(t)σ

Γ
for t in child.next():
buildAggregateTable(t)

for t in aggregateTable:
emit(t)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

Execution Context

PREDICATE INTERPRETATION

8

SELECT *
FROM A, C,
(SELECT B.id, COUNT(*)

FROM B
WHERE B.val = ? + 1
GROUP BY B.id) AS B

WHERE A.val = 123
AND A.id = C.a_id
AND B.id = C.b_id

Current Tuple
(123, 1000)

Query Parameters
(int:999)

Table Schema
B→(int:id, int:val)

TupleAttribute(B.val)

Constant(1)

=

+

Parameter(0)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

1000

Execution Context

PREDICATE INTERPRETATION

8

SELECT *
FROM A, C,
(SELECT B.id, COUNT(*)

FROM B
WHERE B.val = ? + 1
GROUP BY B.id) AS B

WHERE A.val = 123
AND A.id = C.a_id
AND B.id = C.b_id

Current Tuple
(123, 1000)

Query Parameters
(int:999)

Table Schema
B→(int:id, int:val)

TupleAttribute(B.val)

Constant(1)

=

+

Parameter(0)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

1000

999

Execution Context

PREDICATE INTERPRETATION

8

SELECT *
FROM A, C,
(SELECT B.id, COUNT(*)

FROM B
WHERE B.val = ? + 1
GROUP BY B.id) AS B

WHERE A.val = 123
AND A.id = C.a_id
AND B.id = C.b_id

Current Tuple
(123, 1000)

Query Parameters
(int:999)

Table Schema
B→(int:id, int:val)

TupleAttribute(B.val)

Constant(1)

=

+

Parameter(0)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

1000

999 1

Execution Context

PREDICATE INTERPRETATION

8

SELECT *
FROM A, C,
(SELECT B.id, COUNT(*)

FROM B
WHERE B.val = ? + 1
GROUP BY B.id) AS B

WHERE A.val = 123
AND A.id = C.a_id
AND B.id = C.b_id

Current Tuple
(123, 1000)

Query Parameters
(int:999)

Table Schema
B→(int:id, int:val)

TupleAttribute(B.val)

Constant(1)

=

+

Parameter(0)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

1000

999 1

true

1000

Execution Context

PREDICATE INTERPRETATION

8

SELECT *
FROM A, C,
(SELECT B.id, COUNT(*)

FROM B
WHERE B.val = ? + 1
GROUP BY B.id) AS B

WHERE A.val = 123
AND A.id = C.a_id
AND B.id = C.b_id

Current Tuple
(123, 1000)

Query Parameters
(int:999)

Table Schema
B→(int:id, int:val)

TupleAttribute(B.val)

Constant(1)

=

+

Parameter(0)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

CODE SPECIALIZATION

Any CPU intensive entity of database can be
natively compiled if they have a similar execution
pattern on different inputs.
→ Access Methods
→ Stored Procedures
→ Operator Execution
→ Predicate Evaluation
→ Logging Operations

9

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

BENEFITS

Attribute types are known a priori.
→ Data access function calls can be converted to inline

pointer casting.

Predicates are known a priori.
→ They can be evaluated using primitive data comparisons.

No function calls in loops
→ Allows the compiler to efficiently distribute data to

registers and increase cache reuse.

10

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

ARCHITECTURE OVERVIEW

11

SQL Query

Parser
Abstract

Syntax
Tree

Physical
Plan

Cost
Estimates

System
Catalog

Binder

Optimizer
Annotated

AST

Native Code

Compiler

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

CODE GENERATION

Approach #1: Transpilation
→ Write code that converts a relational query plan into

C/C++ and then run it through a conventional compiler
to generate native code.

Approach #2: JIT Compilation
→ Generate an intermediate representation (IR) of the query

that can be quickly compiled into native code .

12

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

HIQUE CODE GENERATION

For a given query plan, create a C/C++ program
that implements that query’s execution.
→ Bake in all the predicates and type conversions.

Use an off-shelf compiler to convert the code into
a shared object, link it to the DBMS process, and
then invoke the exec function.

13

GENERATING CODE FOR HOLISTIC QUERY
EVALUATION
ICDE 2010

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2018/papers/03-compilation/krikellas-icde2010.pdf
http://15721.courses.cs.cmu.edu/spring2018/papers/03-compilation/krikellas-icde2010.pdf

CMU 15-721 (Spring 2018)

OPERATOR TEMPL ATES

14

SELECT * FROM A WHERE A.val = ? + 1

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

Interpreted Plan

OPERATOR TEMPL ATES

14

for t in range(table.num_tuples):
tuple = get_tuple(table, t)
if eval(predicate, tuple, params):

emit(tuple)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

Interpreted Plan

OPERATOR TEMPL ATES

14

for t in range(table.num_tuples):
tuple = get_tuple(table, t)
if eval(predicate, tuple, params):

emit(tuple)

1. Get schema in catalog for table.
2. Calculate offset based on tuple size.
3. Return pointer to tuple.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

Interpreted Plan

OPERATOR TEMPL ATES

14

for t in range(table.num_tuples):
tuple = get_tuple(table, t)
if eval(predicate, tuple, params):

emit(tuple)

1. Get schema in catalog for table.
2. Calculate offset based on tuple size.
3. Return pointer to tuple.

1. Traverse predicate tree and pull values up.
2. If tuple value, calculate the offset of the target

attribute.
3. Perform casting as needed for comparison operators.
4. Return true / false.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

Templated PlanInterpreted Plan

OPERATOR TEMPL ATES

14

tuple_size = ###
predicate_offset = ###
parameter_value = ###

for t in range(table.num_tuples):
tuple = table.data + t ∗ tuple_size
val = (tuple+predicate_offset) + 1
if (val == parameter_value):

emit(tuple)

for t in range(table.num_tuples):
tuple = get_tuple(table, t)
if eval(predicate, tuple, params):

emit(tuple)

1. Get schema in catalog for table.
2. Calculate offset based on tuple size.
3. Return pointer to tuple.

1. Traverse predicate tree and pull values up.
2. If tuple value, calculate the offset of the target

attribute.
3. Perform casting as needed for comparison operators.
4. Return true / false.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

Templated PlanInterpreted Plan

OPERATOR TEMPL ATES

14

tuple_size = ###
predicate_offset = ###
parameter_value = ###

for t in range(table.num_tuples):
tuple = table.data + t ∗ tuple_size
val = (tuple+predicate_offset) + 1
if (val == parameter_value):

emit(tuple)

for t in range(table.num_tuples):
tuple = get_tuple(table, t)
if eval(predicate, tuple, params):

emit(tuple)

1. Get schema in catalog for table.
2. Calculate offset based on tuple size.
3. Return pointer to tuple.

1. Traverse predicate tree and pull values up.
2. If tuple value, calculate the offset of the target

attribute.
3. Perform casting as needed for comparison operators.
4. Return true / false.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

Templated PlanInterpreted Plan

OPERATOR TEMPL ATES

14

tuple_size = ###
predicate_offset = ###
parameter_value = ###

for t in range(table.num_tuples):
tuple = table.data + t ∗ tuple_size
val = (tuple+predicate_offset) + 1
if (val == parameter_value):

emit(tuple)

for t in range(table.num_tuples):
tuple = get_tuple(table, t)
if eval(predicate, tuple, params):

emit(tuple)

1. Get schema in catalog for table.
2. Calculate offset based on tuple size.
3. Return pointer to tuple.

1. Traverse predicate tree and pull values up.
2. If tuple value, calculate the offset of the target

attribute.
3. Perform casting as needed for comparison operators.
4. Return true / false.

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

DBMS INTEGRATION

The generated query code can invoke any other
function in the DBMS.

This allows it to use all the same components as
interpreted queries.
→ Concurrency Control
→ Logging / Checkpoints
→ Indexes

15

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

EVALUATION

Generic Iterators
→ Canonical model with generic predicate evaluation.

Optimized Iterators
→ Type-specific iterators with inline predicates.

Generic Hardcoded
→ Handwritten code with generic iterators/predicates.

Optimized Hardcoded
→ Direct tuple access with pointer arithmetic.

HIQUE
→ Query-specific specialized code.

16

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

QUERY COMPIL ATION EVALUATION

17

0

50

100

150

200

250

Generic
Iterators

Optimized
Iterators

Generic
Hardcoded

Optimized
Hardcoded

HIQUE

E
xe

cu
ti

on
 T

im
e

(m
s)

L2-cache Miss Memory Stall Instruction Exec.

Intel Core 2 Duo 6300 @ 1.86GHz
Join Query: 10k⨝ 10k→10m

Source: Konstantinos Krikellas

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.linkedin.com/in/konstantinoskrikellas

CMU 15-721 (Spring 2018)

QUERY COMPIL ATION COST

18

121 160
213

274

403

619

0

200

400

600

800

Q1 Q2 Q3

C
om

pi
la

ti
on

 T
im

e
(m

s)

Compile (-O0) Compile (-O2)

Intel Core 2 Duo 6300 @ 1.86GHz
TPC-H Queries

Source: Konstantinos Krikellas

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.linkedin.com/in/konstantinoskrikellas

CMU 15-721 (Spring 2018)

OBSERVATION

Relational operators are a useful way to reason
about a query but are not the most efficient way to
execute it.

It takes a (relatively) long time to compile a
C/C++ source file into executable code.

HIQUE does not allow for full pipelining…

19

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

PIPELINED OPERATORS

20

SELECT *
FROM A, C,
(SELECT B.id, COUNT(*)

FROM B
WHERE B.val = ? + 1
GROUP BY B.id) AS B

WHERE A.val = 123
AND A.id = C.a_id
AND B.id = C.b_id

⨝A.id=C.a_id

σA.val=123

A

⨝B.id=C.b_id

ΓB.id,COUNT(*)

σB.val=?+1

B C

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

PIPELINED OPERATORS

20

SELECT *
FROM A, C,
(SELECT B.id, COUNT(*)

FROM B
WHERE B.val = ? + 1
GROUP BY B.id) AS B

WHERE A.val = 123
AND A.id = C.a_id
AND B.id = C.b_id

⨝A.id=C.a_id

σA.val=123

A

⨝B.id=C.b_id

ΓB.id,COUNT(*)

σB.val=?+1

B C

Pipeline Boundaries #1

#4

#2

#3

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

HYPER JIT QUERY COMPIL ATION

Compile queries in-memory into native code using
the LLVM toolkit.

Organizes query processing in a way to keep a
tuple in CPU registers for as long as possible.
→ Push-based vs. Pull-based
→ Data Centric vs. Operator Centric

21

EFFICIENTLY COMPILING EFFICIENT QUERY
PLANS FOR MODERN HARDWARE
VLDB 2011

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2018/papers/03-compilation/p539-neumann.pdf
http://15721.courses.cs.cmu.edu/spring2018/papers/03-compilation/p539-neumann.pdf

CMU 15-721 (Spring 2018)

LLVM

Collection of modular and reusable compiler and
toolchain technologies.

Core component is a low-level programming
language (IR) that is similar to assembly.

Not all of the DBMS components need to be
written in LLVM IR.
→ LLVM code can make calls to C++ code.

22

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

PUSH-BASED EXECUTION

23

SELECT *
FROM A, C,
(SELECT B.id, COUNT(*)

FROM B
WHERE B.val = ? + 1
GROUP BY B.id) AS B

WHERE A.val = 123
AND A.id = C.a_id
AND B.id = C.b_id

Generated Query Plan

for t in A:
if t.val == 123:

Materialize t in HashTable ⨝(A.id=C.a_id)

for t in B:
if t.val == <param> + 1:

Aggregate t in HashTable Γ(B.id)

for t in Γ(B.id):
Materialize t in HashTable ⨝(B.id=C.b_id)

for t3 in C:
for t2 in ⨝(B.id=C.b_id):

for t1 in ⨝(A.id=C.a_id):
emit(t1⨝t2⨝t3)

#1

#4

#2

#3

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

QUERY COMPIL ATION EVALUATION

24

1

10

100

1000

10000

100000

Q1 Q2 Q3 Q4 Q5

E
xe

cu
ti

on
 T

im
e

(m
s)

HyPer (LLVM) HyPer (C++) VectorWise MonetDB ???

Dual Socket Intel Xeon X5770 @ 2.93GHz
TPC-H Queries

Source: Thomas Neumann

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://sites.computer.org/debull/A14mar/p3.pdf

CMU 15-721 (Spring 2018)

QUERY COMPIL ATION COST

25

274

403

619

13 37 15
0

200

400

600

800

Query #1 Query #2 Query #3

C
om

pi
la

ti
on

 T
im

e
(m

s)

HIQUE HyPer

HIQUE (-O2) vs. HyPer
TPC-H Queries

Source: Konstantinos Krikellas

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.linkedin.com/in/konstantinoskrikellas

CMU 15-721 (Spring 2018)

QUERY COMPIL ATION COST

LLVM's compilation time grows super-linearl
relative to the query size.
→ # of joins
→ # of predicates
→ # of aggregations

Not a big issue with OLTP applications.

Major problem with OLAP workloads.

26

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

HYPER ADAPTIVE EXECUTION

First generate the LLVM IR for the query.

Then execute that IR in an interpreter.

Compile the query in the background.

When the compiled query is ready, seamlessly
replace the interpretive execution.

27

ADAPTIVE EXECUTION OF COMPILED QUERIES
ICDE 2018

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2018/papers/03-compilation/kohn-icde2018.pdf
http://15721.courses.cs.cmu.edu/spring2018/papers/03-compilation/kohn-icde2018.pdf

CMU 15-721 (Spring 2018)

HYPER ADAPTIVE EXECUTION

28

Optimizer
(0.2 ms)

Byte Code

SQL Query

Code Generator
(0.7 ms)

Query Plan

LLVM Passes
(25 ms)

Byte Code
Compiler
(0.4 ms)

Unoptimized
LLVM Compiler

(6 ms)

Optimized
LLVM Compiler

(17 ms)

LLVM IR

LLVM IR

LLVM IR

LLVM IR

x86 Code

x86 Code

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

REAL-WORLD IMPLEMENTATIONS

IBM System R

Oracle

Microsoft Hekaton

Cloudera Impala

Actian Vector

29

MemSQL

VitesseDB

Apache Spark

Peloton

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

IBM SYSTEM R

A primitive form of code generation and query
compilation was used by IBM in 1970s.
→ Compiled SQL statements into assembly code by

selecting code templates for each operator.

Technique was abandoned when IBM built DB2:
→ High cost of external function calls
→ Poor portability
→ Software engineer complications

30

A HISTORY AND EVALUATION OF SYSTEM R
COMMUNICATIONS OF THE ACM 1981

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=358784
http://dl.acm.org/citation.cfm?id=358784

CMU 15-721 (Spring 2018)

ORACLE

Convert PL/SQL stored procedures into Pro*C
code and then compiled into native C/C++ code.

They also put Oracle-specific operations directly
in the SPARC chips as co-processors.
→ Memory Scans
→ Bit-pattern Dictionary Compression
→ Vectorized instructions designed for DBMSs
→ Security/encryption

31

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

MICROSOFT HEKATON

Can compile both procedures and SQL.
→ Non-Hekaton queries can access Hekaton tables through

compiled inter-operators.

Generates C code from an imperative syntax tree,
compiles it into DLL, and links at runtime.

Employs safety measures to prevent somebody
from injecting malicious code in a query.

32

COMPILATION IN THE MICROSOFT SQL
SERVER HEKATON ENGINE
IEEE DATA ENGINEERING BULLETIN 2011

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2018/papers/03-compilation/freedman-ieee2014.pdf
http://15721.courses.cs.cmu.edu/spring2018/papers/03-compilation/freedman-ieee2014.pdf

CMU 15-721 (Spring 2018)

CLOUDERA IMPAL A

LLVM JIT compilation for predicate evaluation
and record parsing.
→ Not sure if they are also doing operator compilation.

Optimized record parsing is important for Impala
because they need to handle multiple data formats
stored on HDFS.

33

IMPALA: A MODERN, OPEN-SOURCE SQL
ENGINE FOR HADOOP
CIDR 2015

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://www.cidrdb.org/cidr2015/Papers/CIDR15_Paper28.pdf
http://www.cidrdb.org/cidr2015/Papers/CIDR15_Paper28.pdf

CMU 15-721 (Spring 2018)

ACTIAN VECTOR

Pre-compiles thousands of “primitives” that
perform basic operations on typed data.
→ Example: Generate a vector of tuple ids by applying a less

than operator on some column of a particular type.

The DBMS then executes a query plan that
invokes these primitives at runtime.
→ Function calls are amortized over multiple tuples

34

MICRO ADAPTIVITY IN VECTORWISE
SIGMOD 2013

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=2465292
http://dl.acm.org/citation.cfm?id=2465292

CMU 15-721 (Spring 2018)

ACTIAN VECTOR

Pre-compiles thousands of “primitives” that
perform basic operations on typed data.
→ Example: Generate a vector of tuple ids by applying a less

than operator on some column of a particular type.

The DBMS then executes a query plan that
invokes these primitives at runtime.
→ Function calls are amortized over multiple tuples

34

MICRO ADAPTIVITY IN VECTORWISE
SIGMOD 2013

size_t scan_lessthan_int32(int *res, int32_t *col, int32_t val) {
size_t k = 0;
for (size_t i = 0; i < n; i++)

if (col[i] < val) res[k++] = i;
return (k);

}

size_t scan_lessthan_double(int *res, int32_t *col, double val) {
size_t k = 0;
for (size_t i = 0; i < n; i++)

if (col[i] < val) res[k++] = i;
return (k);

}

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dl.acm.org/citation.cfm?id=2465292
http://dl.acm.org/citation.cfm?id=2465292

CMU 15-721 (Spring 2018)

MEMSQL (PRE 2016)

Performs the same C/C++ code generation as
HIQUE and then invokes gcc.

Converts all queries into a parameterized form and
caches the compiled query plan.

35

SELECT * FROM A
WHERE A.id = ?

SELECT * FROM A
WHERE A.id = 123

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

MEMSQL (PRE 2016)

Performs the same C/C++ code generation as
HIQUE and then invokes gcc.

Converts all queries into a parameterized form and
caches the compiled query plan.

35

SELECT * FROM A
WHERE A.id = ?

SELECT * FROM A
WHERE A.id = 123

SELECT * FROM A
WHERE A.id = 456

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

MEMSQL (2016 PRESENT)

A query plan is converted into an imperative plan
expressed in a high-level imperative DSL.
→ MemSQL Programming Language (MPL)
→ Think of this as a C++ dialect.

The DSL then gets converted into a second
language of opcodes.
→ MemSQL Bit Code (MBC)
→ Think of this as JVM byte code.

Finally the DBMS compiles the opcodes into
LLVM IR and then to native code.

36

Source: Drew Paroski

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://highscalability.com/blog/2016/9/7/code-generation-the-inner-sanctum-of-database-performance.html

CMU 15-721 (Spring 2018)

VITESSEDB

Query accelerator for Postgres/Greenplum that
uses LLVM + intra-query parallelism.
→ JIT predicates
→ Push-based processing model
→ Indirect calls become direct or inlined.
→ Leverages hardware for overflow detection.

Does not support all of Postgres’ types and
functionalities. All DML operations are still
interpreted.

37

Source: CK Tan

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.youtube.com/watch?v=PEmVuYjhQFo

CMU 15-721 (Spring 2018)

APACHE SPARK

Introduced in the new Tungsten engine in 2015.

The system converts a query's WHERE clause
expression trees into ASTs.

It then compiles these ASTs to generate JVM
bytecode, which is then executed natively.

38

SPARK SQL: RELATIONAL DATA PROCESSING
IN SPARK
SIGMOD 2015

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://dl.acm.org/citation.cfm?id=2742797
https://dl.acm.org/citation.cfm?id=2742797

CMU 15-721 (Spring 2018)

PELOTON

Full compilation of the entire query plan.

Relax the pipeline breakers of HyPer to create
mini-batches for operators that can be vectorized.

Use software pre-fetching to hide memory stalls.

39

RELAXED OPERATOR FUSION FOR IN-MEMORY DATABASES: MAKING
COMPILATION, VECTORIZATION, AND PREFETCHING WORK TOGETHER AT LAST
VLDB 2017

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2018/papers/22-vectorization2/menon-vldb2017.pdf
http://15721.courses.cs.cmu.edu/spring2018/papers/22-vectorization2/menon-vldb2017.pdf

CMU 15-721 (Spring 2018)

PELOTON

40

88147
26350

87473

9960
21500

901
1396

2641

383 540
892 846

1763

191 220

1

10

100

1000

10000

100000

Q1 Q3 Q13 Q14 Q19

E
xe

cu
ti

on
 T

im
e

(m
s)

Interpreted LLVM LLVM + ROF

Dual Socket Intel Xeon E5-2630v4 @ 2.20GHz
TPC-H 10 GB Database

Source: Prashanth Menon

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://www.youtube.com/watch?v=HjMQbzBhTb4

CMU 15-721 (Spring 2018)

PARTING THOUGHTS

Query compilation makes a difference but is non-
trivial to implement.

The 2016 version of MemSQL is the best query
compilation implementation out there.
Hekaton is very good too.

Any new DBMS that wants to compete has to
implement query compilation.

41

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

NEXT CL ASS

Concurrency Control

42

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

