
https://twitter.com/andy_pavlo
http://15721.courses.cs.cmu.edu/spring2018/
http://db.cs.cmu.edu/

CMU 15-721 (Spring 2018)

Striim Streaming Platform
→ Today @ 4:30pm
→ GHC 8102

http://db.cs.cmu.edu/events/db-seminar-spring-
2018-alok-pareek-striim/

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://db.cs.cmu.edu/events/db-seminar-spring-2018-alok-pareek-striim/

CMU 15-721 (Spring 2018)

Cascades / Columbia

Orca Optimizer

MemSQL Optimizer

Extra Credit Assignment

2

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

Choice #1: Heuristics
→ INGRES, Oracle (until mid 1990s)

Choice #2: Heuristics + Cost-based Join Search
→ System R, early IBM DB2, most open-source DBMSs

Choice #3: Randomized Search
→ Academics in the 1980s, current Postgres

Choice #4: Stratified Search
→ IBM’s STARBURST (late 1980s), now IBM DB2 + Oracle

Choice #5: Unified Search
→ Volcano/Cascades in 1990s, now MSSQL + Greenplum

4

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

Imposes a rigid workflow for query optimization:
→ First stage performs initial rewriting with heuristics
→ It then executes a cost-based search to find optimal join

ordering.
→ Everything else is treated as an “add-on”.
→ Then recursively descends into sub-queries.

Difficult to modify or extend because the ordering
has to be preserved.

5

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

Framework to allow a DBMS implementer to
write the declarative rules for optimizing queries.
→ Separate the search strategy from the data model.
→ Separate the transformation rules and logical operators

from physical rules and physical operators.

Implementation can be independent of the
optimizer's search strategy.

Examples: Starburst, Exodus, Volcano, Cascades,
OPT++

6

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

First rewrite the logical query plan using
transformation rules.
→ The engine checks whether the transformation is allowed

before it can be applied.
→ Cost is never considered in this step.

Then perform a cost-based search to map the
logical plan to a physical plan.

7

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

Unify the notion of both logical→logical and
logical→physical transformations.
→ No need for separate stages because everything is

transformations.

This approach generates a lot more
transformations so it makes heavy use of
memoization to reduce redundant work.

8

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

Top-down Optimization
→ Start with the final outcome that you want, and then

work down the tree to find the optimal plan that gets you
to that goal.

→ Example: Volcano, Cascades

Bottom-up Optimization
→ Start with nothing and then build up the plan to get to

the final outcome that you want.
→ Examples: System R, Starburst

9

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

Object-oriented implementation of the Volcano
query optimizer.

Simplistic expression re-writing can be through
a direct mapping function rather than an
exhaustive search.

10

Graefe

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2018/papers/15-optimizer1/graefe-ieee1995.pdf
http://15721.courses.cs.cmu.edu/spring2018/papers/15-optimizer1/graefe-ieee1995.pdf

CMU 15-721 (Spring 2018)

Optimization tasks as data structures.

Rules to place property enforcers.

Ordering of moves by promise.

Predicates as logical/physical operators.

11

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2018/papers/15-optimizer1/xu-columbia-thesis1998.pdf
http://15721.courses.cs.cmu.edu/spring2018/papers/15-optimizer1/xu-columbia-thesis1998.pdf

CMU 15-721 (Spring 2018)

A expression is an operator with zero or more
input expressions.

Logical Expression: (A ⨝ B) ⨝ C

Physical Expression: (AF ⨝HJ BF) ⨝NLJ CF

12

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

A group is a set of logically equivalent logical and
physical expressions that produce the same output.
→ All logical forms of an expression
→ All physical expressions that can be derived from

selecting the allowable physical operators for the
corresponding logical forms.

13

Output:
[ABC]

Logical Exps
1. (A⨝B)⨝C
2. (B⨝C)⨝A
3. (A⨝C)⨝B
4. A⨝(B⨝C)

⋮

Physical Exps
1. (AF⨝LBF)⨝LCF
2. (BF⨝LCF)⨝LAF
3. (AF⨝LCF)⨝LBF
4. AF⨝L(CF⨝LBF)

⋮

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

A group is a set of logically equivalent logical and
physical expressions that produce the same output.
→ All logical forms of an expression
→ All physical expressions that can be derived from

selecting the allowable physical operators for the
corresponding logical forms.

13

Output:
[ABC]

Logical Exps
1. (A⨝B)⨝C
2. (B⨝C)⨝A
3. (A⨝C)⨝B
4. A⨝(B⨝C)

⋮

Physical Exps
1. (AF⨝LBF)⨝LCF
2. (BF⨝LCF)⨝LAF
3. (AF⨝LCF)⨝LBF
4. AF⨝L(CF⨝LBF)

⋮

G
ro

u
p

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

A group is a set of logically equivalent logical and
physical expressions that produce the same output.
→ All logical forms of an expression
→ All physical expressions that can be derived from

selecting the allowable physical operators for the
corresponding logical forms.

13

Output:
[ABC]

Logical Exps
1. (A⨝B)⨝C
2. (B⨝C)⨝A
3. (A⨝C)⨝B
4. A⨝(B⨝C)

⋮

Physical Exps
1. (AF⨝LBF)⨝LCF
2. (BF⨝LCF)⨝LAF
3. (AF⨝LCF)⨝LBF
4. AF⨝L(CF⨝LBF)

⋮

Equivalent
Expressions

G
ro

u
p

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

Instead of explicitly instantiating all possible
expressions in a group, the optimizer implicitly
represents redundant expressions in a group as a
multi-expression.
→ This reduces the number of transformations, storage

overhead, and repeated cost estimations.

14

Output:
[ABC]

Logical Multi-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [A]⨝[BC]

⋮

Physical Multi-Exps
1. [AB]⨝L[C]
2. [BC]⨝L[A]
3. [AC]⨝L[B]
4. [A]⨝L[CB]

⋮

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

A rule is a transformation of an expression to a
logically equivalent expression.
→ Transformation Rule: Logical to Logical
→ Implementation Rule: Logical to Physical

Each rule is represented as a pair of attributes:
→ Pattern: Defines the structure of the logical expression

that can be applied to the rule.
→ Substitute: Defines the structure of the result after

applying the rule.

15

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

Pattern

16

EQJOIN

EQJOIN

GROUP 1 GROUP 2

GROUP 3

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

Pattern

16

EQJOIN

EQJOIN

GROUP 1 GROUP 2

GROUP 3

[AB]⨝C

A⨝B

GET(A) GET(B)

GET(C)

Matching Plan

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

Pattern

16

EQJOIN

EQJOIN

GROUP 1 GROUP 2

GROUP 3

Transformation Rule
Rotate Left-to-Right

A⨝[BC]

GET(A)

GET(B) GET(C)

B⨝C

[AB]⨝C

A⨝B

GET(A) GET(B)

GET(C)

Matching Plan

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

Pattern

16

EQJOIN

EQJOIN

GROUP 1 GROUP 2

GROUP 3

Transformation Rule
Rotate Left-to-Right

Implementation Rule
EQJOIN→SORTMERGE

A⨝[BC]

GET(A)

GET(B) GET(C)

B⨝C

[AB]⨝SMC

A⨝SMB

GET(A) GET(B)

GET(C)

[AB]⨝C

A⨝B

GET(A) GET(B)

GET(C)

Matching Plan

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

Stores all previously explored alternatives in a
compact graph structure.

Equivalent operator trees and their corresponding
plans are stored together in groups.

Provides memoization, duplicate detection, and
property + cost management.

17

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

Every sub-plan of an optimal plan is itself optimal.

This allows the optimizer to restrict the search
space to a smaller set of expressions.
→ The optimizer never has to consider a plan containing

sub-plan P1 that has a greater cost than equivalent plan
P2 with the same physical properties.

18

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2018/papers/15-optimizer1/shapiro-ideas2001.pdf
http://15721.courses.cs.cmu.edu/spring2018/papers/15-optimizer1/shapiro-ideas2001.pdf

CMU 15-721 (Spring 2018)

19

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝LC
2. [BC]⨝LA
3. [AC]⨝LB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝L[B]
2. [A]⨝SM[B]
3. [B]⨝L[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. F-SCAN(A)
2. I-SCAN(A)

Output:
[B]

Logical M-Exps
1. GET(B)

Physical M-Exps
1. F-SCAN(B)
2. I-SCAN(B)

Output:
[C]

Logical M-Exps
1. GET(C)

Physical M-Exps
1. F-SCAN(C)
2. I-SCAN(C)

Winner

[ABC]

[AB]

[A]

[C]

[B]

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

19

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝LC
2. [BC]⨝LA
3. [AC]⨝LB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝L[B]
2. [A]⨝SM[B]
3. [B]⨝L[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. F-SCAN(A)
2. I-SCAN(A)

Output:
[B]

Logical M-Exps
1. GET(B)

Physical M-Exps
1. F-SCAN(B)
2. I-SCAN(B)

Output:
[C]

Logical M-Exps
1. GET(C)

Physical M-Exps
1. F-SCAN(C)
2. I-SCAN(C)

Winner

[ABC]

[AB]

[A]

[C]

[B]

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

19

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝LC
2. [BC]⨝LA
3. [AC]⨝LB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝L[B]
2. [A]⨝SM[B]
3. [B]⨝L[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. F-SCAN(A)
2. I-SCAN(A)

Output:
[B]

Logical M-Exps
1. GET(B)

Physical M-Exps
1. F-SCAN(B)
2. I-SCAN(B)

Output:
[C]

Logical M-Exps
1. GET(C)

Physical M-Exps
1. F-SCAN(C)
2. I-SCAN(C)

Cost: 10

Winner

[ABC]

[AB]

[A]

[C]

[B]

F-SCAN(A)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

19

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝LC
2. [BC]⨝LA
3. [AC]⨝LB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝L[B]
2. [A]⨝SM[B]
3. [B]⨝L[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. F-SCAN(A)
2. I-SCAN(A)

Output:
[B]

Logical M-Exps
1. GET(B)

Physical M-Exps
1. F-SCAN(B)
2. I-SCAN(B)

Output:
[C]

Logical M-Exps
1. GET(C)

Physical M-Exps
1. F-SCAN(C)
2. I-SCAN(C)

Cost: 10

Winner

[ABC]

[AB]

[A]

[C]

[B]

F-SCAN(A)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

19

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝LC
2. [BC]⨝LA
3. [AC]⨝LB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝L[B]
2. [A]⨝SM[B]
3. [B]⨝L[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. F-SCAN(A)
2. I-SCAN(A)

Output:
[B]

Logical M-Exps
1. GET(B)

Physical M-Exps
1. F-SCAN(B)
2. I-SCAN(B)

Output:
[C]

Logical M-Exps
1. GET(C)

Physical M-Exps
1. F-SCAN(C)
2. I-SCAN(C)

Cost: 10 Cost: 20

Winner

[ABC]

[AB]

[A]

[C]

[B]

F-SCAN(A)

F-SCAN(B)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

19

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝LC
2. [BC]⨝LA
3. [AC]⨝LB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝L[B]
2. [A]⨝SM[B]
3. [B]⨝L[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. F-SCAN(A)
2. I-SCAN(A)

Output:
[B]

Logical M-Exps
1. GET(B)

Physical M-Exps
1. F-SCAN(B)
2. I-SCAN(B)

Output:
[C]

Logical M-Exps
1. GET(C)

Physical M-Exps
1. F-SCAN(C)
2. I-SCAN(C)

Cost: 10 Cost: 20

Winner

[ABC]

[AB]

[A]

[C]

[B]

F-SCAN(A)

F-SCAN(B)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

19

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝LC
2. [BC]⨝LA
3. [AC]⨝LB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝L[B]
2. [A]⨝SM[B]
3. [B]⨝L[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. F-SCAN(A)
2. I-SCAN(A)

Output:
[B]

Logical M-Exps
1. GET(B)

Physical M-Exps
1. F-SCAN(B)
2. I-SCAN(B)

Output:
[C]

Logical M-Exps
1. GET(C)

Physical M-Exps
1. F-SCAN(C)
2. I-SCAN(C)

Cost: 10 Cost: 20

Winner

[ABC]

[AB]

[A]

[C]

[B]

F-SCAN(A)

F-SCAN(B)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

19

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝LC
2. [BC]⨝LA
3. [AC]⨝LB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝L[B]
2. [A]⨝SM[B]
3. [B]⨝L[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. F-SCAN(A)
2. I-SCAN(A)

Output:
[B]

Logical M-Exps
1. GET(B)

Physical M-Exps
1. F-SCAN(B)
2. I-SCAN(B)

Output:
[C]

Logical M-Exps
1. GET(C)

Physical M-Exps
1. F-SCAN(C)
2. I-SCAN(C)

Cost: 10 Cost: 20

Winner

[ABC]

[AB]

[A]

[C]

[B]

F-SCAN(A)

F-SCAN(B)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

19

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝LC
2. [BC]⨝LA
3. [AC]⨝LB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝L[B]
2. [A]⨝SM[B]
3. [B]⨝L[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. F-SCAN(A)
2. I-SCAN(A)

Output:
[B]

Logical M-Exps
1. GET(B)

Physical M-Exps
1. F-SCAN(B)
2. I-SCAN(B)

Output:
[C]

Logical M-Exps
1. GET(C)

Physical M-Exps
1. F-SCAN(C)
2. I-SCAN(C)

Cost: 10 Cost: 20

Winner

[ABC]

[AB]

[A]

[C]

[B]

F-SCAN(A)

F-SCAN(B)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

19

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝LC
2. [BC]⨝LA
3. [AC]⨝LB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝L[B]
2. [A]⨝SM[B]
3. [B]⨝L[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. F-SCAN(A)
2. I-SCAN(A)

Output:
[B]

Logical M-Exps
1. GET(B)

Physical M-Exps
1. F-SCAN(B)
2. I-SCAN(B)

Output:
[C]

Logical M-Exps
1. GET(C)

Physical M-Exps
1. F-SCAN(C)
2. I-SCAN(C)

Cost: 10 Cost: 20

Cost: 50+(10+20)

Winner

[ABC]

[AB]

[A]

[C]

[B]

F-SCAN(A)

F-SCAN(B)

[A]⨝SM[B]

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

19

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝LC
2. [BC]⨝LA
3. [AC]⨝LB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝L[B]
2. [A]⨝SM[B]
3. [B]⨝L[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. F-SCAN(A)
2. I-SCAN(A)

Output:
[B]

Logical M-Exps
1. GET(B)

Physical M-Exps
1. F-SCAN(B)
2. I-SCAN(B)

Output:
[C]

Logical M-Exps
1. GET(C)

Physical M-Exps
1. F-SCAN(C)
2. I-SCAN(C)

Cost: 10 Cost: 20

Cost: 50+(10+20) Cost: 5

Winner

[ABC]

[AB]

[A]

[C]

[B]

F-SCAN(A)

F-SCAN(B)

I-SCAN(C)

[A]⨝SM[B]

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

19

Output:
[ABC]

Logical M-Exps
1. [AB]⨝[C]
2. [BC]⨝[A]
3. [AC]⨝[B]
4. [B]⨝[AC]

Physical M-Exps
1. [AB]⨝LC
2. [BC]⨝LA
3. [AC]⨝LB

⋮

Output:
[AB]

Logical M-Exps
1. [A]⨝[B]
2. [B]⨝[A]

Physical M-Exps
1. [A]⨝L[B]
2. [A]⨝SM[B]
3. [B]⨝L[A]

Output:
[A]

Logical M-Exps
1. GET(A)

Physical M-Exps
1. F-SCAN(A)
2. I-SCAN(A)

Output:
[B]

Logical M-Exps
1. GET(B)

Physical M-Exps
1. F-SCAN(B)
2. I-SCAN(B)

Output:
[C]

Logical M-Exps
1. GET(C)

Physical M-Exps
1. F-SCAN(C)
2. I-SCAN(C)

Cost: 10 Cost: 20

Cost: 50+(10+20) Cost: 5

Winner

[ABC]

[AB]

[A]

[C]

[B]

F-SCAN(A)

F-SCAN(B)

I-SCAN(C)

[A]⨝SM[B]

Output:
[BC]

Logical M-Exps
1. [B]⨝[C]
2. [C]⨝[B]

Physical M-Exps

Output:
[AC]

Logical M-Exps
1. [A]⨝[C]
2. [C]⨝[A]

Physical M-Exps

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

Approach #1: Wall-clock Time
→ Stop after the optimizer runs for some length of time.

Approach #2: Cost Threshold
→ Stop when the optimizer finds a plan that has a lower

cost than some threshold.

Approach #3: Transformation Exhaustion
→ Stop when there are no more ways to transform the

target plan. Usually done per group.

20

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

Standalone:
→ Wisconsin OPT++ (1990s)
→ Portland State Columbia (1990s)
→ Pivotal Orca (2010s)
→ Apache Calcite (2010s)

Integrated:
→ Microsoft SQL Server (1990s)
→ Tandem NonStop SQL (1990s)
→ Clustrix (2000s)
→ CMU Peloton (2010s)

21

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://pages.cs.wisc.edu/~navin/research/apg.html
http://web.cecs.pdx.edu/~len/Columbia/
https://github.com/greenplum-db/gporca
https://calcite.apache.org/
http://www.vldb.org/conf/1996/P592.PDF
http://docs.clustrix.com/display/CLXDOC/Query+Optimizer
https://github.com/cmu-db/peloton/tree/master/src/optimizer

CMU 15-721 (Spring 2018)

Predicates are defined as part of each operator.
→ These are typically represented as an AST.
→ Postgres implements them as flatten lists.

The same logical operator can be represented in
multiple physical operators using variations of the
same expression.

22

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

Approach #1: Logical Transformation
→ Like any other transformation rule in Cascades.
→ Can use cost-model to determine benefit.

Approach #2: Rewrite Phase
→ Perform pushdown before starting search using an initial

rewrite phase. Tricky to support complex predicates.

Approach #3: Late Binding
→ Perform pushdown after generating optimal plan in

Cascades. Will likely produce a bad plan.

23

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

Observation: Not all predicates cost the same to
evaluate on tuples.

The optimizer should consider selectivity and
computation cost when determining the
evaluation order of predicates.

24

SELECT * FROM foo
WHERE foo.id = 1234
AND SHA_512(foo.val) = '...'

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://dl.acm.org/citation.cfm?id=170078
https://dl.acm.org/citation.cfm?id=170078

CMU 15-721 (Spring 2018)

Standalone Cascades implementation.
→ Originally written for Greenplum.
→ Extended to support HAWQ.

A DBMS can use Orca by implementing API to
send catalog + stats + logical plans and then
retrieve physical plans.

Supports multi-threaded search.

25

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2018/papers/15-optimizer1/p337-soliman.pdf
http://15721.courses.cs.cmu.edu/spring2018/papers/15-optimizer1/p337-soliman.pdf

CMU 15-721 (Spring 2018)

Issue #1: Remote Debugging
→ Automatically dump the state of the optimizer (with

inputs) whenever an error occurs.
→ The dump is enough to put the optimizer back in the

exact same state later on for further debugging.

Issue #2: Optimizer Accuracy
→ Automatically check whether the ordering of the estimate

cost of two plans matches their actual execution cost.

26

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

Rewriter
→ Logical-to-logical transformations with access to the

cost-model.

Enumerator
→ Logical-to-physical transformations.
→ Mostly join ordering.

Planner
→ Convert physical plans back to SQL.
→ Contains MemSQL-specific commands for moving data.

27

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/spring2018/papers/16-optimizer2/chen-vldb2016.pdf
http://15721.courses.cs.cmu.edu/spring2018/papers/16-optimizer2/chen-vldb2016.pdf

CMU 15-721 (Spring 2018)

28

Parser
Abstract

Syntax
Tree

Logical
Plan

Physical
Plan

Cost
Estimates

SQL Query

Binder

Rewriter

Enumerator

Planner

Physical
Plan

SQL

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

“Query optimization is not rocket science. When
you flunk out of query optimization, we make you
go build rockets.” – David DeWitt

The research literature suggests that there is no
difference in quality between bottom-up vs. top-
down search strategies.

All of this hinges on a good cost model.
A good cost model needs good statistics.

29

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

“Query optimization is not rocket science. When
you flunk out of query optimization, we make you
go build rockets.” – David DeWitt

The research literature suggests that there is no
difference in quality between bottom-up vs. top-
down search strategies.

All of this hinges on a good cost model.
A good cost model needs good statistics.

29

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
https://twitter.com/joe_hellerstein/status/865224187287396354

CMU 15-721 (Spring 2018)

Each student can earn extra credit if they write a
encyclopedia article about a DBMS.
→ Can be academic/commercial, active/historical.

Each article will use a standard taxonomy.
→ For each feature category, you select pre-defined options

for your DBMS.
→ You will then need to provide a summary paragraph with

citations for that category.

30

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

Each student can earn extra credit if they write a
encyclopedia article about a DBMS.
→ Can be academic/commercial, active/historical.

Each article will use a standard taxonomy.
→ For each feature category, you select pre-defined options

for your DBMS.
→ You will then need to provide a summary paragraph with

citations for that category.

30

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dbdb.io/

CMU 15-721 (Spring 2018)

Each student can earn extra credit if they write a
encyclopedia article about a DBMS.
→ Can be academic/commercial, active/historical.

Each article will use a standard taxonomy.
→ For each feature category, you select pre-defined options

for your DBMS.
→ You will then need to provide a summary paragraph with

citations for that category.

30

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dbdb.io/
http://dbdb.io/

CMU 15-721 (Spring 2018)

Each student can earn extra credit if they write a
encyclopedia article about a DBMS.
→ Can be academic/commercial, active/historical.

Each article will use a standard taxonomy.
→ For each feature category, you select pre-defined options

for your DBMS.
→ You will then need to provide a summary paragraph with

citations for that category.

30

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://dbdb.io/
http://dbdb.io/
http://dbdb.io/

CMU 15-721 (Spring 2018)

All the articles will be hosted on our new website
(currently under development).
→ I will post the user/pass on Piazza.

I will post a sign-up sheet for you to pick what
DBMS you want to write about.
→ If you choose a widely known DBMS, then the article will

need to be comprehensive.
→ If you choose an obscure DBMS, then you will have do

the best you can to find information.

31

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

CMU 15-721 (Spring 2018)

This article must be your own writing with your
own images. You may not copy text/images
directly from papers or other sources that you find
on the web.

Plagiarism will not be tolerated.
See CMU's Policy on Academic Integrity for
additional information.

33

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/
http://www.cmu.edu/policies/documents/Academic Integrity.htm

CMU 15-721 (Spring 2018)

Cost Models

Working in a large code base

34

http://db.cs.cmu.edu/
http://15721.courses.cs.cmu.edu/

